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Abstract

In this paper, we consider the problem of produc-
ing balanced clusterings with respect to a submodu-
lar objective function. Submodular objective func-
tions occur frequently in many applications, and
hence this problem is broadly applicable. We show
that the results of Patkar and Narayanan [8] can be
applied to cases when the submodular function is
derived from a bipartite object-feature graph, and
moreover, in this case we have an efficient flow
based algorithm for finding local improvements.
We show the effectiveness of this approach by ap-
plying it to the clustering of words in language
models.

1

The clustering of objects/data is a very important problem
found in many machine learning applications, often in other
guises such as unsupervised learning, vector quantization, di-
mensionality reduction, image segmentation, etc. The clus-
tering problem can be formalized as follows. Given a finite
set S, and a criterion function Jj, defined on all partitions of .S
into k parts, find a partition of S into k parts {S1, Sa, ..., Sk}
so that Ji ({S1, 52, ..., Sk}) is maximized. The number of
k-clusters for a size n > k data set is roughly k™ /k! [1] so
exhaustive search is not an efficient solution. In [9], it was
shown that a broad class of criteria are Submodular (defined
below), which allows the application of recently discovered
polynomial time algorithms for submodular function mini-
mization to find the optimal clusters. Submodularity, a for-
malization of the notion of diminishing returns, is a powerful
way of modeling quality of clusterings that is rich enough to
model many important criteria, including Graph Cuts, MDL,
Single Linkage, etc. Traditionally, clustering algorithms have
relied on computing a distance function between pairs of
objects, and hence are not directly capable of incorporating
complicated measures of global quality of clusterings where
the quality is not just a decomposable function of individual
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distances. Submodularity allows us to model these decom-
posable criteria, but also allows to model more complex crite-
ria. However one problem with all of these criteria is that they
can be quite sensitive to outliers. Therefore, algorithms which
only optimize these criteria often produce imbalanced parti-
tions in which some parts of the clustering are much smaller
than others. We often wish to impose balance constraints,
which attempt to tradeoff optimizing J;, with the balance con-
straints. In this paper we show that the results that Patkar
and Narayanan [8] derived for Graph Cuts are broadly appli-
cable to any submodular function, and can lead to efficient
implementations for a broad class of functions that are based
of bipartite adjacency. We apply this for clustering words in
language models.

2 Preliminaries and Prior Work

Let V be a ground set. A functionI' : 2V — R, defined on
all subsets of V' is said to be increasing if I'(4) < I'(B) for
all A C B. It is said to be submodular if I'(A) + I'(B) >
I'(AUB)+T'(ANB), symmetric if '(A) = T'(V '\ A), and
normalized if T'(¢) = 0. For any normalized increasing sub-
modular function T : 2V — R, the function T, : 2V — Rt
definedby I'.(X) = I'(X)+T'(V\ X)—I'(V) is a symmetric
submodular function. This function is called the connectivity
function of I', and is normalized, symmetric and submodu-
lar. We can think of T.(X) = T'.(V \ X) =T.(X,V \ X)
as the cost of “separating” X from V' \ X. Because I'. is
submodular, there are polynomial time algorithms for finding
the non-trivial partition (X, V' \ X) that minimizes I'.. Such
normalized symmetric submodular functions arise naturally
in many applications. One example is the widely used Graph
Cut criterion.

Here, the set V' to be partitioned is the set of vertices of a
graph G = (V, E). The edges have weights w, : £ — RT
which is proportional to the degree of similarity between the
ends of the edge. The graph cut criterion seeks to partition
the vertices into two parts so as to minimize the sum of the
weights of the edges broken by the partition.

Forany X C V, let

Y(X)
5(X)

set of edges having at least one endpoint in X

set of edges having exactly one endpoint in X

For example, if X {1,2,5} (the red/dark-
shaded set in Figure [I-left), then ~(X)
{(1,2), (1,3),(2,3), (2,4), (2,5), (5,4)} (the set of edge
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Figure 1: Left: The Undirected Graph Cut Criterion: T'.(X)
is the sum of weights of edges between X and V' \ X. Right:
The Bipartite Adjacency Criterion: T'.(X) is the number of
elements of F' (features) adjacent to both X and V' \ X.

which are either dashed/red or solid/black) and §(X) is
the set of solid/black edges {(1,3),(2,3),(2,4),(5,4)}.
It is easy to verify that for any (positive) weights that
we assign to the edges wg : E — R* , the function
I'X) = wep(v(X)) = X .c,(x)we(e) is a normalized
increasing submodular function, and hence the function

Fe(X) = we(6(X)) = we(v(X))+we(y(V\X))—we(E)

. We will

is a normalized symmetric submodular function
refer to this as the Undirected Graph Cut criterion.

In this paper, we will be particularly interested in a slightly
different function, which also falls into this framework. V'
will be the left part of a bipartite graph, and F' the right part
of the graph. We think of V' as objects, and F' a set of fea-
tures that the objects may posses. For example, V' might be a
vocabulary of words, and F' could be features of those words
(including possibly the context in which the words occur).
Other examples include diseases and their symptoms, species
and subsequences of nucleotides that occur in their genome,
and people and their preferences.

We construct a bipartite graph B = (V, F, E') with an edge
between an object v € V and a feature f € F' if the object o
has the feature f. We assign positive weights wy : V — R
and wr : F — RT. The weight wr(f) measures the “im-
portance” of the feature f, while the weight wy (v) is used to
determine how balanced the clusterings are. In some applica-
tions, such as ours, there is a natural way of assigning weights
to V and F' (probability of occurrence for example). In this
case, for X C V, we can set

Y(X) ={f € F: XNne(f) # 0}
SX)={feF:Xnne(f)#0,(V\X)Nne(f) # 0}

where ne(+) is the graph neighbor function. In other words,
if X bi-partitions V' into sets of two types (X and V \ X)
of objects, then (X)) is the set of features with neighbors
of “type X, and 6(X) is the set of features with neigh-
bors of both types of object. We let I'(X) = wp(y(X))

'we use the same notation for the function wg : E — RT de-
fined on edges and the function wg : 2F _ R*, the modular exten-
sion defined on all subsets

> Fer(x)W r(f), which can be shown to be a normalized in-

creasing submodular function for any positive weight func-
tionwp : V — R, andT.(X) =T(X)+T(V\X)-T(V)
measures the weight of the common features. For the ex-
ample shown in Figure 1-right, if we take X = {1,2,5}
(the red/dark-shaded set), then v(X) = {a,b,d,e}, and
0(X) = {b,d, e}. We will refer to this as the Bipartite Adja-
cency Cut criterion.

Because I'. is symmetric and submodular, we can use
Queyranne’s algorithm [4] to find the optimal partition in

time O(|V|*). There are two problems with this approach.

First, since the algorithm scales as |V|3, it becomes imprac-
tical when |V'| becomes very large. A second problem is that
the criterion is quite sensitive to outliers, and therefore tends
to produce imbalanced partitions in which one of the parts is
substantially smaller than the others. For example, if we have
a graph in which one vertex is very weakly connected to the
rest of the graph, then the graph cut criterion might produce
a partitioning with just this vertex in a partition by itself. For
many applications it is quite desirable to produce clusters that
are somewhat balanced. There is some inherent tension be-
tween the desire for balanced clusters, and the desire to mini-
mize the connectivity between the clusters T'.(X): we would
like to minimize the connectivity I'.(X '), while making sure
that the clustering is balanced. There are two similar criteria
that capture this optimization goal

r. (V)
wy (V1) - wy (V)
L. (V1)
min(wy (V1), wy (V2))

ratioCut (V1, V2) =

normCut (V1, V2) =

The two criteria are clearly closely related. Unfortunately,
minimizing either criterion is NP-complete [11], and so we
need to settle for solutions which cannot necessarily be shown
to be optimal. The normalized cut is also closely related to
spectral clustering methods [6], and so spectral clustering has
been used to approximate normalized cut. In this paper, we
present a local search approach to approximating normalized
cut. The advantage of local search techniques is that they al-
low us to utilize partial solutions (such as a preexisting clus-
tering of the objects) which is useful in dynamic situations.
Further, since local search techniques produce a sequence of
solutions, each one better than the last, they serve as anytime
algorithms. That is, in time-constrained situations, we can
run them only for as much time as available. The local search
strategy we employ will allow us to make very strong guar-
antees about the final solution produced. Such a local search
technique was originally proposed by Patkar and Narayanan
[8] for producing balanced partitions for the Graph Cut crite-
rion. In this paper, we show that the results in his paper are
equally applicable for any submodular criterion. It should be
noted that the applicability of these general techniques to any
submodular function does not necessarily make it practical.
One of the contributions of [8] was to show that it could be
done efficiently for the Graph Cut criterion via a reduction
to a flow problem. In this problem, we show that the Bipar-
tite Adjacency criteria can also be solved in a similar efficient
fashion by reducing to a (different) flow problem.
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3 Local Search and the Principal Partition

In alocal search strategy, we generate a sequence of solutions,
each solution obtained from the previous one by a (sometimes
small) perturbation. For the case of clustering or partitioning,
this amounts to starting with a (bi)partition V' = V; U Va,
and changing this partition by picking one of a set of moves.
This set of moves that we will consider is going from the bi-
partition {V4, V2 } to the bipartition {U;, U}, where the new
partition is obtained by moving some elements from one par-
tition to the other. For example, we could go from {V;, V2 } to
{Vi\ X, V2 U X}, where X C V;. This amounts to moving
the elements in X from V; to V5. The key to a local search
strategy is have a good way of generating the next move (or
to pick a X C Vj so that moving X to the other side will
improve the objective function). In this section, we show that
when I'. is a submodular function, then the Principal Par-
tition of the submodular function (to be defined below) can
be used to compute the best local move in polynomial time.
Moreover, for the specific application we discuss in this pa-
per, we can actually compute this fast even for very large data
sets.
For any bipartition V = V; UV, and X C V1, let

GGain(X)=T. (V1) - T. (V1 \ X)

~ GGain (X)

- wv(X)

w(G, V) = Jmax averageGain (X)

averageGain (X)

So, for Figure 1-left, if we assign a weight of 1 to all edges
and all vertices, (so wg = 1 and wy = 1), and let 7 be the
set of blue/light nodes and V5 be the set of red/shaded nodes.
Then

GGain({6}) =T. (V1) —-T. (V1 \{6})=4—-6= -2

In Figure 1-right (the bipartite graph), we get

GGain ({6}) =TI (‘/1) - T (Vl \ {6}) =3-3=0

GGain (X) measures the amount of change in the partition
cost ', (V1) (ignoring the balance constraints). Now, we are
really interested in the change in normCut (V3, V5), which in-
corporates the balance constraint. ;1(G, V1) can be seen to be
related to the ratio/normalized cut, and so we use solutions to
u(G, V1) to find the set of moves for the local search algo-
rithm. In this section, we present some results which relate
changes in normCut (V1, V) to the principal partition of the
submodular function T, and for this, u(G, V1) will play a
central role. The principal partition of a submodular function
I, consists of solutions to minxcy, [I'c (X) — A - wy (X)]
for all possible values of A > 0. It can be shown [7;
8] that the solutions for every possible value of A can be com-
puted in polynomial time (in much the same way as the entire
regularization path of a SVM can be computed [12]). We will
give specifics of the computation procedure in Section 4. In
this section, we will present results which will relate the so-
lutions of minxcy; [[e (X) — A - wy (X)] with solutions to
w(G, V1) = maxg.xcy, averageGain (X).

The following proposition was proven by [Narayanan
2003] for the Graph Cut criterion, but generalizes immedi-
ately for an arbitrary increasing submodular function I'.. In
particular, this is applicable to the problem we are interested
in which the submodular function is derived from the bipartite
graph.

Proposition 1 (Narayanan 2003, Proposition 7). Ler (V1, V2)
is a bipartition of V (so V = V1 U Vs, and V1 NVy = ¢), and
let ¢ # U C Vi be a proper subset of V1 satisfying
r.(Vi)—T.(Vi\U)

wy (U)

Then ratioCut (V4 \ U, V2 UU) < ratioCut (Vi, V)

WG, Vi) =

Proof. By assumption,

L.(Vi)—T. (V1 \ X)

Mo = mex, oy (X)
T (V) —Te (Vi \U)
wy (U)

In particular, for X = V; we have

L) -TeW\ Vi) _Te(Vi) —Te (Vi \U)

wy (V1) - wy (U)
Since T'..(V1 \ V1) = 0, we have
Fc (Vl) < Fc (‘/1) _Fc (Vl \U)
wy (Vi) — wy (V1) —wy (Vi \U)

a

Observe that if § < =3,
% > 5. Therefore, we get

then ab — ad < ab — be and so

r(A) | T (Vi\U)
wy (Vi) — wy(Vi\U)

Dividing both sides by wy (V2), we get

)
wy (V1)wy (Va)

L. (Vi\U)
~wy(Vi\U)wy (V)
[ by Equation 1]

I'e(Vi\U)

wy (Vi \ U)wy (Vo UU)
[ because wy (Vo UU) > wy (V3)]
= ratioCut (V1 \ U, V2 U )

ey

ratioCut (V4, V2)

O
‘We have a similar (but not strict) result for normalized cuts.

Corollary 2. Under the same assumptions of the previous
proposition, we have

normCut (V4 \ U, Vo U U) < normCut (V1, V3)

Proof. Since wy (V1) > wy (V1 \U), and from Equation 1, it
follows that I'. (V1) > T'c (V1 \ U). We consider two cases.
First, assume that wy (V1) < wy (V2). In this case, from the
normCut definition and Equation 1,

r.(\) r.(Vi\U)
wy (V1) — wy (Vi \U)

normCut (V4,V2) =
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Hence
zv((‘vé)) - tl;v((‘Vflj) [because |V3] < |Va]
% [because I'c (Vi \ U) < T (V1]
% [ because wy (Vo UU) > wy (V3)]
Hence
normCut (V4, V3) = IFUV((“//E))

s (LD, L (AD)
- ’wv(Vl\U)’wv(vaUU)
=normCut (V1 \ U, Vo U U)

For the remaining case, assume that wy (V1) > wy(Va).
Again using Equation 1, we have

re(vh) _e(\U) _ I (Vi\U)
wy (Vz) wy (Vz) wy (V2 UU)
It follows that
(D) T.(W)
normCut (V1, V5) = max < ) wy (V: )>

v
LVINU) T (Vi\U)

2”‘“( v (D)’ wv(VzUU))

=normCut (V1 \ U, Vo U U)

]

The two previous results show that if we can find a non-
trivial solution to maxg- x cv, averageGain (X), then we can
find a local move that will improve the normalized cut and the
ratio cut. Ideally, we want to show that if it is possible to im-
prove the normalized cut (or the ratio cut), we can in fact find
a local move that will improve the current solution. Unfortu-
nately we do not have such a result, but we have one that is
slightly weaker which serves as a partial converse.

Proposition 3. Suppose that ¢ # U C Vi satisfies o
normCut (V1,V2) > normCut (V1 \ U, V2 UU) where o =

wy (V) F(V\U) Le(Vh)
wr (BoD): Then 5ommoy < we )
Proof. See Appendix. o

Now, the previous result shows the existence of a set which
can be moved to the other side which will let us improve the
current value of the normalized cut. However, an existence
result is not enough. We need to be able to compute this set.
The following theorem gives a connection between this set
and the Principal Partition of the Bipartite Adjacency func-
tion. Since we can compute the principal partition, we can
explicitly compute a local move which will improve the nor-
malized cut.

Proposition 4 (Narayanan, 2003, Proposition 6). A =
w(G, V1) iff there is a proper subset Z C Vi such that

min [Fc (X) —A- ’wv(X)] = [Fc (Vl) - A ’wv(Vl)]

XCvy
=[[e(Z2) = A wv(2)]

Proof. Suppose that A\ = u(G, V1), Thenthereisa ¢ # W C
V7 so that

Fc (‘/1) - Fc (Vl \X)
wy (X)
with equality holding for X = . It follows that

= /L(G, Vl) 2

F.(V)—T. (1 \ X) <A wy(X)
=\ wv(Vl) - )\"LUV(Vl \X)
because wy is always positive. Hence
Fc (Vl) — )\’wv(‘/l) S Fc (‘/1 \X) - A wV(V1 \X)

Because the left hand side is a constant, it follows that
Lo (V1) = dwy (V1) < )?%1{/1 e (Vi \ X) = Moy (Vi \ X))
=V1i

Note that equality holds for X = W. In particular, for Z =
Vi \ W, we get

Fe (Vi) = A wy (V)] = )?1531 [Fe (X) = A wy (X))
=[[e(2) = A-wy(2)]

Therefore, by taking Z = V3 \ W, the forward direction fol-
lows. For the reverse direction, suppose that for some A > 0,
we have

amin [De (X) = A wy (X)) = [0 (Vi) -

Then by taking W = V7 \ X, we get
e (ViAW) = dwy (Vi \W)] = [T (V1) —
Therefore,
Awy(Vh) —

A-wy (V)]

)\ . ’wv(Vl)]

Arwy (Vi \W) =X wy (W)
>Te (Vi) =T (Vi\ W)
because W # 0 and wy > 0, we have

L.(Vi)=T.(Vi\W)
Az wy (W)

O

Therefore, if we can compute solutions to
minxcy, e (X) = A wy(X)], then we can find a lo-
cal move that will let us improve the normalized cut. In the
next section, we show how we can compute these solutions
efficiently for our application.

4 Computing the Principal Partition

Proposition 1 tells us if we have a partition (V,V3), then
if we can find a set ¢ # U C Vj satistying pu(G, V1) =

W, then we can improve the current partition

by moving U from V; to the other part of the partition. Propo-
sition 4 tells us that we can find such a subset by finding A so
that

min [T, (X) —

i Ay (X)) =

= [Fc (U) -

e (Vi) = A~ wy (V)]

A-wy (U)]
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While this can be done in polynomial time for any submodu-
lar function [7; 8], in this section, we show that it can be done
especially efficiently in our case by reducing it to a paramet-
ric flow problem. For parametric flow problems, we can use
the results of [2], to solve the flow problem for all values
of the parameter in the same time required to solve a single
flow problem. Now, for a fixed parameter A, we can com-
pute minxcy, [Te (X) — A - wy (X)] by solving a max flow
problem on the network which is created as follows. Add a

Figure 2: A flow network to compute the Principal Partition
of the Bipartite Adjacency Cut

source node .S, and connect S to all the nodes in v € V with
edge capacity \ - wy (v). Add a sink node 7', and connect
all the nodes in f € F to T, with capacity wg(f) as shown
in Figure 2. The remaining edges (from the original graph)
have infinite capacity. By the max-flow/min-cut theorem, ev-
ery flow corresponds to a cut, and so we just examine the cuts
in the network. It is clear that the min cut must be finite (since
there is at least one finite cut), and hence the only edges that
are part of the cut are the newly added edges (which are ad-
jacent to either S or T'). Hence if a vertex v € V' is on one
side of the cut, all its neighbors must be as well. Therefore,
every cut value is of the form w,(V \ X) + wr(v(X))
A-wy (V) = A wy(X) +wp(X). Minimizing this function
is equivalent to minimizing wp (y(X)) — A - wy (X). We can
compute this for every value of A by using the parametric flow
algorithm of [2]. In [2], it is also shown that there are distinct
solutions corresponding to at most |V| values of A, and fur-
ther, the complexity of finding the solutions for all values of
A is the same as the complexity of finding the solution for a
single value of A (namely that of a flow computation in this
network). This algorithm returns the values of A correspond-
ing to the distinct solutions along with the solutions. Since
there are at most |V| distinct solutions, each one of them can
be examined to find the one which results in the maximum
improvement of the current partition (i.e., the local move that
improves the normalized cut value by the most). Since the

complexity of the flow computation is O(|V|* | E]), the final
search through all the distinct solutions does not add to the
complexity, and hence the total time required for computing

a local improvement is O(|V|* |E|).

5 Word Clustering in Language Models

Statistical language models are used in many applications,
including speech recognition and machine translation,
and are often based on estimating the probabilities of

~
~

n-grams of words: Pr(wi.) = Hle Pr(w;|wi.i—1)

H?:_ll Pr(wi|w1:i,1) . Hf:n Pr(wi|wi,n+1:i,1) The pI'Ob-
lem is that the number of n-grams grows as |W|", where
W is the set of words in the vocabulary. As this grows
exponentially with n, we cannot obtain high-confidence
statistical estimates using naive methods, so alternatives
are needed in order to learn reliable estimates with only
finite size training corpora. Brown et al. [3] suggested
clustering words, and then constructing predictive models
based only on word classes: If ¢(w) is the class of word w,
then we approximate the probability of the word sequence
wyk by Pr(wig) = H;’;ll Pr(w;|e(w;—1),...,c(w1)) -
15, Pr(wile(wi 1), .., c(wi—ni1))- In this case,
the number of probabilities needing to be estimated
grows only as |C|""' - W] Factored language
models [10] generalize this further, where we use
Pr(wi|wi_1 , c(wi_l), ey Wi 41, C(wi—n+1)) note
that conditioning on both w;_1 and ¢(w;_1) is not redundant,
as backoff-based smoothing methods are such that if, say, an
instance of w;, w;—; was not encountered in training data,
an instance of wj;,c(w;—1) might have been encountered
via some other word w’ # w;_; such that w;,w’ was
encountered, and with c(w’) c(w;—1). Often, we can
construct such models in a data-dependent way.

The quality of these models depends crucially on the qual-
ity of the clustering. In this section, we construct a bipartite
adjacency graph, and use the algorithm described above for
generating the clusters. While the algorithm described in this
paper only generates a partition with two clusters, we can ap-
ply it recursively (in the form of a binary tree) to the gener-
ated clusters to generate more clusters (stopping only when
the number of elements in a cluster goes below a prescribed
value, or if the height of the tree exceeds a pre-specified
limit). The bipartite graph we use is constructed as follows:
V' and F' are copies of the words in the language model. We
connectanode v € V to anode f € F if the word f follows
the word v in some sentence. Ideally, we want to put words
which have the same set of neighbors into one cluster. The
model as described ignores the number of occurrences of a
bigram pair. However, we can easily account for numbers by
replicating each word f € F to form f1, fa,..., fr, where
a word v € V is connected to fi, fo,..., f; if the bigram
vf occurs r times in the text. It is very simple to modify
the network-flow algorithm to solve networks of this type in
the same complexity as the original network. The goal is to
partition the words into clusters so that words from different
clusters share as few neighbors as possible (and words from
the same cluster share as many neighbors as possible). Ob-
serve that this criterion does not require us to compute “dis-
tances” between words as is done in the clustering method
proposed by Brown et al. [3]. The advantage of our scheme
over a distance based approach is that it more naturally cap-
tures transitive relationships.

To test this procedure, we generated a clustering with 497
clusters on Wall Street Journal (WSJ) data from the Penn
Treebank 2 tagged (88-89) WSIJ collection. Word and (hu-
man generated) part-of-speech (POS) tag information was
extracted from the treebank. The sentence order was ran-
domized to produce 5-fold cross validation results using
(4/5)/(1/5) training/testing sizes. We compared our sub-
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| | Manually Generated | Bipartite Adjacency | Brown et al. (I3]) |

Bigram (Minimum) 276.229 263.616 279.867
Bigram (Average) 277.135 264.579 281.169
Bigram (Maximum) 278.837 266.335 283.710
Trigram (Minimum) 237.735 231.300 233.111
Trigram (Average) 239.189 233.239 234.887
Trigram (Maximum) 240.765 235.088 236.765

Table 1: Comparing the perplexity of Bigram and Trigram Models for various clustering schemes. The first column (Manually
Generated) uses manually labeled part-of-speech tags, and is used as an idealized baseline only.

modular clustering with both the manual POS clusters, and
also the clustering procedure described in Brown et al. [3],
as shown in Table 1. We note that this particular bipartite
model is designed specifically for bigram n = 2 models, and
not surprisingly, we get a significant improvement in perplex-
ity for such models. We find a non-significant improvement
in the trigram case, but the non-significance is expected as
it shows the importance of a correct model — it would be
straight-forward, however, when clustering w;_; to use a dif-
ferent bipartite graph, where I’ contains not only w; but also
wy—2, to cluster w;_; as a predictor for wy relative to the con-
text in which it will be used in the trigram. In this fashion, a
separate clustering could also be done for w;_5. This shows
the generality of our technique.
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Appendix
Proof of Proposition 3. First, consider the case when
wy (V1) < wy(Vz). Since o < 1, it follows that

normCut (V4,V2) < normCut (V4 \ U,V2 UU). Because
wy(Vi \ U) < wy(V1) < wy(Va) < wy(Va UU),

: _ r.wm\U)
it follows that normCut (V1 \ U, V2 UU) VAL
and normCut (V1,V2) = 5;((“/}1)). Thus, the re-

sult holds in this case. Next consider the case that
wy (V1) > wy(Vz), but wy (Vi \ U) < wy (Ve UT).
Because (wy (Vi) + wy(U) — wy(V2)) > 0, we
have wy(wy (V1) + wy(U) — wy(V2)) > 0, and so
wv(‘/l)wv(‘/g) < wv(‘/gUU)w;/(‘/l\U) < wv(‘/gUU)2.

Therefore, a® = [%} < % Now, by
assumption,
L.(Vi) _ T.(Vi\U)
2 2
a” - normCut (V1,V5) = o -
Wi ¥2) = o )~ we (A D)

= normCut (V1 \ U, V2 UU)
which implies that
Le(Vi) _ Le(Vi\U) wy(Va)
wy (Vi) = wy(Vi\U) wy (V1)

Hence the result follows for this case. Finally, consider the
case when wy (Vo UU) < wy (V1 \ U). Then

2

2 2 Fc(vl) Fc(vl\U)
a” -normCut (V1, V2) = « (V) ~ wy(VaUD)
Therefore,
2 Te(V) wv(V) _  Te(W)  T(K\D)
wy (V1) wy (V2) wy (Va) = wy(V2UU)
_Te(W\U) wv(i\U)
wy(Vi\U) wy(V2UD)
50 T | TAND) wy(Vi\U) v (Va)
wv(Vl) wv(Vl\U) wv(‘/QUU) wv(Vl)
_TeW\U) we(i\U)  wy(V2)
S wy(Vi\U)  wy(Vi)  wy(VaUD)

Now, because wy (Ve U U) < wy(Vi \ U), we have

wv(Vl\U) wV(Vg) .
o (V) > v (Va0 To see this, observe that
wy(VI\U) wy(V2)  _ wy @) (wy (Vi) —wy (V2) — wy (U)
wy (V1) wy (V2 UU) wy (V1) - wy (V2 UTU)

>0
Therefore the result follows for this case as well.
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