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Abstract In computer vision, the interpretation of optical neural network, it is assumed that motion develops all over the 
flow ( motion vector field calculated from images ) and estimation frame, centering around the center of the frame. 
of motion are important tasks. This study proposes a motion in- 
terpretation network which enables optical flow (OF) interpreta- 
tion and describes motions on a plane through the use of a neural / r -  -. '. 
network with complex back propagation learning. Furthermore, r , -  ' \ (d.r,dy) 
an OF normalization network for optical flow normalization is t ! ' I 

proposed for the interpretation of diverse flow patterns, such as \ . -  ' d  (d2 ,w)  
real image optical flow. Using test patterns and real image optical \ - . -  d L 

flow, the generalization capacity of proposed network is investi- 
gated. And the ability is confirmed experimentally. 

Figure 1 Motion interpretation network 

1 Introduction 

In computer vision, the interpretation of optical flow [I] ( motion 
vector field calculated from images ) and estimation of motion are 
important tasks [2]. This study proposes a motion interpretation 
network which enables optical flow (OF) interpretation and de- 
scribes motions on a plane through the use of a neural network 
with complex back propagation learning. Furthermore, an OF 
normalization network for optical flow normalization is proposed 
for the interpretation of diverse flow patterns, such as real image 
optical flow. 

Methods for estimating motion from optical flow include a 
method that obtains the optimum solution by using several flow 
vectors to solve equations [3], [4], [5]. However, this method is 
time consuming and prone to noise, and solutions are for actual 
images cannot easily be obtained. 

Neural networks are frequently utilized in pattern translation 
and are far less affected by noise [6], [7]. The calculation time 
required after learning is short, and the network are suitable for 
interpretation of motion. In addition, the networks proposed in 
this paper utilize complex BP and thus can naturally accommo- 
date optical flow, a two-dimensional vector, as a complex number. 

2 Complex Back Propagation Learn- 
ing 

Complex back propagation learning has been developed by Nitta 
and Furuya [8], who expanded the weight of connection and the 
threshold of each unit in conventional neural networks to  complex 
numbers. It is shown as an effective method for graphic conver- 
sion. 

3 Motion Interpretation Network 

Figure 1 shows the architecture of the motion interpretation net- 
work proposed in this study. In the flow vectors to be fed to  the 
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Input layer 

Units corresponding to each vector of optical flow are ar- 
ranged two dimensionally. Inputs to each unit are of com- 
plex numbers corresponding to motion vectors of the inputs. 
Units of 25 (= 5 x 5) was used in the computer simulation. 

Output layer 

Two complex output units corresponding to the displacement 
components parallel to the frame (dz,  dy), expansion and 
contraction component dr and rotational component parallel 
to the frame w, (dr, a,) are available. 

Hidden layer 

There is only one hidden layer, and 16 units are used 

4 Motion Interpretation Networks 
with Normalization Capacity 

Motion interpretation networks interpret the optical flow in an 
entire frame. However, in reality, optical flow frequently cannot be 
obtained for the entire frame. Hence, OF normalization networks 
utilize the graphic conversion networks proposed by Nitta and 
Furuya to normalize sparce optical flow, partially defined optical 
flow and optical flow of arbitrary size and shape to n x n. 

In OF normalization networks, a complex function that trans- 
lates a point on a two-dimensional plane to another point can 
be estimated by supplying a point before translation and a point 
after translation as learning data. 

By having the network learn the starting point of each vector 
of optical flow as a point before conversion and the terminal point 
as  a point after conversion, it is possible to have the neural net- 
work estimate a function f, to describe the optical flow. Here the 
network is expected to output a value of the complex function 
f ,  a t  all locations on the frame. By providing points aligned in 
an n x n lattice format to this network as starting points, and 
obtaining the final points from each starting point, a normalized 
n x n optical flow can be created. Figure 2 shows the architecture 
of OF normalization network. 



Function r 

Figurr 2 OF norrnnliz~l ion nef work 

5 Experimental 
A t w ~  paltern roncinting of25 (= 5 x 5) vectors w~ prnvid~d to A 

mollmi intrrprrtation nrtwork whirh had learned hrrsir motions, 
so h ~ t  the gener~lixation caparlty of the motion lnterpretatian 
n r t w r k  could br sllrdlcd. T h e  tcxhcr paticrn and t r s t  pattern 
provided motlon romponrnts, and thesr were arranred so that 
motion developed a11 over the hame, centering around the centrr 
of 1 IIP f r m r  

T h r  nurnhpr of types oFZcrchrr patterns used was 25, and lhcsc 
pml,l,Prnl sontalnril R ~ i n g l ~  motion cnmponcnt, Thrn 11 typmr nT 
l r s t  pattrrns wetc providrd. 

Tahlr I shown t Z i ~  moI Ion vcrtorn of trrwhrr pattern s11ppltrt1 
nnd I'i~vrrr 3 shows RII PXRI~P~P of teacher pattprn. A mottan 
vrrtor or tcat psftrrn and motion intcrptctation neiwork output 
rnrrmpondlrq to tlip prrttprn am Riven 111 Tahleu 2 R) and 2 h), 
trspcrllvelp Paitcms I to 24 are patterns tor invmtigatlng Ken- 
rralitat ion capnclty a ~ t h  rmpecl to unknown aperds, pat terns 2.5 
to  :lS are patlcrns for ~nvestignting the generalization capar~ly for 
n cnrnbinnt~oli or mtrll I~IC nl~rnhcm. 

T ~ P  r-ultn inairale t h ~ t  although rtnl~n~formily ww present, 
thr mean square error was 0.0018 on the averaKr, with a maw- 
mum of nheut 0.055. Motion tntprprrtntlon nrtworks that have 
lrnrnrd hu ic  matlnn nrr thought to have the caparlty to  pne t -  
alizp r~nknow~i pntlerna. 

FSPXZ, examplm o f~xp~ r inen ta l  rmults 011 nornlalizalion capsc- 
it? arc s11ox.n En thc cxpcrimcnts, pattcrns in  which optical flow 
WR? n o t  o h t i n r d  for t h ~  en t i r~  Frame (tmt pattern- 3R 17) wrre 
c r ~ n t r d ,  !hen norrnaliz~d hy t h ~  01.' nnrrnnliz~tion nrtwork and 
in t r rpr r t~d by thr mollon intrrprciat ion nptxvork. Figure 5 shows 
ail 1r1p11t optiral Row, the sanie optic4 flow dtcr ~iormalization, 
and lhr  rrsulls of lntcrpretatron for each of them In F ~ R U ~ C  5 .  
an input opticd flow or t a t  pattern i~ ~ h n w n  R~)OYE,  it^ ll~)rrnal- 
izrd pattprn is ahown below, rcsirln or l n t ~ r p r ~ t n t ~ o n  and prmldrd 
ninbon vrctor nrr ~nd lca t~r l  IIR [iJx, d,u) (dr ,  w * )  at lhr  t)ottom. 

r l ~ ~ r e  li R ~ ~ W R  nn inp t~ t  optical flow with aditivc noise{aZ = 
0 Ofl()fiy,O 0033 and burst noiae), the same optical flow n f t ~ r  nor- 
mdiration, and t h ~  ~PRII~~S of intrrpretmtion for ~ n c h  of ihem 
Thrc resill! ~nd~cutcs thr  ~ n t ~ f p r ~ t d ~ o n  rletwork nnd I hc nornirrl- 
~ Z H I  Ion n~twnrk  wnrks w ~ l l  rvpn irndrr thr a d d ~ t i v ~  noiw. 

F i ~ u r c  7(a) L ~ O H ' S  the fink framr or real image sequencr(l2R 
piarls x 128 pbx~lr;) t l n ~ d  in t  hi^ rxpcrirn~nl nnd I h~ ohjrct rnnvrs 
ahout 2.5 pixrZs tn thp left. Figure i ( b )  shows n part or opti- 
crri flow (!0 pixels x 10 pixels) C A ~ U C U ~ R ~ ~ ~  from I h r  real i fnap 
RPqwnct  Figlrw 8 ~hou-~i  the pa t r~ rn  a h  normsrization. 'TZIP 
r p s t ~ l t  of  this rxperimcnt shows the effrctiv~npr;~ of our networks 

Table 1 Motion vector of teacher patterns 

6 Conclusions 
Thtough thr uRe oTt he mfthad propmed in thiu pnpcr, i t  waa pm- 
~ i h l c  l o  intrrprrt thr optlcnl flow and obta~n motion parumctfra 
on a plsnc rrom optical flow. Equipping the network with normnl- 
17ation capntiiy f l~rthcr mnhlrd us to obtain motion romponpntn 
from various optlral flnws In f i ~ t ~ f r ~  s l ~ ~ r l i ~ u ~  WP ulinll ntlprnpt l o  

drvelop t hr  prrwnl met hnd to rnahlr cx~rachon of 3D motlon. 
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test pattern 25 test pattern 30 
mollon vcc~nrot p a ~ ~ m  ,,, = 0,5 d,v= 0,5 dr = 0.5 dy = 0.5 nn = QS 

O U I ~ J I  nl nnw%rk d t  = 0.52h dr = n,S52 dz = O 525 dl = f l 5 2 f l  an = 0.520 

F i g u r ~  I Exampl~s of  tmt patterns 

Tahlc 2 Motion vrrtor of  test pattern and outpelt of network 

a) motion vector ot test pnttcrn b) output of network c) MSE 
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x - - 4 /  

tmpa~crnd1 tcrr paucm 43 mpimrmu rcsc pancm 45 WParema  mprnon41 
&n normalrrariar mfur n m m a l l r .  rfrrrnormrlvlmon d k r  rtmmal~micm dim nomrali7mm &zr namsl~nim 

(a21.051) ram. ow, ra 14. aos,t.om. am t-o 01, a 03) c-o E, on) l o  g7,o.m) (-0 04.0.01) (0.29. 0.5 1 I (0 49. 4.01 1 (-0.66.0 40) ( -0  30. 0.75) 



a' = O 0053 with burnt nniw nZ = 0.0006T with burst no l~ r  

(0 73, -0.25)(0.07, O 01) (0 68, 0.06)(-0 OG, -0.02) (0.19, 0 51)(-0.10, 0.10) (0  59, 0 69)(-O.Ofia 0.08) 

after nnrrnalization n f t ~ r  norrnal~zut~on 
(0 71, O ]A)(-0.18, O.R1) (0.80, 0.18)(-0 20, -0.16) 

n~olion v~r tor (dr .  d y ) { d : .  w : )  ( 0  75,  0)[0, 11) motion vcctor(dx, d y ) [ d z ,  w s )  (1, O ) ( O ,  0) 

nr = 0 00067 with burnt noiw u3 = 0.00067 n7ith hutst nolne 
(0.29. -0 za)(o.ni, o . 0 ~ )  (0.17, -0.88)40.40,0.15) ( o . I ~ ,  o ~ F ) ( - o  la, n.4n) (0.18, o.as)(-0.03, 038) 

aft.~t norrnalizatinr~ atlpr normaliarttion after normslixstion ~ f t ~ r  norrnslization 

(-004,-flfi0)(0..5;,0.01) (o .oa,o.zs) (o.~~. -0 .09)  ( -0 ,03 ,0 ,16 ) ( -00~ ,0 .71 )  (o.os,ao~)(o07,o.s7)  
mntmn v~rtor(dr,cI!~)(d:,w~) (0, 0)(0.8. 0) motmion v ~ c t n r ( d r , d y ) ( d z , w r )  (0, O ) ( O ,  0.8) 

- - - - -  - - - - -  ' -  - - - 0  

dter  normal laa! )on a f t ~ r  nurrnalixat~on after normalization alter normaliznt~on 
(0,7FI, -O.U3)(-0.02, -0.02) (0 155, 0 0.i)l-0 Or, ll 02) (0 33, -0 16)(0 54, 0 013 (-0.28, O.li)(-0 03. O 58) 

motion vector(dr,dy)(d:, w r )  mot~or~ vector(dr, dy) (d: ,  d:) 
motion vecror(dr,dy)(dz.w;) (1. 0)(0, 0) (0, a)(u  w, 0) (0. U)IO. 0.8)  

Figurc 6 Exprrimenrnl rpnults with noiw added inpula 



( A )  (a) 

Ftgutc 7 RPxl image and opticd flow cduculatcd from r ~ a l  image sequence 

(-2,M, -0.15)(-0.07, -0 20) 
motion vector(dt, d y ) ( d r ,  w z )  2: (-2.5,0)(0.0) 

Figure 8 Experimental resulta with real image negilence 




