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Abstract

Current research on qualitative spatial representa-
tion and reasoning usually focuses on one single as-
pect of space. However, in real world applications,
several aspects are often involved together. This pa-
per extends the well-known RCC8 constraint lan-
guage to deal with both topological and directional
information, and then investigates the interaction
between the two kinds of information. Given a
topological (RCC8) constraint network and a di-
rectional constraint network, we ask when the joint
network is satisfiable. We show that when the topo-
logical network is over one of the three maximal
tractable subclasses of RCC8, the problem can be
reduced into satisfiability problems in the RCC8 al-
gebra and the rectangle algebra (RA). Therefore,
reasoning techniques developed for RCC8 and RA
can be used to solve the satisfiability problem of a
joint network.

1 Introduction

Originating from Allen’s work on temporal interval algebra
(IA) [Allen, 1983], the qualitative approach to temporal as
well as spatial information is popular in Artificial Intelligence
and related research fields. This is mainly because in many
applications precise numerical information is usually unavail-
able or not necessary.

While Allen’s interval algebra is the principal formalism of
qualitative temporal reasoning, there are more than a dozen of
formalisms that deal with different aspects of space in qual-
itative spatial reasoning (QSR). Spatial relations are usually
classified as topological, directional, and metric. Metric re-
lations have a nature of semi-quantitative and fuzziness. In
this paper, we are concerned with topological and directional
relations between plane regions.

Most earlier research on topological and directional rela-
tions focuses on one single aspect. The most influential for-
malism for topological relations is the Region Connection
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Calculus (RCC) [Randell et al., 1992]. As for directional re-
lations, there are several well-known formalisms, e.g. [Frank,
1991; Goyal and Egenhofer, 2001].

In natural language and many practical applications, topo-
logical and directional relations are used together. For exam-
ple, when describing the location of Titisee, a famous tourist
sight in Germany, we might say “Titisee is in the Black Forest
and is east of the town of Freiburg.”

In this paper we extend the RCC8 constraint language to
deal with topological as well as directional information. We
first formalize the four cardinal directional relations between
plane regions, viz. west, east, north, south, and then define
nine basic relations by using the usual relational operations
of intersection and complementation.

An important reasoning problems is to decide when a net-
work of topological and directional constraints is satisfiable
(or consistent). Given a network of topological (RCC8) con-
straints Θ and a network of directional constraints Δ, we try
to decide when the joint network Θ �Δ is satisfiable.

Since topological and directional information is not inde-
pendent, Θ �Δ may be unsatisfiable despite that both Θ and
Δ are satisfiable. Our main result states that, if topological
constraints are all in one of the three maximal tractable sub-
classes of RCC8 [Renz, 1999], then the satisfiability of the
joint network can be determined by considering the satisfia-
bility of two related networks in, resp., RCC8 and the rectan-
gle algebra (RA), where RA is the two-dimensional counter-
part of IA [Balbiani et al., 1999].

The rest of this paper proceeds as follows. Section 2 intro-
duces basic notions and well-known examples of qualitative
calculi. The cardinal direction calculus DIR9 is introduced in
Section 3. Section 4 describes and proves the main result. A
new subclass,Amax, of IA is identified, which is closed under
converse, intersection, and composition. We show satisfiable
interval networks over Amax has a maximal instantiation in
the sense of [Ligozat, 1994]. Section 5 concludes the paper.

2 Qualitative calculi

The establishment of a proper qualitative calculus is the key
to the success of the qualitative approach to temporal and spa-
tial reasoning. This section introduces basic notions and ex-
amples of qualitative calculi (cf. [Ligozat and Renz, 2004]).
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2.1 Basic notions

Let U be the universe of temporal/spatial/spatial-temporal en-
tities, and set Rel(U) to be the set of binary relations on U.
With the usual relational operations of intersection, union,
and complement, Rel(U) is a Boolean algebra.

A finite set B of nonempty relations on U is jointly exhaus-
tive and pairwise disjoint (JEPD for short) if any two entities
in U are related by one and only one relations in B. Write
〈B〉 for the subalgebra of Rel(U) generated by B. Clearly,
relations in B are atoms in the algebra 〈B〉. We call 〈B〉 a
qualitative calculus on U, and call relations in B basic rela-
tions of the calculus.

There are several general (but optional) restrictions on the
choice of B. Write idU for the identity relation on U. For a
relation α ∈ Rel(U), write α∼ for the converse of α, which
is defined as (x, y) ∈ α∼ iff (y, x) ∈ α. Many qualitative
calculi require the identity relation idU to be a basic relation.
In this paper, we relax this restriction, and require that (i) idU

is contained in one basic relation; and (ii) B is closed under
converse, i.e. if α is a basic relation, then so is α∼.

Note that the composition of two relations in 〈B〉 is not
necessarily in 〈B〉. For α, β ∈ 〈B〉, the weak composition
[Ligozat and Renz, 2004] of α and β, written as α ◦w β, is
defined to be the smallest relation in 〈B〉which contains α◦β.

An important reasoning problem in a qualitative calculus
is to determine the satisfiability or consistency of a network
Γ of constraints of the form xγy, where γ is a relation in 〈B〉.
A constraint network Γ = {viγijvj}

n
i,j=1 is satisfiable (or

consistent) if there is an instantiation {ai}
n
i=1 in U such that

(ai, aj) ∈ γij holds for all 1 ≤ i, j ≤ n.
Consistency of a network can be approximated by using

an O(n3) time path-consistency algorithm (PCA). A network
Γ = {viγijvj}

n
i,j=1 is path-consistent if (i) γii is the basic

relation in B that contains idU; (ii) ∅ 	= γij = γji
∼; and (iii)

γij ⊆ γik ◦w γkj for all i, j, k.
The essence of a PCA is to apply the following rules for

any three i, j, k until the network is stable.

γij ← γij ∩ γji
∼ (1)

γij ← γij ∩ γik ◦w γkj (2)

If the empty relation occurs during the process, then the net-
work is inconsistent, otherwise the resulting network is path-
consistent.

2.2 Interval algebra and rectangle algebra

The interval algebra IA [Allen, 1983] is generated by a set
Bint of 13 basic relations between time intervals (see Ta-
ble 1). IA is closed under composition, i.e. the composition of
any two interval relations is in IA. Nebel and Bürckert [Nebel
and Bürckert, 1995] identified a maximal tractable subclass
H of IA, called ORD-Horn subclass, and showed that apply-
ing PCA is sufficient for deciding satisfiability forH.

Ligozat [Ligozat, 1994] introduced a partial order 
 on
Bint (see Fig. 1), and termed (Bint,
) the interval lattice.
For α, β ∈ Bint, we write [α, β] for the union of relations
between α and β. Note that [α, β] is nonempty iff α 
 β. For
example, [o, oi] is the relation ∪{o, s, f, d, eq, di, fi, si, oi}.
An interval relation is called convex if it is of the form [α, β]

Table 1: The set of basic interval relations Bint, where x =
[x−, x+], y = [y−, y+] are two intervals.

Relation Symb. Conv. Meaning Dim

precedes p pi x+ < y− 2
meets m mi x+ = y− 1

overlaps o oi x− < y+ < x+ < y+ 2
starts s si x− = y− < x+ < y+ 1

during d di x− < y− < y+ < x+ 2
finishes f fi y− < x− < x+ = y+ 1
equals eq eq x− = y− < x+ = y+ 0

� �

� � � �

� �

� � �

� � �

�

p

�

m o

pi

mi

oi
di

d

fi
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Figure 1: The interval lattice (Bint,
).

with α, β ∈ Bint. For α ∈ Bint, dim(α), the dimension of
α, is defined [Ligozat, 1994] (see Table 1). The dimension
of a non-basic relation is the maximal dimension of its basic
relations.

The following convex relations are of particular impor-
tance in this paper:

� = ∪{m, o, s, f, d, eq, di, fi, si, oi, mi} (3)

� = ∪{s, d, eq, f} (4)

� = ∪{fi, di, eq, si} (5)

The rectangle algebra (RA) is the two-dimensional coun-
terpart of IA. RA is generated by a set of 169 JEPD relations
between rectangles.1 Write Brec for this set, i.e.

Brec = {α⊗ β : α, β ∈ Bint} (6)

For a rectangle r, write Ix(r) and Iy(r) as, resp., the x-
and y-projection of r. The basic rectangle relation between
two rectangles a, b is α ⊗ β iff (Ix(a), Ix(b)) ∈ α and
(Iy(a), Iy(b)) ∈ β. The dimension of a basic rectangle re-
lation α⊗ β is defined as dim(α⊗ β) = dim(α) + dim(β).
The dimension of a non-basic rectangle relation is defined to
be the maximal dimension of its basic relations.

Note that if S is a tractable subclass of IA, then S ⊗ S =
{α ⊗ β : α, β ∈ S} is also tractable in RA. A tractable sub-
class of RA larger than H ⊗ H is also obtained in [Balbiani
et al., 1999], whereH is the ORD-Horn subclass of IA.

1In this paper we always assume that the two sides of a rectangle
are parallel to the axes of some predefined orthogonal basis in the
Euclidean plane.
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Table 2: The set of RCC8 basic relations Btop, where a, b are
two plane regions and a◦ and b◦ are, resp., their interiors.

Relation Symb. Meaning

equals EQ a = b
disconnected DC a ∩ b = ∅

externally connected EC a ∩ b 	= ∅ ∧ a◦ ∩ b◦ = ∅

partially overlap PO
a◦ ∩ b◦ 	= ∅ ∧
a 	⊆ b ∧ a 	⊇ b

tangential proper part TPP a ⊂ b ∧ a 	⊂ b◦

non-tangential proper part NTPP a ⊂ b◦

2.3 RCC8 algebra

A plane region (or region) is a nonempty regular closed sub-
set of the real plane. The relations in Table 2 and the con-
verses of TPP and NTPP form a JEPD set [Randell et al.,
1992]. These are RCC8 basic relations. Write Btop for this
set. The RCC8 algebra is 〈Btop〉. We write P and PP, resp.,
for TPP ∪NTPP ∪EQ and TPP ∪NTPP.

Renz [Renz, 1999] showed that there are only three maxi-
mal tractable subclasses of RCC8 that contain all basic rela-
tions. These subclasses are denoted as Ĥ8, C8,Q8. For these
subclasses, applying PCA is sufficient for deciding the sat-
isfiability of a network, and there is an O(n2) algorithm for
finding an atomic refinement of any path-consistent network.

3 The Cardinal Direction Calculus DIR9

For a bounded plane region a, define supx(a) = sup{x ∈
R : (∃y)(x, y) ∈ a}, infx(a) = inf{x ∈ R : (∃y)(x, y) ∈
a}. The definitions of infy(a) and supy(a) are similar. We

callM(a) = Ix(a)× Iy(a) the minimum bounding rectangle
(MBR) of a, where Ix(a) = [infx(a), supx(a)] and Iy(a) =
[infy(a), supy(a)] are the x- and y-projection of a.

For two bounded plane regions a, b, if supx(a) < infx(b),
then we say a is west of b and b is east of a, written as aWb
and bEa; and if supy(a) < infy(b) then we say a is south of

b and b is north of a, written as aSb and bNa.

When a is neither west nor east of b, then Ix(a) ∩ Ix(b) 	=
∅. In this case, we say a is in x-contact with b, written as
aCxb. Similarly, if a is neither north nor south of b, then we
say a is in y-contact with b, written as aCyb.

The Boolean algebra generated by N,S,W,E, written as
DIR9, has nine atoms (see Table 3). Although it is very sim-
ple, DIR9 is sufficient for expressing directional information
in many situations. Moreover, DIR9 is a subclass of RA.

Remark 3.1. Let B3
int be the JEPD set {p, �, pi}. The algebra

〈B3
int〉 is in fact the interval algebraA3 studied in [Golumbic

and Shamir, 1993]. Let H3 = {p, �, pi, p ∪ �, � ∪ pi,�},
where � is the universal relation. Note that H3 = A3 ∩ H.
Golumbic and Shamir proved that H3 is a maximal tractable
subclass ofA3. SinceA3⊗A3 is exactly DIR9 (see Table 3),
H3⊗H3 is a tractable subclass of DIR9.2 It will be our future
work to find maximal tractable subclasses of DIR9.

2It is worth noting that the intersection of DIR9 and N is H3 ⊗

H3, where N is the new tractable subset of RA of [Balbiani et al.,
1999].

Table 3: Nine cardinal directional relations, where a, b are
two bounded plane regions.

Relation Symb. Meaning RA
northwest NW aNb and aWb p⊗ pi

north and x-contact NC aNb and aCxb �⊗ pi
northeast NE aNb and aEb pi⊗ pi

y-contact and west CW aCyb and aWb p⊗ �

y-contact and x-contact CC aCyb and aCxb �⊗ �

y-contact and east CE aCyb and aEb pi⊗ �

southwest SW aSb and aWb p⊗ p
south and x-contact SC aSb and aCxb �⊗ p

southeast SE aSb and aEb pi⊗ p

4 Main result

Suppose V = {vi}
n
i=1 is a collection of spatial variables,

Θ = {θij}
n
i=1 and Δ = {δij}

n
i=1 are, resp., a topological

(RCC8) and a directional (DIR9) constraint network over V .
Our problem is when the joint network Θ �Δ is satisfiable.

Without loss of generality, in this section we assume (i)
θii = EQ for all i and EQ 	= θij = θ∼ji for all i 	= j;

and (ii) δii = CC and δij = δ∼ji for all i, j.
The following example shows that topological and direc-

tional constraints are not independent.

Example 4.1. Let V = {v1, v2}, θ12 = EC, δ12 = NC.
Both Θ and Δ are trivially satisfiable. For any two regions
a, b, if aECb, then by a∩b 	= ∅ we knowM(a)∩M(b) 	= ∅,
hence aNCb cannot hold. Therefore Θ �Δ is inconsistent.

Given Θ and Δ, we define an RCC8 network Θ and an RA
network Δ as follows:

θij =

{
θij ∩DC, if CC ∩ δij = ∅;
θij , otherwise.

δij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

δij ∩ eq⊗ eq, if θij = EQ;
δij∩ � ⊗ �, if EQ 	= θij ⊆ P;
δij∩ � ⊗ �, if EQ 	= θij ⊆ P∼;
δij ∩ �⊗ �, if DC ∩ θij = ∅;
δij , otherwise.

Note that θij ⊆ θij and δij ⊆ δij for any two i, j. This means

Θ is a refinement of Θ and Δ is a refinement of Δ (in RA).

Lemma 4.1. Θ �Δ is satisfiable iff Θ �Δ is satisfiable.

As for Example 4.1, by δ12 = NC we know θ12 = EC ∩
DC = ∅. Therefore the joint network is inconsistent.

The main contribution of this paper is to show that if Θ is a
path-consistent RCC8 network over one of the three maximal

tractable subclasses of RCC8, viz. Ĥ8, C8,Q8, then Θ�Δ is
satisfiable iff Θ and Δ are satisfiable.

To prove this result, we need two further lemmas.
For r = [x−, x+] × [y−, y+] and ε > 0, we write r + ε

for [x− − ε/2, x+ + ε/2] × [y− − ε/2, y+ + ε/2]. For two
rectangles r1, r2, if no edges of r1 are in line with any edge
of r2, then we can expand the two rectangles a little without
changing their rectangle relation. In general, we have

Lemma 4.2. Let {ri = [x−

i , x+
i ] × [y−

i , y+
i ]}ni=1 be a col-

lection of rectangles, where no two points in either X =
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{x−

i , x+
i }

n
i=1 or Y = {y−

i , y+
i }

n
i=1 are identical. Set ε to

be the smaller one of min{|x− x′| : x 	= x′, x, x′ ∈ X} and
min{|y − y′| : y 	= y′, y, y′ ∈ Y }. Suppose {ai}

n
i=1 is a

collection of bounded plane regions such that ri ⊂M(ai) ⊂
ri + ε/4. Then the basic rectangle relation betweenM(ai)
andM(aj) is the same as that between ri and rj for any i, j.

For an RCC8 basic network Θ and a collection of rect-
angles {ri}

n
i=1, if {ri}

n
i=1 is in a sense ‘compatible’ with Θ,

then a realization {a∗

i }
n
i=1 of Θ can be found such thatM(a∗

i )
is almost identical with ri for each i.

Definition 4.1. A collection of rectangles {ri}
n
i=1 are com-

patible with an RCC8 basic network Θ = {viθijvj}
n
i,j=1 if

for any i, j we have

• If θij = EQ, then ri = rj ;

• If θij 	= DC, then ri ∩ rj is a rectangle, i.e. the interior
of ri ∩ rj is nonempty;

• If θij ⊆ PP, then ri is contained in the interior of rj .

Lemma 4.3. Let Θ = {viθijvj}
n
i,j=1 be a satisfiable RCC8

basic network. Suppose {ri}
n
i=1 is a collection of rectan-

gles that are compatible with Θ. Then we have a realiza-
tion {a∗

i }
n
i=1 of Θ such that each a∗

i is a bounded region and
ri ⊂M(a∗

i ) ⊂ ri + ε/4, where ε > 0 is the positive number
as defined in Lemma 4.2.

Proof. The proof is similar to that given for RCC8 (cf. [Renz,
1998; Li, 2006b; Li and Wang, 2006]). First, we define l(i),
the ntpp-level of vi, inductively as follows:

• l(i) = 1 if there is no j such that θji = NTPP;

• l(i) = k + 1 if there is a variable vj such that (a) l(j) =
k and θji = NTPP, and (b) θmi = NTPP implies
l(m) ≤ k for any variable vm.

Write Eik (k = 1, · · · , 4) for the four corner points of ri.
For i 	= j, if θij is EC or PO, then choose two new points
Pij and Pji in the interior of ri ∩ rj . Set N to be the set
of these points, and set δ to be the smallest distance between
two points in N . Clearly 0 < δ < ε. For each point P in N ,

construct a system of squares {p−, p+, p(1), · · · , p(n)} as in

Fig. 2, where p(n) is a square centered at P with the length of
δ/2, and p− and p+ are two smaller squares that meet at P .

Now we construct n bounded regions {a∗

i }
n
i=1 as follows.

• ai =
⋃4

k=1 e
(1)
ik ;

• a′

i = ai ∪
⋃
{p

(−)
ij ∪ p

(+)
ji : θij = EC}∪

⋃
{p

(1)
ij ∪ p

(1)
ji :

θij = PO};

• a′′

i = a′

i ∪ {a
′

k : θki is TPP or NTPP};

• a∗

i = a′′

i ∪
⋃
{p(l(i)) : p ∈ N and (∃j)[θji =

NTPP and p(1) ∩ a′′

j 	= ∅]}.

Then {a∗

i }
n
i=1 is a realization of Θ. Moreover, we have ri ⊂

M(ci) ⊂ ri + δ/4 ⊂ ri + ε/4.

Now we prove our main result.

Theorem 4.1. Let Θ be a path-consistent RCC8 network over

Ĥ (or C8, Q8), and let Δ be a DIR9 network. Then Θ �Δ is
satisfiable iff Θ and Δ are satisfiable.

p(1)

p(2)

p(n)

p−

p+

P

··
·

··
·

· · · · · ·

Figure 2: An illustration of the ntpp-chain centered at Pij .

Proof. We take Ĥ8 as an example. The proofs for the other
two maximal tractable subclasses are similar.

Suppose Θ and Δ are satisfiable. Since Θ is a path-

consistent network over Ĥ8, we can construct an atomic
RCC8 network Θ∗ as follows [Renz, 1999].

• if DC ⊆ θij , then set θ∗ij = DC;

• else if EC ⊆ θij , then set θ∗ij = EC;

• else if PO ⊆ θij , then set θ∗ij = PO;

• else if TPP ⊆ θij , then set θ∗ij = TPP;

• else if θij = NTPP then set θ∗ij = NTPP;

• else if TPP
∼ ⊆ θij then set θ∗ij = TPP

∼;

• else if θij = NTPP∼ then set θ∗ij = NTPP∼.

By θ∗ij ⊆ θij for any i, j, we know Θ∗ is an atomic refinement

of Θ and Θ. Moreover, for any two i, j, θij ⊆ P iff θ∗ij ⊆ P.

We claim that the satisfiable RA network Δ has a realiza-
tion {ri}

n
i=1 that is compatible with Θ∗. In other words, Θ∗

and {ri} satisfy the conditions of Lemma 4.3. Since the proof
is quite complex, we defer it to the next subsection.

Now, by Lemma 4.3 we can find a realization {ci}
n
i=1 of

Θ∗ such that ri ⊂M(ci) ⊂ ri + ε/4. By Lemma 4.2, {ci} is

also a realization of Δ. Therefore, Θ �Δ is satisfiable.

Recall that applying PCA is sufficient for deciding satis-

fiability for RCC8 subclasses Ĥ8, C8, and Q8, and for RA
subclassH⊗H. We have the following corollary, whereH3

is defined in Remark 3.1.

Corollary 4.1. Let Θ be an RCC8 network over either one of

Ĥ8, C8,Q8, and let Δ be a DIR9 network overH3⊗H3. Then
deciding the satisfiability of Θ �Δ is of cubic complexity.

Proof. It is of quadratic complexity to compute Θ and Δ.
Note that Δ is a rectangle network overAmax⊗Amax ⊂ H⊗
H, and applying PCA to Θ and Δ is of cubic complexity.

The next example shows, however, if Θ is not over any one

of Ĥ, C8, andQ8, then the result may not hold.

Example 4.2. Let V = {v1, v2, v3}, θ12 = θ13 = DC,
θ23 = TPP ∪ TPP∼, δ12 = NC, δ13 = CW, δ23 = CC.
Both Θ and Δ are satisfiable, but not Θ �Δ.
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4.1 Maximal instantiation of rectangle networks

For an RCC8 network Θ and a DIR9 network Δ, suppose Θ
and Δ are satisfiable, and Θ∗ is the atomic refinement of Θ
constructed in the proof of Theorem 4.1. We show Δ has a
rectangle realization {ri}

n
i=1 that is compatible with Θ∗.

We first define an auxiliary subclassAmax of IA.

Definition 4.2. An interval relation α is in Amax if

• α is convex;

• m ⊆ α only if o ⊆ α, and mi ⊆ α only if oi ⊆ α;

• s ⊆ α only if d ⊆ α, and si ⊆ α only if di ⊆ α;

• f ⊆ α only if d ⊆ α, and fi ⊆ α only if di ⊆ α.

Note that all Amax relations except eq are of dimension 2.
By the definition of Amax, it is easy to see that Amax is

closed under converse and intersection. The following lemma
further asserts that Amax is closed under composition.

Lemma 4.4. If α, β ∈ Amax, then α ◦ β ∈ Amax.

Proof. (Sketch.) Since the composition of two convex rela-
tions is still convex, α ◦ β is convex too.

If m ⊆ α ◦ β, then there exist two basic relations a, b such
that a ⊆ α, b ⊆ β, and m ⊆ a ◦ b. By checking the com-
position table of IA [Allen, 1983], we have o 	⊆ a ◦ b iff (i)
a = m and b ∈ {s, eq, si}; or (ii) a ∈ {f, eq, fi} and b = m.
By a ⊆ α ∈ Amax and b ⊆ β ∈ Amax, we know o ⊆ α
or o ⊆ β. By the composition table we have o ⊆ o ◦ b or
o ⊆ a ◦ o, hence o ⊆ α ◦ β. This means m ⊆ α ◦ β only
if o ⊆ α ◦ β. Symmetrically, we can show mi ⊆ α ◦ β only
if oi ⊆ α ◦ β. The proofs for the remaining four cases are
similar. In this way we know α ◦ β is also in Amax.

We next characterize when a composition of two relations
in Amax can contain eq.

Lemma 4.5. For two interval relations α, β ∈ Amax, if eq ⊆
α ◦ β, then eq ⊆ α ∩ β or [o, oi] ⊆ α ◦ β.

Proof. By Lemma 4.4 we know α ◦ β is in Amax. If eq ∈
α◦β, then there exist two basic relations a, b such that a ⊆ α,
b ⊆ β, and eq ⊆ a ◦ b. This is possible iff b is the converse
of a. Suppose a 	= eq. There are two possible situations.
If a ∈ {p, o, d, di, oi, pi}, then by the composition table we
know [o, oi] ⊆ a ◦ b. If a ∈ {m, s, f, fi, si, mi}, then a ◦ b is
f ∪ eq ∪ fi or s ∪ eq ∪ si. Since α ◦ β ∈ Amax, we know
d, di are contained in α ◦ β. Checking Fig. 1, we know [o, oi]
is the smallest convex relation which contains both d and di.
Therefore [o, oi] is contained in the convex relation α◦β.

The following lemma characterizes when an eq relation
can be obtained as the intersection of two relations in Amax.

Lemma 4.6. For two Amax relations α 	= eq and β 	= eq, if
α ∩ β = eq, then α = β∼ and α is either � or �.

Proof. If α is neither � nor �, then [o, oi] is contained in α.
Note that in this case, by α ∩ β = eq, we have β = eq. This
is a contradiction. So α is � or �. The same conclusion also
holds for β. Clearly, α is the converse of β.

We will next show when a � or � relation can be generated
by the composition of two Amax relations.

Lemma 4.7. For two Amax relations α 	= eq and β 	= eq, if
α ◦ β =�, then α = β =�; if α ◦ β =�, then α = β =�.

Proof. By Lemma 4.5 we know eq ⊆ α ∩ β. Since α is not
eq, either � or � is contained in α. The same conclusion
holds for β. By α ◦ β =� and eq ⊆ α ∩ β, we know α and
β can only be �.

As a corollary of the above two lemmas, we have

Corollary 4.2. For three Amax relations α 	= eq, β 	= eq,
γ 	= eq, α ∩ β ◦ γ = eq iff α = β∼ = γ∼ and α is � or �.

Since [o, oi] is the smallest convex relation in Amax which
strictly contains �, we have the following result.

Lemma 4.8. For α, β ∈ Amax, if α ∩ β =�, then either one
is �; if α ∩ β =�, then either one is �.

Let Γ = {viγijvj}
n
i,j=1 be a rectangle (or interval) net-

work, and let {ai}
n
i=1 be a realization of Γ. We say {ai} is

a maximal instantiation of Γ iff dim(γij) is equal to the di-
mension of the basic relation between ai and aj for all i, j
[Ligozat, 1994; Balbiani et al., 1999].

Theorem 4.2 ([Ligozat, 1994]). Let Λ be an interval net-
work that contains only preconvex relations. If Λ is path-
consistent, then there is a maximal instantiation of Λ.3

The path-consistency condition in the above theorem is
necessary. For example, if Λ is the constraint network {x �

y � z � x}, then Λ is satisfiable but has no maximal instan-
tiation: by applying PCA we obtain x eq y eq z eq x.

But when only relations in Amax are concerned, we have
the following result.

Theorem 4.3. Let Λ be an interval network that contains
only relations in Amax. Suppose Λ is satisfiable and for all
i, j, k we have (a) λij = eq iff i = j; (b) λij = λ∼

ji; (c)
λik =� ∧λkj =�→ λij =�. Then Λ has a maximal instan-
tiation.

Proof. Suppose by applying PCA the network will be stable
after m steps. We prove by induction that at no step this in-
troduces new � or � or eq constraints. This means that, for
each step 1 ≤ p ≤ m, λp

ij ∈ {eq, �, �} only if λp
ij = λij ,

where λp
ij is the relation between xi and xj after the p-th step.

Suppose this holds for p ≥ 1. We show it holds for step

p + 1. Note that λp+1
ij = λp

ij ∩ λp
ik ◦ λp

kj for some k or

λp+1
ij = λp

ij ∩ λp
ji

∼

. We take the first case as an example.

If λp+1
ij = eq, then by Corollary 4.2 we know λp

ik = λp
kj =

λp
ij

∼

is � or �. By the induction hypothesis we know λik =
λkj = λji are all � or �. This contradicts the third condition.

Therefore λp+1
ij 	= eq.

If λp+1
ij =�	= λp

ij , then by Lemma 4.8 we have λp
ik ◦

λp
kj =�. But according to Lemma 4.7, this is possible iff

both λp
ik and λp

kj are �. By the induction hypothesis and the

third condition, we know λik = λkj =� and λij =�. This

is a contradiction. Hence λp+1
ij 	=�.

3We remind here that a convex relation is preconvex, and an in-
terval relation is preconvex iff it is an ORD-Horn relation.
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Similarly, we can show that if λij 	=�, then λp+1
ij 	=�.

Now, since Λ is satisfiable, applying PCA on Λ will obtain
a path-consistent network Λ∗, which is still over Amax and
satisfies the following condition: For any i 	= j, λ∗

ij is con-
tained in λij and of dimension 2. By Theorem 4.2 we know
Λ∗, hence Λ, has a maximal instantiation.

Since each λij (i 	= j) is of dimension 2, by the above

theorem, we know Λ has a realization {Ii = [x−

i , x+
i ]}ni=1

such that x−

i , x+
i , x−

j , x+
j are different for any i 	= j.

Theorem 4.4. Suppose Θ is an RCC8 network, and Δ is a
DIR9 network. If Δ is satisfiable, then Δ has a maximal in-
stantiation.

Proof. Suppose {ai}
n
i=1 is a realization of Δ. Define an in-

terval network Δ′ = {viδ
′

ijvj}
n
i,j=1 as follows. For all i set

δ′ii = eq⊗ eq. For all i 	= j, if δij ∈ {� ⊗ �, � ⊗ �} then

set δ′ij = δij ; otherwise, set δ′ij to be the basic DIR9 relation
in which ai and aj are related.

We note that Δ′ satisfies (i) δ′ii = eq⊗eq; (ii) δ′ij = δ′ji
∼

;

(iii) δ′ik =� ⊗ � ∧ δ′kj =� ⊗ �→ δ′ij =� ⊗ �.

Moreover, each δ′ij has the form λx
ij ⊗ λy

ij , where λx
ij , λ

y
ij

are interval relations in Amax. Write Λx = {xiλ
x
ijxj}

n
i,j=1

and Λy = {yiλ
y
ijyj}

n
i,j=1. For all i 	= j we have dim(λx

ij) =

dim(λy
ij) = 2 and dim(δ′ij) = 4.

It is easy to see that Δ′ is satisfiable iff both Λx and Λy are
satisfiable. Since they satisfy the conditions given in Theo-
rem 4.3, both Λx and Λy have maximal instantiations. Sup-
pose Ix = {Ix

i }
n
i=1 and Iy = {Iy

i }
n
i=1 are, resp., maximal in-

stantiations of Λx and Λy . Set ri = Ix
i × Iy

i for i = 1, · · · , n.
Then I = {ri}

n
i=1 is a rectangle realization of Δ′, hence a

realization of Δ and Δ. For i 	= j, the basic relation between
ri and rj is of dimension 4. Therefore I is maximal.

By the definition of Δ and the maximality of I (as con-
structed above), we know I is compatible with Θ∗.

Theorem 4.5. Suppose Θ is a path-consistent RCC8 network

over either of Ĥ8, C8,Q8, and suppose Δ is a DIR9 network.
Let Θ∗ be the atomic refinement of Θ as in the proof of Theo-
rem 4.1. If Θ and Δ are satisfiable, then Δ has a realization
that is compatible with Θ∗.

5 Conclusion

In this paper, we have investigated the interaction between
topological and directional constraints. We have showed that,
for the three maximal tractable subclasses of RCC8, the prob-
lem of deciding the satisfiability of a joint network of topolog-
ical and directional constraints can be reduced to two simple
satisfiability problems in RCC8 and RA.

An earlier attempt to combining topological and directional
information was reported in [Li, 2006a], where we introduced
a hybrid calculus that combines DIR9 with RCC5. A prelim-
inary result was obtained, which states that the consistency
of atomic networks in the hybrid calculus can be decided in
polynomial time.

Sistla and Yu [Sistla and Yu, 2000] considered a similar
problem of reasoning about spatial relations in picture re-
trieval systems, where mereological relations inside, outside,
overlaps, and directional relations left, above, behind are con-
sidered. The constraint language considered there is rather re-
strictive. It can express neither genuine topological relations
(e.g. tangential proper part and externally connected to) nor
negations of some relations (e.g. neither left nor right).

References

[Allen, 1983] J.F. Allen. Maintaining knowledge about tem-
poral intervals. C. ACM, 26:832–843, 1983.

[Balbiani et al., 1999] P. Balbiani, J.-F. Condotta, and
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