
A Predicate Connection Graph Based Logic With Flexible Control

Richard Whitney, Darrel J. VanBuer, Donald P. McKay,
Dan Kogan, Lynette Hirschman, Rebecca Davis

System Development Corporation
Santa Monica, California and Paoli, Pennsylvania

Abstract

The FDE has been designed to support multiple search
strategies for logic programs. This machine represents the
knowledge base in a strategy independent fashion as a predicate
connection graph which encodes potential unifications between
predicates. It facilitates knowledge representation in the language
of full first order predicate calculus Immediate developments
include implementation of various database access strategies and
addition of evaluable predicates and functions to the language.
Long-term research will focus on exploration of search strategies,
especially for parallel logic machines.

I. Introduction

The Flexible Deductive Engine (FDE), is designed to serve as
the deductive core for both logic programming environments and
knowledge management systems involving database access. The
intent is to create a single module which supports the full
functionality of logic programming, as well as alternate forms of
deduction appropriate to a knowledge management system
[Kellogg, 19821. Support of logic programming applications and
deductive querying of databases in a single environment requires
flexibility in search strategy through control customized to the
application. Such flexibility results in a highly modular search
engine, operating on a strategy-independent representation of the
search space.

One goal of the FDE is to provide an experimental framework
where the issues of control of inference, database access, and
function evaluation are treated as part of a general problem of
search control. For this reason, we have designed the core of the
FDE with a set of well-defined interfaces; the person developing a
logic system then specifies the search strategy by choosing a set of
control functions, which can be augmented as needed to fit the
application. The current repertoire of strategies includes at one
extreme Prolog-style depth-first left to-right search and at another
Loglisp-style breadth-first search with cost functions for limiting
depth-first expansions. Other strategies may combine depth-first
and breadth-first expansion at different points in the deduction
cycle depending on heuristic choice functions.

The FDE draws upon previous research carried out at SDC
over the past several years in the general area of Knowledge
Management and specifically in DADM, the Deductively
Augmented Data Management project [Kellogg & Travis, 1981].
The FDE preserves the general Knowledge Management
architecture underlying DADM I Kellogg, 1982; Kogan, 1984]
through decomposition of computational functions into an
inference engine, with its associated intensional set of rules, and a
search engine, with its associated external extensional DBMSs.
This division of relations into those with intensional support and
those with extensional support has been a central feature of the
DADM architecture [cf. Klahr, 19781 as well as other logic-based
systems attempting to deal with external DBMSs [Chang, 1981;
Henschen & Naqvi, 19821. The intensional rules are encoded in a
predicate connection graph (PCG) which records both the possible
resolvents for each rule and the relations which have extensional
database support. Our implementation of the PCG is the main
topic of this report.

The FDE provides:

—uniform interface to a collection of diverse relational
DBMSs with different query languages, data presentation
strategies, and functionalities;

—alternative views to the data in extensional DBs by hiding
irrelevant fields or defining new relations derived from the stored
data via shallow deductions;

—an interface to the extensional DB allowing external
relations to act as ground clauses to the logic programming
environment.

The core of the FDE consists of four main parts (figure 1

(1) The knowledge base contains a rule base (the collection
of procedures of a logic program or the set of definitions of virtual
relations for a high-order query language) and a collection of
database facts maintained in multiple relational DBs external to
the deductive core The predicate connection graph encodes the
rule base in the deductive core and also identifies the points of
contact to the relations represented in the database components.
To support the relational DB component of the knowledge base, the
FDE maintains its own internal relational DBMS as well as
communication links to external intelligent DB systems. As much
as possible, the specialized functions of the external DBMSs will be
exploited by the deductive core.

(2) The unification engine, central to any logic-based
system, supports multiple parallel breadth-first search processes
in the FDE. It is based on the unification algorithm of Loglisp
[Robinson & Sibert, 1982], extended to allow for multiple
simultaneous contexts, i.e. multiple collections of variable
bindings in force for a deduction Each search state has its own
associated context to represent the variable bindings in effect in
that state [McKay & Travis, 1984]

(3) The search engine explores the search space by
constructing an AND/OR tree from the PCG representation of the
rule base. A list of search states keeps track of the different search
paths concurrently under investigation The search engine
proceeds through a deduction cycle which performs reduction on a
particular search state. If this search state represents a solution,
the deduction cycle returns it and its continuation; otherwise, the
deduction cycle continues exploring the search space.

(4) The search control strategy is invoked by the search
engine to control its deduction cycle through a suite of functions
which stipulate how to choose and prune states from the search
space. It is this set of functions which allows the control strategy to
vary with the application.

The following sections describe our implementation of the
predicate connection graph and its representation of first order
predicate calculus. The FDE is implemented in Interlisp-Don
Xerox 1100-series Lisp Machines.

734 R. Whitney et al.

I I . The predicate connection graph in the FDE

The purpose of any PCG is to encode the potential
unifications between the predicates (literals) as used in rules
[Kowalski, 1975; Sickel, 1976]. As the internal specification in the
FDE of the logic program, it represents an extended form of
indexing The rules submitted to the FDE are normalized and
encoded in the PCG; growth of a proof tree through the deductive
cycle is determined by the deductive interactions contained in the
PCG

We chose a predicate connection graph to represent the rules
of a logic program primarily because such a formulation lends
itself to the central design consideration of flexibility in search
strategy. Also, we have substantial prior experience with such
structures in database question answering; the present
implementation of the predicate connection graph form of rule
representation is a refinement of the PCG of DADM.

Our PCG facilitates a language with the expressive power of
first order predicate calculus Its inner representation of a rule set
is a Skolem normal form of conjuncts which in turn comprise
disjunctions of literals or negations of literals Simple syntactic
transformations reduce a given formula to an equivalent set of
normalized PCG entries. The availablility of full first order
predicate calculus allows convenient expression of complicated
rules and submission of queries involving hypothetical or
counterfactual antecedents. Moreover, divorcing the language
from a limited canonical form is important when a range of search
strategies is available: Horn clauses may be appropriate for
Prolog's depth-first left to right strategy, but such forms should
not prejudice search control in the general case.

One example of the kind of problem that the FDE simplifies is
a general treatment of negation. As a database question answering
system, the FDE allows for both open and closed worlds [Reiter,
19781. Domains where the open world assumption is in effect
require that we express and use negated literals in our rule base,
since the Prolog technique of negation as failure is inadequate and
logically incorrect in such cases. But even in closed worlds, where
negation as failure yields desired results, a more robust language

provides additional benefits. Consider the definition of bachelor as
unmarried male. A straightforward Prolog interpretation of this
definition would be:

bachelor(X):-not(married(X)),male(X).

With ground clauses marriedlb) and male(a), however, the
particular goal bacheloria)2 will succeed while the general goal
bacheloriX)? will fail, due to the combination of Prolog's search
strategy and the handling of negation as failure In order to
compute the relative complement of a database relation, the FDE
will first determine which individuals satisfy the positive relations
(in this case, which are males). Then it will determine which
individuals satisfy the negated relations in a positive sense (i.e.
which are married). The relative complement of the first set with
respect to the second (members of the set of males which are not
members of the married set) then determines the answer. The
delayed negation is a feature of the database operations, unlike the
more general solution of MU-Prolog [Naish, 1983], where it is a
function of search control.

The solution in Prolog is to reorder the defining literals:

bachelor(X):-male(X),not(married(X)).

Now, with the ground clause male(a), the goal bacheloriX)? will
succeed for individual a However, asserting bachelor(a) does not
allow any conclusion to be drawn about a's marital status. In the
FDE, we can express the definition in biconditional form,

and infer, from the assertion bacheloiia), the conclusion
not(married(a)). And this is achieved within a depth-first
left-to-right search strategy simply through the flexibility of the
language provided by rule and query encoding in the PCG.

R. Whitney et al. 735

A. The rationale of the PCG

The PCG is composed of two kinds of abstract objects:
relations and occurrences. Relations correspond to symbols used as
the name of a relation, e.g. P in P(a). Occurrences represent
instances of literals in rules; they also represent instances of
literals in queries. Since a single relation may occur many times in
a collection of rules, we distinguish the properties pertinent to the
relation itself from those pertinent to the occurrences of it

Relations are objects with two properties, namely, ordered
sets of the uses of this relation in literals in (1) a positive sense and
(2) a negative sense. The ordering reflects the order in which rules
are made known to the system, to preserve the sequential nature
needed for Prolog-style programming For some alternate modes of
deduction, it will be possible to express the measure of confidence
in each rule by means of a plausibility factor This factor can then
be used to control deduction by ordering the rule set or the uses of
rules according to the strength of the plausibility factors.

In the only-if (<■) direction of the biconditional, the Horn
clause equivalent of the Prolog definition is simply transformed as
represented in the upper branch of the tree from BACHELOR
(figure 2). Distribution of negation by De Morgan's law causes the
reversal of sign in the components of the original conjunct, so the
equivalent disjunctive form would read: x is a bachelor or x is not
male or x is married.

In the case of the if (■>) direction of the biconditional, a new
literal, not(GPred0(X)), is generated to represent the conjunction
in the consequent of the rule, so we first rewrite the original as two
rules:

and

bachelor(X) -> not(GPred()(X))

not(GPred0(X)) -> male(X) A not (married(X))

Literal occurrences are objects with a number of properties.
These properties are:

SIGN: whether usage is (P -) or (NOW --)).

LITERAL: the literal exclusive of any negation, e.g. (P --),

ORMATES: links of this occurrence to other parts of the rule
containing this occurrence,

UNIFIERS: links to occurrences which represent potential
resolvents when this occurrence is a goal

The internal representation of a rule set as a conjunctive
normal form expects each rule to be convertible to a disjunction of
literals and negated literals. Pure Horn clause rules, which consist
of a conjunction of literals as antecedent and a single literal as
conclusion, meet this expectation by using the transformation:

De Morgan's law then converts the conjunctive antecedent to a
disjunction:

Other logical forms are transformed by the generation of new,
unique literals to replace complex forms in the disjunction and the
creation of new rules connecting the new literals with the forms
replaced. Such a situation is encountered with the PCG
representation of the rule defining bachelorhood previously
mentioned (figure 2):

In the only-if («-) direction of the biconditional, the Horn
clause equivalent of the Prolog definition is simply transformed as
represented in the upper branch of the tree from BACHELOR
(figure 2). Distribution of negation by De Morgan's law causes the
reversal of sign in the components of the original conjunct, so the
equivalent disjunctive form would read: x is a bachelor or x is not
male or x is married.

(Negation of generated literals is introduced to minimize negated
terms in the ultimate normal forms) The first of these is
equivalent to the normal form:

)

The second is rewritten into two more rules,

and

which find equivalent normal forms in

and

GPredO(X) v male(X)

GPredO(X) V not(married(X)).

This situation can now be read off from the lower branch of the tree
from BACHELOR. (Since the UNIFIERS field of a given
occurrence represents potential unifications for the purpose of
resolution, there is a difference of sign between occurrences so
connected).

Queries are also treated as occurrences of relations which are
connected to the PCG. Because the FDE uses resolution as its main
technique and resolution is a form of proof by contradiction, the
negation of a query is actually entered into the PCG For queries,
resolution is done primarily by backchaining, and exclusively so
when emulating Prolog, so unifications for queries are actually
connected in only one direction (from query occurrence to PCG
occurrence) instead in the bidirectional form of the PCG proper
The main reason for using the unidirectional links is robustness of
the implementation. Because there are no links from the PCG to
the query, abnormal termination of query processing never leaves
any unwanted connections. Another reason for avoiding reverse
links is to avoid begging the question, since queries are not rules,
so they should not be backchaining resolvents

736 R. Whitney et al.

B. The PCG and the deduction cycle I I I . Work in progress

The search engine of the FDE uses an AND/OR tree to
represent progress through the knowledge base. Growth of this
tree is governed by the suite of functions which encode the control
strategy The tree contains alternating levels of AND nodes and
OR nodes. An OR node represents a literal to be resolved. Each OR
node contains a list of alternate potential unifiers obtained from
the PCG, the AND-node children of the OR node represent the
resolvents of the goal literal obtained from the alternates

Submitting a query causes it to be conjoined to the PCG and a
root AND-node initialized with its children OR nodes. Resolution
of an OR-node causes a new branch to be added to the tree if the
alternative unified with has ORMATES. In that case, the resolved
OR acquires a child AND-node representing each alternative. If
there are no ORMATES, then the OR node is solved

A trace of the deduction cycle and the AND/OR tree for the
sample query NOT(MARRIED(<—X))< are shown in figure 3 and
illustrate some of the details of this process, and can be compared
with the PCG structure of figure 2 The goal under And 1 in figure
3 corresponds to the PCG node (NOT(MARRIEl) <-X)) connected
to the root of the PCG display for MARRIED (fig 2), and is the first
chosen goal node. The immediate subgoal is found by following the
ORMATES arc to the single goal (GPredO <-X) The goal under
And-2 is one of the UNIFIERS (in this case, the only) of this node,
(NOTfGPredO *-X)). From here, we again follow the ORMATES
arc of (NOT (GPredO <-X)) to its immediate subgoal
(NOT(BACHELOR «-X)). The goal under And 3 (fig. 3) is the only
unifier of the node (BACHELOR a) Since this node has no
ORMATES, it is resolved. This represents deducing
NOT(MARRIED(a)) from BACHELOR(a)

One of the primary targets of the current development is an
effective solution to problems of aggregation and the related
problems associated with the setof and bagof predicates of Prolog,
as well as a general treatment of evaluable predicates and
functions. One case concerns the problem of determining a value
for, e.g., the number of bachelors in our database. In line with the
overall adaptability of the FDE, we intend to allow different
strategies for different predicates: a Prolog style for computing
this number would abort the inference procedure if an evaluable
predicate were called with not all of its arguments instantiated.
The DA DM strategy would be to check the status of the arguments
routinely during the course of deduction until all are instantiated,
and then perform the computation.

We are also developing a more general treatment of database
access than exists in DADM. The FDE will allow for a relation to
be defined in both the intensional rule base and in the extensional
database. A special choice function will control the point at which
database access is performed: eagerly, as in Prolog, or in batched,
deferred mode as in the current DADM

IV. Bibliography

Chang, C L., "On evaluation of queries containing derived
relations in a relational data base " Advances in Data Base
Theory, vol. 1, H. Gallaire, J. Minker, and J Nicolas (eds.),
Plenum, New York, 1981

Henschen, L. J. and Naqvi, S., "Representing infinite sequences of
resolvents in recursive first order horn databases " 6th Conference
on Automated Deduction, G. Goos and J Hartmanis (eds), New
York, 1982.

Kellogg, C. and Travis, L., "Reasoning with Data in a Deductively
Augmented Data Management System " Advances in Data Base
Theory, vol. 1, H. Gallaire, J Minker and J. M Nicholas (eds.),
Plenum, New York, 1981

Kellogg, C, "Knowledge Management: a Practical Amalgam of
Knowledge and Data Base Technology." Proceedings of the Second
National Conference on Artificial Intelligence, 1982

Klahr, P., "Planning Techniques for Rule Selection in Deductive
Question-Answering," Pattern-Directed Inference Systems, D A
Waterman and F. Hayes-Roth (eds.), Academic Press, New York,
1978.

Kogan, D., "The Manager's Assistant: an Application of
Knowledge Mangement." In IEEE International Conference on
Data Engineering Proceedings, Los Angeles, April 1984.

Kowalski, R , "A Proof Procedure Using Connection Graphs,"
J ACM, 22:4, October, 1975, pp. 572-595

McKay, DP. and Travis, L., Unification Engine, LBS Technical
Memo, System Development Corporation, Paoli, PA, April, 1984,

Naish, L., An Introduction to MU-Prolog, Technical Report 82/2,
Department of Computer Science, University of Melbourne,
January, 1983.

Reiter, R., "Deductive question answering on relational data
bases." Logic and Data Bases, H. Gallaire and J. Minker (eds.),
1978.

Figure 3. The AND/OR tree and trace of the deduction cycle
for NOT(MARRIED(*-X))?

Robinson, J. A. and Sibert, E. E., "LOGLISP: Motivation, design
and implementation." Logic Programming, K.L. Clark and S-A
Tarnlund (eds), Academic Press, New York, 1982.

Sickel, S., "A Search Technique for Clause Interconnectivity
Graphs." IEEE Transactions on Computers C-25:8, August, 1976.

