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ABSTRACT
We present our submission to the DCASE 2020 Challenge Task 2,
which aims to promote research in anomalous sound detection. We
found that a speaker recognition approach enables the use of all the
training data, even from different machine types, to detect anoma-
lies in specific machines. Using this approach, we obtained good
results for 5 out of 6 machines on the development data. We also
discuss the modifications needed to surpass the baseline score for
the remaining (ToyConveyor) machine which we found to be par-
ticularly difficult. On the challenge evaluation test data, our results
were skewed by the system’s uninspiring performance on the Toy
machines. However, we placed 18th in the challenge due to our re-
sults on the industrial machine data where we reached the top 5 in
team pAUC scores.

Index Terms— DCASE, anomaly detection, anomalous
sounds, machine condition monitoring, machine health monitoring,
speaker recognition.

1. INTRODUCTION

The DCASE 2020 Challenge Task 2 is concerned with promoting
research into identifying anomalous behavior from a target machine
using sound recordings [1]. The benefits of detecting anomalies in
machines early are well understood and include: reduced down-
time, improved efficiency, and useful life extension. Furthermore,
the cost of audio sensors is relatively low which makes them an
attractive choice for widespread adoption. However, it is generally
difficult to realize these benefits while maintaining a low false alarm
rate. This is largely due to the lack of data to learn from and a lack
of negative training examples in particular.

A major difference between this task and other DCASE chal-
lenge tasks is that it is not supervised. Accordingly, the available
training data only contains samples from the normal state distribu-
tions. The data for this challenge are derived from two existing
datasets [2, 3] and was provided in stages.

Among approaches for unsupervised anomaly detection using
deep neural networks (DNN), autoencoder based approaches stand
out and are frequently encountered in the literature [4, 5, 6, 7, 8].
The idea behind using an autoencoder as an anomaly detector is
straightforward and compelling1: one trains an encoder network to

1Indeed the baseline model provided in this challenge is autoencoder

learn a lower dimensional representation of the normal state data,
one trains a decoder to reconstruct the normal inputs from the en-
coded representation, and if all goes well one can effectively use
the reconstruction error as an anomaly score. The autoencoder is
expected to reconstruct normal data better than anomalies. How-
ever, this is not guaranteed and in practice an autoencoder may do a
good job of reconstructing anomalies as well [9]. This is the prob-
lem we encountered in our early experiments with autoencoders and
why we ended-up looking in a different direction.

In our approach, we used all the training data provided in the
“development” and “additional” datasets [10, 11]. Although these
data do not contain abnormal samples, they do contain other in-
formation – they contain the machine type and ID number. We
leveraged this information to train a neural network to predict the
machine ID of an input sample, and we leveraged the machine type
in the normalization step discussed in Section 2.3.

The DNN architecture used here is composed of a (Mel or
STFT) spectrogram layer, followed by a 2D CNN encoder, followed
(optionally) by a variant of the x-vector model used for speaker
recognition [12], and capped with either a fully connected (FC) or
added margin softmax (AMS) layer also found in the speaker recog-
nition literature [13]. We employ two scoring methods and take the
best one for a given machine type.

A high level description of the architectures can be found in
Table 1.

Fan Pump Slider Valve ToyCar ToyConv
STFT MEL MEL MEL MEL MEL

encoder encoder encoder encoder encoder encoder
x-vector x-vector x-vector AMS x-vector FC

AMS AMS AMS AMS

Table 1: High Level Architectures

2. METHODOLOGY

In this section we detail our implementation, DNN training strategy,
and scoring methods. All the code was written in Python and the
models were developed using PyTorch [14].

based.

96



Detection and Classification of Acoustic Scenes and Events 2020 2–3 November 2020, Tokyo, Japan

2.1. Data Processing

The DCASE 2020 Task 2 dataset consists of 10-second audio files
that include the sound of the target machine and environmental
noise. There are six types of machine categories. ToyCar and Toy-
Conveyor are from the ToyADMOS dataset [2]. Valve, Pump, Fan,
and Slider are from the MIMII dataset [3]. Within each machine
category there are a number of machine IDs, for a total of 41 possi-
ble sound categories. The interested reader is referred to the dataset
references for details on the recording procedures. However, all the
audio files contain a single-channel and use a 16kHz sampling rate.

For spectral features, we used the Python package, nnAudio
[15], to transform the input audio into either a Mel or STFT spec-
trogram in the so called “stand alone” mode. That is, we did not
use the trainable kernel options. The Mel spectrograms were gener-
ated using the HTK option. The optimal spectrogram settings varied
with machine type. We provide these settings in Section 3.

2.2. Network Architectures

All architectures utilized the 2D CNN encoder shown in Figure 1.
The encoder utilizes progressively smaller kernel sizes and ends
with a max pool layer. For Fan, Pump, Slider, and ToyCar we
followed the encoder with a variant of the x-vector model from
[12]. The x-vector model uses several 1D convolutions, stats pool-
ing [16], and FC layers to produce embeddings that can be fed to
a classifier. For these machines, including the x-vector component
increased the sum of AUC and pAUC by 5 to 7 percent. Figure 2
shows the variant used here2. For all machine types, except Toy-
Conveyor, we capped the embedding layers with an additive mar-
gin softmax layer [13] which has the effect of increasing inter-
machine distance in the embedding space for improved accuracy.
See [13, 17] for details. For ToyConveyor, we simply followed the
encoder with an FC classifier. Finally, in all models we utilized
ReLU activations or one of its variants.

MaxPool(2)

BatchNorm2d(64)

nnAudio Conv2d(1,64,7) Conv2d(64,32,5) Conv2d(32,6,5)

Figure 1: Spectrogram layer and convolutional encoder model

2.3. Training Strategy

All the models use the same training strategy, except for the Toy-
Conveyor model which we discuss separately. At training time, a

2A 1D x-vector model alone can obtain good classification performance,
but in our experiments it was not as good as the 2D encoder with a classifier.
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Figure 2: X-vector model with AMS top layer

contiguous 10
7

-second clip was randomly sampled from the train-
ing files. We used this method primarily because it was a way of
increasing the batch size given the memory constraints of our hard-
ware, but also because early experiments performed better this way.
Batches of 64-128 such samples were used during each epoch, for
between 100 and 200 epochs to ensure all the data are sampled.

At the output of the spectrogram layer, before inputting to the
encoder, we normalized the spectrogram by subtracting the column-
wise mean, and dividing by the column wise standard deviation, of
all the training spectrograms of the same machine type.

We used a different strategy to obtain the best result from the
ToyConveyor data. The strategy was motivated by the fact that
the ToyConveyor data were too easily differentiated from other ma-
chines, even of the same type. We divided each 10-second sample
into 7 parts and used the 7 parts as a batch because we obtained bet-
ter results using smaller batches. Thus, each batch was composed
of data from the same ToyConveyor machine ID3. With a probabil-
ity of 1

2
, we simulated anomalies by corrupting 1 of the 7 parts by

linearly combining the part spectrogram with a spectrogram from
another ToyConveyor machine ID according to (1).

Si = λSj + (1− λ)Si (1)

where Si is the spectrogram of ToyConveyor ID i and i �= j. In
contrast to the so called mix-up data augmentation method [18], we
did not randomly select λ – we fixed λ to 0.03 and randomly se-
lected the machine ID j. Selecting a larger λ resulted in the model
(too) easily identifying the anomaly, leading to overfitting. By us-
ing this training strategy, we increased the sum of AUC and pAUC
by approximately 18 percent.

For all models, we used a categorical cross-entropy loss func-
tion with l1 regularization on the encoder weights, to prevent over-
fitting, and the Adamax optimizer with the default learning rate.

2.4. Scoring

We used two scoring methods. The first is simply 1 minus the soft-
max probability of the specific machine ID. Clearly, if the model
is certain a sample belongs to machine ID i, the ith output will be
close to 1, resulting in a lower anomaly score. Conversely, as the

3In contrast to other models, the output of the ToyConveyor anomaly
detector only has 7 classes, one for each ToyConv. ID and 1 Other class.
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uncertainty increases, so will the anomaly score. In the ToyCon-
veyor case, since the model output categories also include an Other
class, we add this softmax probability to the anomaly score as well.

The second scoring method is the cosine distance between the
average normal embedding4, recorded at training time, and the em-
bedding of the test sample computed at test time. Generally, the two
scoring methods produced similar scoring results. However, we se-
lected the scoring method that produced the largest sum of AUC
and pAUC.

3. RESULTS

We summarize the results of our development work in Table 2. Us-
ing our approach, the ToyConveyor case proved the most difficult,
followed by Fan. The Slider and Valve machines were the easi-
est to obtain good results for, followed by ToyCar and Pump. The
rankings given in the tables below are provided on a per-team basis.
That is, if a team provided 5 entries we compare against their best
score as reported on [19].

Fan Pump Slider Valve ToyCar ToyConv
batch size 64 64 64 128 64 7
no. Mels 128 256 128 128 128 128
no. FFT 1024 1024 1024 1024 1024 1024

hop 512 80 80 512 80 512
fmin 1 100 10 0 10 0
fmax 4000 7700 7700 8000 4000 4000

scoring cos dist. cos dist. cos dist. softmax softmax softmax
AUC 0.8823 0.9321 0.9997 0.9989 0.9573 0.7417
pAUC 0.8057 0.8619 0.9982 0.9941 0.9032 0.6586

AUC rank 5 4 2 1 3 23
pAUC rank 4 4 2 1 3 7

Table 2: Scoring Results On Development Data

For the reference we also list the average baseline results, pro-
vided in [1], on Table 3.

Fan Pump Slider Valve ToyCar ToyConv
AUC 0.6583 0.7289 0.8476 0.6629 0.7877 0.7253
pAUC 0.5245 0.5999 0.6653 0.5098 0.6758 0.6043

Table 3: Average Baseline Scoring Results

Table 4 summarizes our results on the challenge evaluation test
data [19]. These results were ranked 18th out of 117 entries.

Fan Pump Slider Valve ToyCar ToyConv
AUC 0.9303 0.9398 0.9888 0.9680 0.8659 0.7121
pAUC 0.9067 0.9072 0.9538 0.9061 0.8185 0.6141

AUC rank 9 5 2 4 12 30
pAUC rank 5 3 2 4 11 30

Table 4: Scoring Results On Evaluation Data

For reference, we also provide the top result for each machine,
as listed in [19], on Table 5. Notice, for a given machine the top
AUC and pAUC scores may come from different challenge entries.
Please see [19] for details.

4The embedding is the 128D output of the x-vector component.

Fan Pump Slider Valve ToyCar ToyConv
AUC 0.9979 0.9776 0.9984 0.9782 0.9560 0.9262
pAUC 0.9892 0.9260 0.9917 0.9493 0.9130 0.8056

Table 5: DCASE Best Scores

4. CONCLUSIONS

We have outlined our speaker recognition approach to the DCASE
2020 Challenge Task 2 which uses the machine IDs themselves to
make an unsupervised problem supervised. In an industrial setting,
it is common to have many machine types and instances. There-
fore, we believe that using machine ID and machine type informa-
tion this way does not significantly decrease the applicability of the
method. In the case of a single machine type and instance, it may
still be possible to apply the method by using synthetic anomalies
or recordings from public datasets.

It is our intuition that this approach succeeded because the spec-
tral content of these machines is sufficiently similar to make the task
of separating the machine IDs challenging. This was less so for the
Toy classes, especially for ToyConveyor. For example, in one ex-
periment we classified the ToyConveyor IDs and used data from the
remaining machines as Other, during training both the training and
validation accuracies quickly exceeded 99%. This led us to look to
data augmentation methods for ToyConveyor, as described in Sec-
tion 2.3. Consequently, we expect that this approach may not work
in cases where the spectral content of the machine sounds differs
greatly.

5. FUTURE WORK

Our work deserves further development. Obviously, the perfor-
mance of our proposed model architectures on some machine types
has room for improvement. We feel that there are improvements to
be gained by: tuning the encoder hyper-parameters, substituting the
encoder for a pre-trained model, using an attention mechanism, or
by fusing several model predictions. We also believe it is impor-
tant to identify when our approach is expected to work better than
autoencoders and otherwise characterize the augmentation samples,
i.e. synthetic anomalies, that are useful.
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