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COLLUSION DETECTION USING
MULTIMEDIA FINGERPRINTS

Anthony Persaud and Yong Guan

Abstract  The large-scale distribution of digital multimedia over the Internet has
seen steep increases in the numbers of criminal cases involving the unau-
thorized sharing and duplication of copyrighted multimedia content.
Consequently, it is important to design reliable investigative techniques
to combat unauthorized duplication and propagation, and to provide
protection in the form of theft deterrence. Several fingerprint embed-
ding schemes have been developed to combat single-user attacks. How-
ever, a new breed of attacks known as “collusion attacks” can defeat
these schemes. Collusion attacks use the combination of multiple fin-
gerprinted copies to create a new version of the multimedia artifact in
which the underlying fingerprint is attenuated to render the colluders
untraceable.

This paper proposes a wavelet-based fingerprinting scheme and a
clustering algorithm for collusion attack detection and colluder identifi-
cation. Experimental results show that the scheme can identify colluders
while maintaining low miss rates and false accusation rates.
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1. Introduction

Digital watermarks are often used to uniquely mark multimedia arti-
facts to help identify the original recipients of the artifacts. Watermarks
are useful for investigating the unauthorized duplication and propagation
of multimedia content. Also, they provide protection in the form of theft
deterrence. Several fingerprint embedding schemes have been developed
to combat single-user attacks, i.e., the duplication and dissemination
of content by individuals. However, a new breed of attacks known as
“collusion attacks” can defeat these schemes. Collusion attacks combine
multiple fingerprinted copies of multimedia content, creating a new ver-
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sion of the artifact in which the fingerprint is attenuated to render the
colluders untraceable. In the highly interconnected digital world, collu-
sion attacks have become a popular technique for defeating multimedia
fingerprinting embedding schemes.

Most colluder detection techniques [14] rely on direct pattern corre-
lation of the colluded fingerprint to the set of colluders. This assumes
that the entire fingerprint can be recovered and that the entire set of
possible colluders is known. However, such assumptions are not realistic
in many real-world scenarios.

This paper proposes a wavelet-based multimedia fingerprinting tech-
nique and a clustering algorithm for collusion attack detection and col-
luder identification. The scheme engages wavelet transforms and statis-
tical clustering techniques to detect and identify the colluders involved
in a collusion attack. Experimental results show that it can identify
colluders while maintaining low miss rates and false accusation rates.

Our approach has four main benefits. First, full fingerprint recov-
ery is not required. Second, the colluder set is built from joint density
observations, not from predictions. Third, the approach requires less
computational overhead for colluder identification. Finally, the identifi-
cation of colluder sets is independent of how multiple marked copies are
combined in a collusion attack and the number of colluders involved.

The next section describes the framework used for multimedia foren-
sics. Next, a threat model involving linear and non-linear collusion at-
tacks is presented. The following sections describe the wavelet-based
fingerprinting scheme and clustering algorithm. The final two sections
present the experimental results and conclusions.

2. Multimedia Forensics Framework

The overall problem of multimedia fingerprinting and colluder identi-
fication has three components: (i) fingerprint embedding, (ii) fingerprint
recovery and (iii) collusion attack detection and identification. Finger-
print embedding focuses on using robust methods to embed watermark
information in different multimedia artifacts. Fingerprint recovery deals
with the recovery of embedded watermarks. In some cases, only part of
the watermark is recoverable due to various alteration attacks. Collu-
sion attack detection and colluder identification involve analyzing cor-
relations between the embedded watermark and the set of known wa-
termarks that correspond to known users. Most watermarking schemes
address fingerprint embedding and/or recovery. Our scheme is unique
in that it addresses all three components of the overall problem.
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Wayvelets have proven to be the most effective and robust scheme for
watermarking multimedia artifacts [8]. Fingerprint embedding typically
uses wavelet transforms, e.g., Discrete Wavelet Transform (DWT), to
decompose an image into sub-bands [15]. These sub-bands represent
the image approximation coefficients, which can be combined with the
watermark via additive embedding [13]. One of the main advantages
of wavelet embedding is the ability to use higher energy watermarks in
regions that are less sensitive to the human visual system. This provides
a higher degree of robustness with little or no impact on quality [10].

Fingerprint recovery is similar to the fingerprint embedding process.
DWT is used to decompose the artifact into its corresponding set of sub-
band coefficients [15]. These coefficients are compared with the original
non-watermarked coefficients to retrieve the differences in values [13].
The difference in values is the corresponding embedded watermark for
each sub-band. The recovery process is performed for all sub-bands that
may have an embedded watermark [10].

Collusion attack detection and colluder identification involve the ap-
plication of watermark correlation methods. Correlations are computed
between the recovered colluded fingerprint and the fingerprints of users
who received the content.

To identify multimedia colluders, Chu, et al. [1] have proposed that
the list of all possible colluder combinations be generated from the set
of individuals who received the multimedia content. The fingerprint
for each combination of possible colluders is compared to the retrieved
watermark, and the colluders are identified by the process of elimination.

Judge and Ammar [5] have developed a hierarchical watermarking
system called WHIM. The location of the potential colluders can be
approximated using watermark verification through intermediary nodes.

Other detection techniques rely on direct pattern correlation of a col-
luded fingerprint with a combination of colluders [14]. Some of these
techniques assume that the entire watermark is recoverable from the
colluded copy.

3. Threat Model

Collusion attacks fall into two main categories: linear and non-linear
attacks [14]. Interested readers are referred to [3, 16] for details about
these attacks.

Collusion attacks typically synchronize multiple fingerprinted copies
of a multimedia artifact and average the signal to produce a new copy.
In some cases, colluders might use a variant of the average attack by
adding a small amount of Gaussian noise € to increase the attenuation
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Table 1. Formulations of collusion attacks used in this study.

Attack H Formulation
Average V(i 5) = e + S0 i (6, 5) /1 K|
Minimum min ;) :mm({ ", j)}keK)
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of the original fingerprint. Other attacks use statistical approaches to
attenuate fingerprints. In most cases, the minimum, maximum and me-
dian values of each of the fingerprinted copies are analyzed to create a
new less traceable copy. The collusion attacks considered in this study
are shown in Table 1.

Let |C] out of |U| total users collude so that C = {¢1, ca, ...c,, }, where
n = |C|. Let 9/(i,7) represent the component of a colluded copy ¥ at
location (4, 7). Using |C| copies, the component of (i, j) is generated
by combining the components of all ¢ € C' using any of the attacks
formulated in Table 1.

\Il/maac — |: ;1 ; :| ’\I/lminmaac — :| (3)
Irananeg __ wmzn(L 1) wmax(Lz) — 2 2
v = | L)) ey | =5 8] O

An example involving two colluders is presented in Equation 1. The
terms ¢; and ¢ denote image information in matrix form possessed by
the two colluders. The two colluders combine their watermarked copies
to create a colluded copy V¥’. In the following, we discuss each of the
collusion attacks presented in Table 1 and specified by Equations 2-4.

1 O =L

3.1 Average Attack

This attack averages the corresponding components of each colluder’s
copy to produce a new value. In the example, component )*9(1,1) is
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calculated as M = 3. The colluded copy ¥'%%9 is obtained by
performing this computation for all the components of ¢; and ¢s.

3.2 Minimum Attack

This attack takes the corresponding minimum components of the
|C'| fingerprinted copies of the colluders. In the example, component
™" (1,1) is calculated as min(ci(1,1),c2(1,1)). The colluded copy
U/min g generated by performing this computation for all the compo-
nents of ¢; and cs.

3.3 Maximum Attack

This attack takes the corresponding maximum components of the |C/|
fingerprinted copies used in the attack. Component ™% (1,1) is calcu-
lated as max(c1(1,1),c2(1,1)). Performing this computation for all the
components of ¢; and ¢y yields ¥/,

3.4 MinMax Attack

In this attack, the averages of the minimum and maximum values of
the corresponding components of the |C| fingerprinted copies are used

to produce the colluded copy. Component /™™ (1 1) is computed as
wmi"u,l);w*"”(m)

. Performing this computation for all the
\Ij/minma:t‘

the average
components of ¢; and ¢y yields

3.5 Randomized Negative Attack

In this attack, the values of each of the components in the colluded
copy take either the minimum or maximum values of the corresponding
components of the |C| fingerprinted copies. The value of a component of
the colluded copy, ¥"""¢9(1, 1), is set to the minimum value ™" (1, 1)
with probability p and is set to ¢™*(1,1) with probability (1 — p).
Assume that p = 0.5, and suppose that 1)™" is chosen for (1,1) and
¥(2,2), and 9™ for the other components. The resulting Wrendres,
which is shown in Equation 4, is just one of the sixteen possible colluded
results.

4. Fingerprinting and Colluder Identification

This section describes our collusion attack detection and colluder iden-
tification scheme. Wavelet watermarking is used to maximize fingerprint
recovery. Statistical clustering techniques are used to accurately identify
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Figure 1. Level £ decomposition tree of a filter bank.

large colluder sets while minimizing max(|C" — C|,|C — C'|), where C is
the set of real colluders and C' is the set of identified colluders.

4.1 Fingerprint Embedding

Multimedia artifacts can be represented as discrete signals, e.g., an
image is represented as a matrix where each pixel location {i,j} rep-
resents a color value. This property enables the use of the Discrete
Wavelet Transform (DWT) [4]. DWT uses a decomposition process to
embed fingerprint coefficients [2, 7]. This is done using band-pass arrays
called “filter banks.” A filter bank is a series of high-pass and low-pass
filters that partition the original signal into several components called
“sub-bands.” The sub-bands can be recombined to recreate the original
signal. The decomposition process can be applied to more than one level
of decomposition because the wavelet transform is recursive in nature.
At each level, the filter bank passes the input through a high-pass filter,
R[], which provides the detail coefficients; and a low-pass filter, g[¢],
which provides the approximation coefficients.

Figure 1 illustrates an ¢-level decomposition tree using a filter bank.
Note that the filters decompose the input into low and high frequencies
at every level. Figure 2 shows a four-level recursive decomposition of
the well-known Lena image.

Several robust wavelet-based watermarking methods have been devel-
oped [10]. This work employs the constant energy embedding technique
because it requires the least amount of computation. In fact, the con-
stant energy embedding technique is used as a baseline in most compar-
ative studies [13]:

Vi, §) = el §) + o [0 ) (5)
Embedding is performed by processing the multimedia artifact using

the DWT with ¢-levels of decomposition. After extracting the corre-
sponding approximation coefficients, an additive embedding of the wa-
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Figure 2. Four-level image decomposition (every ;" is a sub-band).

termark is performed using the constant energy embedding technique
in Equation 5. After the fingerprint has been embedded, the inverse
DWT is performed to recreate the original artifact with the embedded
watermark.

Let t¢(i,j) be the component of the original image ¥ at location
{i,j}. Let a be a global energy parameter that determines the finger-
print strength. Let f be the pre-computed fingerprint sequence, and ¢
specify the decomposition level of the coefficients used to embed the fin-
gerprint. Spread-spectrum sequences [6] or orthogonal codes [12] can be
used to generate a fingerprint f. In this study, a set of zero-mean Gaus-
sian distributed random values is used to generate f. Our experimental
results indicate that a = 0.1 and ¢ = 4 provide adequate fingerprinting
strength with acceptable distortion.

w22 e

, [12 23 1 0] [14 23
‘I'_[34 45]*2[1 1}_[36 47] @
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Equations 6 and 7 provide an example of the computations involved
in fingerprint embedding. Algorithm 1 formalizes the fingerprint embed-
ding process.

Algorithm 1 : Fingerprint Embedding
1: ¥ — DWT(V,{)
2: if size(y) < size(f) then
3 ”error: fingerprint too large”
4: end if

5: for i «— 1 to rows[y)] do

6

7

8

9

for j — 1 to columns[y] do
1/)2(7‘7J) = 1/)5(2‘7]') +a- f(l,])
end for
: end for
10: O «— iDWT(¥', )
11: return U’

4.2 Fingerprint Extraction

The non-blind fingerprint extraction process is similar to the finger-
print embedding process. First, the original and fingerprinted artifacts
are processed using DWT to extract the approximation coefficients.
Next, the difference between these coefficients is calculated using Equa-
tion 8. The recovered fingerprint is denoted by f’.

£/0,3) = =+ ($400.) — (i, ) ®

The fingerprint extraction process is formalized in Algorithm 2.

Algorithm 2 : Fingerprint Extraction
. — DWT(V,/)
: ) — DWT (V' £)
: for i — 1 to rows[y’] do
for j « 1 to columns[y)’] do

1
2
3
4
50 f(i0) = L (Wi, ) — e(i )
6
7
8

end for
: end for
: return f’

4.3 Colluder Identification

After recovering the colluded fingerprint, f’, the correlation coefficient
is calculated between two fingerprints, where f is the corresponding fin-
gerprint of a user from a known database. Let R(f) be the correlation
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value between f’ and f. The set R contains the correlation values be-
tween the colluded fingerprint and the fingerprint of each user.

Having determined the set of correlation values R and their corre-
sponding users U, a statistical clustering technique can be applied to
identify the colluders involved in the attack. Our scheme uses an iter-
ative 2-means clustering algorithm to obtain possible partitions in the
set of colluders. This algorithm is a specialization of the well-known
k-means algorithm [9]. The algorithm classifies the correlation values
into two clusters, one is the set of detected colluders, and the other is
the set of innocent individuals. Since higher correlation values indicate
stronger relationships with the colluded fingerprint, the cluster with the
highest mean value is considered to be the colluder set C".

The clusters are partitioned by minimizing the Euclidean distance
between every correlation value R(f). The mean of a cluster is called
its “centroid.” In our variant of the algorithm, initial centroids are not
selected randomly as in other algorithms, but are calculated based on
the mean and standard deviation of the set R.

The algorithm computes two centroids for the entire data set R. Dur-
ing each iteration, a user f is assigned a group, C’ or B, based on the
shortest distance between R(f) and one of the centroids. After all the
users have been assigned to a group, the locations of the centroids are re-
calculated based on the members of each group. The process is repeated
until the locations of the centroids do not change. The final result is the
set ', which contains the set of possible colluders involved in a collusion
attack that yields f’.

The 2-means algorithm is summarized below (Algorithm 3).

Algorlthm 3 : 2-means Clustering

¢ — mean(R) + stddev(R)
b «— mean(R) — stddev(R)
repeat
C'— B+
for f — 1 to |R| do
if |R(f) — ¢l = min(|R(f) —¢[,[R(f) — b]) then
Assign R(f) to set C’
else
Assign R(f) to set B
end if
end for
Tlast < € ; € < mean(C")
13:  biast «— b ; b — mean(B)
14: until mm(|c — Clast|, |0 — biase|) = 0
15: return C’

=
M
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Table 2. Three iterations of the 2-means algorithm.

Tteration 1 || R(1) =025 | R(2) =040 | R(3) = 0.65 | R(4) = 0.85
b =0.20 0.05 0.20 0.45 0.65
c=0.35 0.10 0.05 0.30 0.50
Group Assignment B c’ c’ c’

Iteration 2 H

b=0.25 0 0.15 0.40 0.60
c=0.63 0.38 0.23 0.02 0.22
Group Assignment B B c’ c’

Iteration 3 H

b=0.325 0.075 0.075 0.325 0.525
¢c=0.75 0.5 0.35 0.1 0.1
Group Assignment B B c’ c’

We present a simple example to illustrate the clustering algorithm.
In the example, the set R contains users {1,2,3,4}, and R(i) is the
correlation value of user i. The initial values of the centroids, b and ¢, are
0.20 and 0.35, respectively. During the first iteration of the algorithm,
every point in R is assigned to a group based on the least distance to
the corresponding centroid. Table 2 shows the group assignments after
the first iteration.

After the initial group assignments, the values of the centroids are
recalculated as the means of the members of each of the two groups.
Therefore, b = 0.25 and ¢ = 0.63. The process is repeated for the second
iteration using the new centroids, and the new group assignments are
presented in Table 2. At the end of Iteration 2, note that R(2) has
moved from C’ to B. Again, the new centroids are calculated and the
process is repeated.

The locations of the centroids are unchanged at the end of Iteration
3. Therefore, the algorithm terminates and C’ contains the potential set
of colluders because ¢ > b.

This scheme is successful at determining the colluder set C’ because
colluders cannot obtain the value of the embedded fingerprint in their
multimedia artifact. Therefore, they cannot determine which users from
set C satisfy the condition corr(f’,f;) = 1 for an innocent user wu;.
This becomes more difficult for colluders when orthogonal codes [12]
and spread-spectrum watermarking [6] are used.
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The algorithm is very practical because it treats the correlation values
in R as random variables, and finds potential relationships based on
joint densities. Therefore, the colluder set is built from observations
not predictions. Furthermore, less computational overhead is involved
because all possible colluder combinations do not have to be tested.

5. Experimental Results

Our collusion attack detection and colluder identification scheme was
evaluated for collusion attacks on the Lena image (Figure 2). The fin-
gerprints used were a sequence of pseudo-randomly generated Gaussian
distributed values. MatLab 7.0 software was used for the computations.

A set of 400 fingerprinted copies of the Lena image were created. The
fingerprints were embedded using the constant energy embedding tech-
nique and the Daubechies-6 filter. Set C' contained a maximum of 200
colluders and set D contained a maximum of 200 innocent individuals.
Colluded copies were generated for attacks from Table 1 involving two
or more colluders from C'. Four levels of decomposition were used for
embedding, and the value of o was set to 0.10.

The experimental results show that the colluder identification scheme
is highly effective against minimum, maximum and minmax attacks.
The scheme works well for the randomized negative attack, although it
degrades a little as the number of colluders increases. The scheme does
not work quite as well against the average attack when the colluded
fingerprint is closer to the mean of the distribution used to generate
the fingerprint. The further the colluded fingerprint is from the mean,
the better the scheme performs at identifying colluders who have used
average attacks.

Figure 3 shows the miss rate of colluders, i.e., the number of colluders
that are not detected, as the number of colluders increase.

Figure 4 shows the performance of the scheme with respect to false
accusation rates as the number of colluders increase.

In summary, the colluder identification scheme is effective against
minimum, maximum and minmax attacks. Also, it provides satisfac-
tory protection for innocent parties in the event of randomized negative
attacks.

6. Conclusions

The wavelet-based watermarking scheme and the statistical clustering
technique proposed in this paper are useful for detecting and identify-
ing individuals involved in collusion attacks. The wavelet-based water-
marking technique provides a high fingerprint recovery rate. The 2-
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Figure 3. Miss rates with increasing numbers of colluders.
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Figure 4. False accusation rates with increasing numbers of colluders.

means clustering algorithm is effective against collusion attacks because
it builds the colluder set from value observations, not predictions. The
experimental results show that the scheme is effective at thwarting com-
mon collusion attacks and determining colluder sets for a large number
of colluders.
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