Symbols Among the Neurons: Details
of a Connectionist Inference Architecture

David S. Touretzky
Geoffrey E. Minton

Computer Science Department
Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213

Abstract

Pattern matching and variable binding are easily implemented
in conventional computer architectures, but not necessarily in
all architectures. In a distributed neural network architecture
each symbol is represented by activity in many units and each
unit contributes to the representation of many symbols.
Manipulating symbols using this type of distributed
representation is not as easy as with a local representation
whore each unit denotes one symbol, but there is evidence that
the distributed approach is the one chosen by nature. We
describe a working implementation of a production system
interpreter in a neural network using distributed representations
for both symbols and rules. The research provides a detailed
account of two important symbolic reasoning operations,
pattern matching and variable binding, as emergent properties
of collections of neuron-like elements. The success of our
production system implementation goes some way towards
answering a common criticism of connectionist theories: that
they aren't powerful enough to do symbolic reasoning.

1. Introduction

Computer scientists and others have long been interested in
neural network architectures as a means of exploring the
question of intelligence. In the past these architectures have
been successfully applied to relaxation problems such as those
found in low level vision (Marr and Poggio, 1979; Barrow and
Tenenbaum, 1981; Ballard et a/.. 1983); they have also served as
the basis for various pattern recognition and associative
memory schemes proposed throughout the years (Minsky and
Papert, 1969; Post, 1969; Hinton and Anderson, 1981).
Recently, a movement within Al and cognitive science called
"connectionism" has arisen to investigate massively parallel
representations built from simple homogeneous elements as
models for higher level cognitive processes. Examples include
finding the correct reference frame for object recognition
(Hinton, 1981), a psychologically plausible theory of word
recognition (McClelland and Rumelhart, 1981), and a
mechanism for context-based word sense disambiguation
(Cottrell, 1984).

To implement the highest level of cognitive functioning, the
one responsible for general reasoning, requires some sort of
symbolic inference architecture. On a conventional computer
this might be provided by a Lisp interpreter, a resolution
theorem prover, or a production system interpreter, all three of

which have certain operations in common, namely pattern
matching and variable binding. On a connections architecture
these operations can be difficult to implement, especially if
distributed representations are used Ballard and Hayes (1984)
have suggested one way of performing unification in a
connectionist network, but they use a local representation.

In a distributed representation each symbol is represented by
activity in many units and each unit contributes to the
representation of many symbols. Manipulating symbols this way
is not as easy as with a local representation where each unit
denotes one symbol, but there is evidence that the distributed
approach is the one chosen by nature. A key problem, then, is
how pattern matching and variable binding can be achieved in
systems that use distributed representations. In answer to this
problem we present two simple production system interpreters
implemented as neural networks, in which distributed
representations are used for both the wot king memory elements
and the production rules. The research provides a detailed
account of pattern matching and variable binding operations as
emergent properties of collections of neuron like elements.*

2. Two Production Systems

The type of production system we consider here consists of a
working memory that contains triples of symbols and a set of
production rules that reference this memory. Each rule has a
left hand side that matches a pair of working memory triples and
a right hand side that specifies any number of triples to be
added to or deleted from working memory if the rule should fire.
Variables may appear on the left hand sides of rules, where they
act as constraints on the match process, and on the right hand
sides where their values are instantiated to define the actions
the rules take during firing. Our first production system
interpreter did not permit variables in the rules; it was
conceptually very close to a finite state machine. A sample
production rule from this interpreter is shown below. The rule
states that if the triples (F A A) and (F B B) are present in
working memory, then we may replace them with the triple (G A

B).
-4: (FAA (FBB) -->
Rute-d (F AN & “(FAR) ~(F B B)

'The binary threshold computing elements featured in connectionist models
are commonly refened to simply as "neurons." but the use of this term by us
and by most other connectionist researchers should be understood as
metaphorical. Connections' models are not intended to be physiologically
correct in all their detail (they rarely are), rather, they should be computationally
interesting and/or psychologically plausible.

We implemented this interpreter as a neural network simulated
on a Symbolics 3600 Lisp Machine with about 7000 binary
threshold units; the weights and thresholds were constrained to
be small signed integers. The particular values used for weights
and thresholds of the various cell types are all predefined
program constants; knowledge about rules is stored in the
connection patterns of the neurons rather than in the weights.
The contents of working memory are encoded in the states
(either on or off) of working memory cells.

Our second production system interpreter is similarly
specialized. It accepts rules where a variable appears in the first
position of both triples on the left hand side of each rule, and
optionally in the first position of right hand side triples. This
system interprets rules such as the following:

Rule-2: (*x A 8) (=xCD) -->
+(»x EF) +(PDQ) -(=xS§T)

Here, the appearance of =x in both left hand side triples
means the rule can match pairs such as (F A B) and (F C D), but
not pairs such as (F A B) and (G C D). Our second interpreter,
written as an extension of the first, uses about 0000 units and a
completely different set of weights.

3. Architecture of the Interpreters

Figure 1 is a schematic diagram of our second production
system interpreter, which is composed of five "spaces" of cells.
(The first interpreter resembles the second except it is missing
the Bind cell space.) The central space, labelled WM, is the
working memory; it provides inputs to two clause spaces
labelled C1 and C2. The clause spaces both influence and are
influenced by two other spaces; one of these represents the
production rules, while the other implements variable binding
and is independent of specific rules. The system in figure 1 is
known as a "two stroke production system engine" because it
alternately performs each half of the classic production system
recognize-act cycle. During the recognize stroke, WM cells
exert influence on C1 and C2 cells and a relaxation algorithm is
applied to cells in the C1, C2, Rule and Bind spaces until they
settle into a state indicating a match. Then, during the act
stroke, a set of gated connections from the Rule and Bind cells
to the WM cels is opened, allowing the rule that fires to update
the contents of working memory.
3.1. Working Memory

Working memory elements are triples of symbols. We have
chosen an alphabet size of 25 symbols, giving 25°% or 15,625
possible triples. Of these, only about half a dozen will be
present in working memory at any one time. The most
straightforward representation for working memory would be a
"local" one, where each possible triple is represented by a
specific neuron. Then a neuron in the active state would
indicate that the corresponding triple was present. We have
rejected this idea in favor of a distributed representation known
as coarse coding (Hinton, 1981; Hinton ef a/., 1985) for two
reasons. First, local representations require too many neurons
and too many connections; they quickly succumb to
combinatorial explosion as the alphabet size or the length of a
sequence increases. Neurons are not used efficiently this way;

D. Touretzky and G. Hinton 239

Figure 1: Schematic diagram of our second
production system interpreter.

in the system we are describing, with six items in working
memory, only about .04 percent of the working memory cells
would be active using a local representation, while in the
distributed representation about 7.5 percent are in use. Our
second reason for preferring a distributed representation is that
a direct tie between individual neurons and symbolic structures
is physiologically implausible; it is reminiscent of the yellow
Volkswagen cell idea.

Using a distributed representation based on coarse coding we
are able to cover the entire space of 15,625 triples with just 2000
cells. Each cell has a "receptive field" of 6° or 216 triples,
defined by the cross product of six randomly chosen symbols in
each of the three positions of a sequence. For example, the cell
described in figure 2 has the triples (C B R) and (F A A) in its
receptive field, along with 214 other triples. The 2000 cells have
slightly overlapping receptive fields: the average number of
triples in the intersection of two cells' receptive fields is less than
one. Yet in another sense there is a large degree of overlap,
because each of the 15,625 possible triples falls within the
receptive field of, on average, 28 different cells.

3.2. Storing Triples in Working Memory

"Storing" a triple in working memory using a coarse coded
representation means turning on all the WM cells in whose
receptive field it falls. On average this is about 28 cells; the
number varies from one triple to another due to the random
distribution of receptive fields. To test if a particular triple is
present in working memory, we can check the fraction of active
cells among those that can receive it. [f this fraction is close to
1.0, we may assume the triple is present. For example, let us
store the triple (F A A) in working memory. To do so we will turn
on the neuron described in figure 2, since (F A A) falls within its
receptive field; we will also turn on about 27 other neurons.

240 D. Touretzky and G. Hinton

Notice that (C B R) falls within the receptive field of the cell in
figure 2. The total number of receptors common to two
unrelated triples is small; the average number is slightly less
than one. While 28 out of 28 (F A A) cells are active, only 1 out
of about 28 (C B R) cells will be active. Thus we can state with a
high degree of confidence that (F A A) is present in working
memory but (C B R) is not.

C A A
F B D
" H b
P X "
s s P
W z R

Flgure 2: The receptive field table of a WM cell.

3.3. Properties of Coarse Coding

Coarse coded memory representations have several
interesting features. One is immunity to noise. If we store some
triples in WM, then turn a few cells on or off at random, the
perceived contents of WM will not change. This is very
important because we have allowed some overlap in the
representation of triples: as production rules add and delete
certain triples from working memory, the overlap will gradually
affect the representation of other triples stored there. But
because the overlap is small (due to small receptive field size)
and the system is immune to small amounts of noise, the
contents of WM are reasonably persistent.

Another interesting feature of the distributed representation is
that it gives a gradual degradation of WM performance as the
number of elements increases. Each triple added to WM
increases the number of active cells, and therefore increases
the overlap with triples that have not been explicitly added. As
WM fills up, the fraction of active cells for triples that are "close"
to those that have been stored approaches 1.0, and the dividing
line between present and absent triples blurs. If many closely
related triples are stored, such as (F A A), (F A B), (F A C), etc.,
then the system may exhibit local blurring, where it can't tell
whether (F A X) is present or not, but it is certain that (G K Q) is
absent.

3.4. Clause Cells

Each production rule contains exactly two clauses on the left
hand side, where a clause is a specification of a triple. Since
there are two clauses, each rule must match a pair of WM triples.
Working memory holds half a dozen triples on average. The
clause cells in Cl and C2 provide a way to pull out specific
working memory triples so they can be matched against the

clauses in the production rules. Michael Mozer of UCSD has
independently invented a device similar to clause spaces, which
he calls "pull out networks," to allow a perception system to
attend to specific objects in a scene (Mozer, 1984).

There are 2000 cells in C1 space in one-to-one
correspondence with the WM cells; the same is true for C2
space. Each WM cell has an excitatory connection to its
corresponding C1 and C2 cells. Thus, whenever a WM cell
comes on, it tends to turn on the corresponding cells in the C1
and C2 spaces. However, clause cells have a mutually inhibitory
influence within their own space which is designed to limit the
number of active clause cells to about 28 per space, i.e. just
enough to represent one triple. The number of active cells in
WM space is not regulated. Thus, while WM may hold a half
dozen or more triples, when the network settles C1 and C2
spaces will ideally hold just one ftriple each that has been
selected out of WM space.

It might appear possible for the C1 and C2 spaces to settle into
states representing triples that bear no relation at all to the
contents of working memory, but instead simply contain 28
active neurons. This is a highly unlikely occurrence because a
randomly chosen activation pattern in clause cell space will
receive very little support from the Rule and Bind cells. The
system's thresholds and bias levels have been chosen so that a
clause cell cannot remain active unless it receives support from
a reasonable number of-both Rule and Bind cells as well as its
corresponding WM cell.

4. Representation of Rules

Each production rule is represented by a population of 40 Rule
cells. Let us begin with our first production system interpreter,
where the rules contain no variables, as in Rule-1 above. The
left hand side of this rule references the triples (F A A) and (F B
B). Each Rule cell that contributes to the representation of
Rule-1 receives input from a random subset of the (F A A) cells
in the C1 population, and an equal number of randomly chosen
(F B B) cells in the C2 population. If a sufficiently large number
of C1 and C2 cells are active, indicating that the triples (F A A)
and (F B B) are present in working memory, the Rule cell will
also become active.

The 40 cells representing one production rule form a clique.
Each cell in the clique provides a slight excitatory stimulus to the
other cells in the clique, and a slight inhibitory stimulus to the
Rule cells in other cliques. Thus, the Rule space is organized as
a "winner take all" network (Feldman and Ballard, 1982); when
the network settles, all the cells in one clique will be active and
all the remaining cells will be inactive. This is how the system
decides which rule to fire.

One reason for implementing rules as collections of cells
rather than as single Rule cells is that it allows for a graded
response. If, during the settling phase, there is a weak match
between one rule and working memory, this will be indicated by
only some of the the corresponding Rule cells being active. If
another rule matches more strongly, more of the cells in Its
clique will be active, and they will eventually inhibit the cells in
the other cliques.

Another reason for implementing rules with multiple cells is
that it frees any one cell from having to represent the entire
pattern associated with a production rule's left hand side.
Instead, each Rule cell has just a small amount of information;
only the clique as a group has the complete representation for
the rule. This is a more plausible organization than one in which
each rule is represented by a single cell, since it allows us to
limit the number of connections each Rule cell must make to
other cells.

5. Settling

Hopfield (1982) has shown that the state of a neural network
with symmetric connections between units can be usefully
described using the following energy measure, where s denotes
the state (0 or 1) of the ith neuron, #, denotes the threshold of
the /th neuron, and wy denotes the weight of the connection
between the ith and /th neurons:

E = zslal - ZSIS'W‘
i i<j

If neurons change state asynchronously and there is no
transmission delay across connections, such networks are
guaranteed to settle into a minimum energy state from any
starting state. This analogy to physical systems is the basis of
the Boltzmann Machine architecture (Fahlman et a/., 1983;
Ackley er a/., 1985), but it is also important for non-Boltzmann
neuron simulators such as the one discussed here. By
designing the weights in our production system interpreter so
that a successful rule match corresponds to a low energy state,
we can match production rules against working memory by
starting the network in a high energy state and allowing it to
settle into an energy minimum. This is not a foolproof match
technique; some problems with it will be discussed later.

6. Rule Firing

The right hand side of a rule consists of a set of triples to add
to working memory and a set to delete from it. A rule can add
triples by exciting the WM cells that receive those triples, and it
can delete triples by inhibiting those same WM cells. Thus, the
right hand side of a rule specifies two populations of WM cells:
those to be excited and those to be inhibited. The 40 Rule cells
that represent a rule each make connections (of the appropriate
type, either excitatory or inhibitory) to a random subset of the
total population of cells the rule is to affect. However, these
connections are gated so that the Rule cells can only influence
the WM cells during rule firing, rather than all the time, and the
WM cells cannot influence the rule cells through symmetric
connections. Although this would appear to violate Hopfield's
conditions, we can show that during each settling phase the
network is equivalent to another network that does not violate
these conditions, and thus its behavior during a settling can be
understood in terms of energy minimization even though the
whole sequence of settlings cannot.

Once the network of C1, C2, and Rule cells has settled into a
stable state indicating a match, it is a simple matter to fire the

D. Touretzky and G. Hinton 241

right hand side of the rule that matched. This is the rule whose
clique of Rule cells is active. All we need do is open the gate on
the connections between Rule space and WM space. Each
active Rule cell will supply a small amount of inhibition or
excitation to certain WM cells. If a cell receives enough of these
inputs, its state will be changed. Once the gate is closed, WM
cells retain their most recent state until the gate is opened again
at the next rule firing.

Consider the case where Rufe-1 has matched successfully,
and it is now time to fire its right hand side. Each Rule cell will
supply excitatory inputs to some of the WM cells that receive the
triple (G A B), and inhibitory inputs to some of the WM cells that
receive (F A A) or (F B B). To guard against a stray Rule cell
upsetting the contents of working memory, the weights and
thresholds are set so that the concerted action of several Rule
cells is required to change the state of a WM cell in either
direction. In other words, WM cells exhibit hysteresis.

The distributed nature of the rule representation means no
single Rule cell contains a complete representation of a
production rule; a rule's successful matching and firing does not
critically depend on the behavior of any single cell or small
group of cells; and during rule firing a few Rule cells can be
turned on or off at random without effecting the updating of
working memory at all.

7. Variable Binding

Let us now consider rules where a variable appears on the left
hand side. In the system as it is currently implemented, the
variable must appear in the first position of each triple. Rule-2 ,
whose left hand side contains (=x A B) and (=xC D), is an
example. This rule can match pairs of triples such as (F A B)
and (F C D), but it cannot match the pair (F A B) and (G C D)
because the symbol in the first position of each triple is different.

To represent the binding of the variable = x we use a device
called Bind cells. These are similar to the mapping units used
for object recognition in (Hinton, 1981). Since there are 25
separate symbols in our alphabet, the variable m x can have 25
possible values. We represent each possible value by a
population of 40 Bind cells, so there are 40 cells for the symbol
A, 40 for the symbol B, and so on. Bind cells receive input from
cells in both C1 and C2 space, and also influence the cells in
those spaces. For example, each F cell receives input from a
random subset of the C1 and C2 cells that have an F in the first
column of their receptive field tables. Each group of 40 Bind
cells forms a clique; every cell in a clique excites its neighbors
slightly, and also slightly inhibits the cells in the other cliques.
Thus, Bind space is another winner-take-all network.

Suppose that WM contained the triples (F A B), (F C 0), and a
few other random triples such as (G 0 K). Suppose Rule-2 was
present in the network's long term production memory (i.e. in
the connections of the appropriate rule cells.) Then as settling
progressed C1 space would settle into the representation of (F A
B) and C2 space would settle into the representation of (F C 0).
Each F Bind cell would be getting excitation from several cells in
each of C1 and C2 space, so the F Bind cells would become the
active clique. Also, as the F bind cells become active, they tend

242 D. Touretzky and G. Hinton

to support C1 and C2 cells representing triples that begin with F,
thereby strengthening the representation of (F A B) and (F C D)
in their respective clause spaces.

One key difference between rules with variables and rules
without is in the receptive field size of the Rule cells. There are
about {68/25)° x 2000 = 2B cells tnat can receive (FAB), but
about (8/25)2 x 2000 = 1185 cells that can receive (= x A B) for
any value of «x. So the Rule cells must be given larger
receptive fields and different connection strengths and
thresholds in order to cover the larger number of clause cells
matching a triple with a variable in it. A production system
interpreter capable of accepting mixed rule types (i.e. some with
variables, some without) would be a logical extension to our
second system.

The settling process by which rule matching is accomplished
with variable binding is similar to what was described earlier,
except that now C1 and C2 cells are influenced by both Rule
cells and Bind cells, acting independently. However, the two
populations of cells tend to work together to force the C1 and C2
cells into representing triples that give a legal rule match.

8. Performance

Both production systems have run successfully on small test
cases (sets of about six rules operating on a working memory
holding two to six elements at a time.) In one test, which
involved a finite state machine cycling through a series of six
distinctive WM configurations, the system ran (overnight)
through more than a thousand rule firings with no evidence of
memory deterioration or other difficulty. A similar test using
rules that involve variable binding gave equally encouraging
results.

However, we have also found situations that cause problems
for the settling algorithm used in rule matching. A trivial case is
one where no rule successfully matches working memory; the
system will still settle into some sort of local energy minimum,
since it must do so. However, it may be possible to detect this
no-match condition if it turns out that all good matches have
"deep" minima and unsuccessful matches have only shallow
minima. In preliminary experiments using two sample
production systems, this has in fact been the case. Our
interpreter was able to reject faulty matches by checking
whether the final settling energy of the system exceeded a given
threshold. In that case, rather than going on to the firing phase
it throws away the match and runs a new settling phase.

If there is more than one possible successful match, the two
possibilities may interfere with each other. Since the Rule cells
and Binding cells compete independently; the state the system
finally settles into may have two active cliques in Rule and/or
Bind space, or there might be no active cliques left in one of the
spaces. We have chosen to make the simplifying assumption
that exactly one rule (with one binding) will be firable during
each recognizeact cycle. However, it turns out that this
assumption does not eliminate the possibility of interference
among Rule or Bind cells.

Consider a simple system of five production rules with no
variable binding. The first four rules all reference the triple (A A
A) which is present in working memory, and some other triples

which are not present. The fifth rule references the triples (B B
B) and (C C C), both of which are present. Working memory also
contains some additional random triples. During settling, the C1
cells corresponding to the representation for (A A A) will get
support from four cliques of Rule cells, although the Rule cells
will themselves be only weakly supported because they can get
support for their C1 clause but not their C2 clauses. On the
other hand, the C1 cells corresponding to (B B B) will be
supported only by one clique, since only one rule references
that triple, and similarly for the C2 cells representing (C C C). In
this case, although only one of the five rules can be fired
correctly, the system may still settle on the wrong rule due to the
combined influence of the unsuccessful rules, or it may settle
into a minimum that does not not represent a successful match
atall.

Obviously, when variable binding is permitted in rules, the
potential for unsuccessful settling is increased. One way
around such problems might be to use simulated annealing
(Kirkpatrick, 1983) as the search technique rather than doing a
straight gradient descent in energy space. Simulated annealing
is a way to avoid getting stuck in local minima, so if there is a
good match to be found, we can usually find it. We would then
be adopting the Boltzmann approach (Ackley et a/., 1985), which
is computationally more expensive to simulate than gradient
descent, but a much more effective search technique. We are
pursuing this idea in our next generation production system
interpreter.

9. Conclusions

We have described an implementation of production systems
on a neural network architecture in which two common symbolic
reasoning operations, pattern matching and variable binding,
were performed using distributed representations. The work
demonstrates that connectionist architectures are not limited to
solving low-level vision problems or implementing associative
memory schemes; they can be programmable symbol
processors. The success of our production system
implementation goes some way towards answering a common
criticism of connectionist theories: that they aren't powerful
enough to do symbolic reasoning.

Our results also serve as the beginnings of a theory of
symbolic representation in the brain. While the details of our
model are not physiologically correct, we have nonetheless
made progress by showing how distributed symbolic
representations, which are physiologically plausible, can be
manipulated effectively.

The brain is built from painfully slow and unreliable
components: neurons, which fire less than once per millisecond,
are susceptible to fatigue, and die off regularly. The only way
the brain can succeed as a symbol processor is by exploiting
massive parallelism using organizational principles that remain
unknown for the present. By exploring the problem of
computing with distributed representations, computer scientists
may eventually uncover some of these principles.

Acknowledgements

This research was supported by a grant from the System
Development Foundation. We thank Scott Fahlman, Jay
McClelland, David Rumelhart, and Terry Sejnowski for helpful
discussions.

References

Ackley, D. H., Hinton, G. E.,, & Sejnowski, T.J. A learning
algorithm for Boltzmann machines. Cognitive Science, 1985, 9,
147-169.

Ballard, D. H., Hinton G. E. & Sejnowski, T.J. Parallel visual
computation. Nature, 1983, 306, 21-26.

Ballard, D.J. & Hayes, P.J. Parallel logical inference.
Proceedings of the Sixth Annual Conference of the Cognitive
Science Society. Boulder, Colorado. June, 1984.

Barrow, H. G. & Tenenbaum, J. M. Recovering intrinsic scene
characteristics from images. In A. Hanson and E. Riseman
(Eds.), Computer Vision Systems. New York: Academic Press,
1978.

Cottrell, G. W. A model of lexical access of ambiguous words.
In Proceedings of the National Conference on Artificial
Intelligence. Austin, Texas: August 1984.

Fahlman, S.E. Hinton, G. E. & Sejnowski, T.J. Massively
parallel architectures for Al: Netl, Thistle, and Boltzmann
Machines. In Proceedings of the National Conference on
Artificial Intelligence. Washington D.C.: August 1983.

Feldman, J. A. & Ballard, D. H. Connectionist models and their
properties. Cognitive Science, 1982, 6, 205-254.

Hinton, G. E. A parallel computation that assigns canonical
object-based frames of reference. In Proceedings of the Seventh
International Joint Conference on Atificial Intelligence, Vol 2,
683-665. Vancouver BC, Canada. August 1981.

D. Touretzky and G. Hinton 243

Hinton, G. E. Shape representation in parallel systems. In
Proceedings of the Seventh International Joint Conference on
Artificial Intelligence, Vol 2, 1088-1096. Vancouver BC, Canada.
August 1981.

Hinton, G.E. & Anderson, J. A. (Eds.) Parallel Models of
Associative Memory. Hillsdale, NJ: Lawrence Erlbaum
Associates, 1981.

Hinton, G. E., McClelland, J. M. & Rumelhart, D. E. Distributed
representations. In D. E. Rumelhart and J. L. McClelland (Eds.),
Parallel Distributed Processing: Explorations in the
Microstructure of Cognition. Volume 1. Cambridge, MA:
Bradford Books, 1985.

Hopfield, J.J. Neural networks and physical systems with
emergent collective computational abilities. Proceedings of the
National Academy of Sciences USA, 1982, 79, 2554-2558.

Kirkpatrick, S.Gelatt, CD. & Vecchi, M. P. Optimization by
simulated annealing. Science, 1983, 220,671-680.

McClelland, J. L. & Rumelhart, D. E. An interactive activation
model of the effect of context in perception: Parti. An account
of basic findings. Psychological Review, 1981, 88,357-407.

Marr, D. & Poggio, T.A theory of human stereo Vvision.
Proceedings of the Royal Society of London B, 204,1979.

Minsky, M. & Papert, S. Perceptrons. Cambridge, Mass. MIT
Press, 1969.

Mozer, M. C. The perception of multiple objects: a parallel,
distributed processing approach. Unpublished thesis proposal,
Institute for Cognitive Science, University of California, San
Diego. LaJolla.CA: 1984.

Post, P.B. A lifelike model for associative relevance. In
Proceedings of the International Joint Conference on Atrtificial
Intelligence, 271-280. Washington, DC. May, 1969.

Rumelhart, D. E. & McClelland , J. L. (Eds.), Parallel Distributed
Processing: Explorations in the Microstructure of Cognition.
Volume 1. Cambridge, MA: Bradford Books, 1985.

