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Abstract 

The FDE has been designed to support multiple search 
strategies for logic programs. This machine represents the 
knowledge base in a strategy independent fashion as a predicate 
connection graph which encodes potential unifications between 
predicates. It facilitates knowledge representation in the language 
of full first order predicate calculus Immediate developments 
include implementation of various database access strategies and 
addition of evaluable predicates and functions to the language. 
Long-term research will focus on exploration of search strategies, 
especially for parallel logic machines. 

I. Introduction 

The Flexible Deductive Engine (FDE), is designed to serve as 
the deductive core for both logic programming environments and 
knowledge management systems involving database access. The 
intent is to create a single module which supports the full 
functionality of logic programming, as well as alternate forms of 
deduction appropriate to a knowledge management system 
[Kellogg, 19821. Support of logic programming applications and 
deductive querying of databases in a single environment requires 
flexibility in search strategy through control customized to the 
application. Such flexibility results in a highly modular search 
engine, operating on a strategy-independent representation of the 
search space. 

One goal of the FDE is to provide an experimental framework 
where the issues of control of inference, database access, and 
function evaluation are treated as part of a general problem of 
search control. For this reason, we have designed the core of the 
FDE with a set of well-defined interfaces; the person developing a 
logic system then specifies the search strategy by choosing a set of 
control functions, which can be augmented as needed to fit the 
application. The current repertoire of strategies includes at one 
extreme Prolog-style depth-first left to-right search and at another 
Loglisp-style breadth-first search with cost functions for limiting 
depth-first expansions. Other strategies may combine depth-first 
and breadth-first expansion at different points in the deduction 
cycle depending on heuristic choice functions. 

The FDE draws upon previous research carried out at SDC 
over the past several years in the general area of Knowledge 
Management and specifically in DADM, the Deductively 
Augmented Data Management project [Kellogg & Travis, 1981]. 
The FDE preserves the general Knowledge Management 
architecture underlying DADM I Kellogg, 1982; Kogan, 1984] 
through decomposition of computational functions into an 
inference engine, with its associated intensional set of rules, and a 
search engine, with its associated external extensional DBMSs. 
This division of relations into those with intensional support and 
those with extensional support has been a central feature of the 
DADM architecture [cf. Klahr, 19781 as well as other logic-based 
systems attempting to deal with external DBMSs [Chang, 1981; 
Henschen & Naqvi, 19821. The intensional rules are encoded in a 
predicate connection graph (PCG) which records both the possible 
resolvents for each rule and the relations which have extensional 
database support. Our implementation of the PCG is the main 
topic of this report. 

The FDE provides: 

—uniform interface to a collection of diverse relational 
DBMSs with different query languages, data presentation 
strategies, and functionalities; 

—alternative views to the data in extensional DBs by hiding 
irrelevant fields or defining new relations derived from the stored 
data via shallow deductions; 

—an interface to the extensional DB allowing external 
relations to act as ground clauses to the logic programming 
environment. 

The core of the FDE consists of four main parts (figure 1 

(1) The knowledge base contains a rule base (the collection 
of procedures of a logic program or the set of definitions of virtual 
relations for a high-order query language) and a collection of 
database facts maintained in multiple relational DBs external to 
the deductive core The predicate connection graph encodes the 
rule base in the deductive core and also identifies the points of 
contact to the relations represented in the database components. 
To support the relational DB component of the knowledge base, the 
FDE maintains its own internal relational DBMS as well as 
communication links to external intelligent DB systems. As much 
as possible, the specialized functions of the external DBMSs will be 
exploited by the deductive core. 

(2) The unification engine, central to any logic-based 
system, supports multiple parallel breadth-first search processes 
in the FDE. It is based on the unification algorithm of Loglisp 
[Robinson & Sibert, 1982], extended to allow for multiple 
simultaneous contexts, i.e. multiple collections of variable 
bindings in force for a deduction Each search state has its own 
associated context to represent the variable bindings in effect in 
that state [McKay & Travis, 1984] 

(3) The search engine explores the search space by 
constructing an AND/OR tree from the PCG representation of the 
rule base. A list of search states keeps track of the different search 
paths concurrently under investigation The search engine 
proceeds through a deduction cycle which performs reduction on a 
particular search state. If this search state represents a solution, 
the deduction cycle returns it and its continuation; otherwise, the 
deduction cycle continues exploring the search space. 

(4) The search control strategy is invoked by the search 
engine to control its deduction cycle through a suite of functions 
which stipulate how to choose and prune states from the search 
space. It is this set of functions which allows the control strategy to 
vary with the application. 

The following sections describe our implementation of the 
predicate connection graph and its representation of first order 
predicate calculus. The FDE is implemented in Interlisp-Don 
Xerox 1100-series Lisp Machines. 
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I I . The predicate connection graph in the FDE 

The purpose of any PCG is to encode the potential 
unifications between the predicates (literals) as used in rules 
[Kowalski, 1975; Sickel, 1976]. As the internal specification in the 
FDE of the logic program, it represents an extended form of 
indexing The rules submitted to the FDE are normalized and 
encoded in the PCG; growth of a proof tree through the deductive 
cycle is determined by the deductive interactions contained in the 
PCG 

We chose a predicate connection graph to represent the rules 
of a logic program primarily because such a formulation lends 
itself to the central design consideration of flexibility in search 
strategy. Also, we have substantial prior experience with such 
structures in database question answering; the present 
implementation of the predicate connection graph form of rule 
representation is a refinement of the PCG of DADM. 

Our PCG facilitates a language with the expressive power of 
first order predicate calculus Its inner representation of a rule set 
is a Skolem normal form of conjuncts which in turn comprise 
disjunctions of literals or negations of literals Simple syntactic 
transformations reduce a given formula to an equivalent set of 
normalized PCG entries. The availablility of full first order 
predicate calculus allows convenient expression of complicated 
rules and submission of queries involving hypothetical or 
counterfactual antecedents. Moreover, divorcing the language 
from a limited canonical form is important when a range of search 
strategies is available: Horn clauses may be appropriate for 
Prolog's depth-first left to right strategy, but such forms should 
not prejudice search control in the general case. 

One example of the kind of problem that the FDE simplifies is 
a general treatment of negation. As a database question answering 
system, the FDE allows for both open and closed worlds [Reiter, 
19781. Domains where the open world assumption is in effect 
require that we express and use negated literals in our rule base, 
since the Prolog technique of negation as failure is inadequate and 
logically incorrect in such cases. But even in closed worlds, where 
negation as failure yields desired results, a more robust language 

provides additional benefits. Consider the definition of bachelor as 
unmarried male. A straightforward Prolog interpretation of this 
definition would be: 

bachelor(X):-not(married(X)),male(X). 

With ground clauses marriedlb) and male(a), however, the 
particular goal bacheloria)2 will succeed while the general goal 
bacheloriX)? will fail, due to the combination of Prolog's search 
strategy and the handling of negation as failure In order to 
compute the relative complement of a database relation, the FDE 
will first determine which individuals satisfy the positive relations 
(in this case, which are males). Then it will determine which 
individuals satisfy the negated relations in a positive sense (i.e. 
which are married). The relative complement of the first set with 
respect to the second (members of the set of males which are not 
members of the married set) then determines the answer. The 
delayed negation is a feature of the database operations, unlike the 
more general solution of MU-Prolog [Naish, 1983], where it is a 
function of search control. 

The solution in Prolog is to reorder the defining literals: 

bachelor(X):-male(X),not(married(X)). 

Now, with the ground clause male(a), the goal bacheloriX)? will 
succeed for individual a However, asserting bachelor(a) does not 
allow any conclusion to be drawn about a's marital status. In the 
FDE, we can express the definition in biconditional form, 

and infer, from the assertion bacheloiia), the conclusion 
not(married(a)). And this is achieved within a depth-first 
left-to-right search strategy simply through the flexibility of the 
language provided by rule and query encoding in the PCG. 



R. Whitney et al. 735 

A. The rationale of the PCG 

The PCG is composed of two kinds of abstract objects: 
relations and occurrences. Relations correspond to symbols used as 
the name of a relation, e.g. P in P(a). Occurrences represent 
instances of literals in rules; they also represent instances of 
literals in queries. Since a single relation may occur many times in 
a collection of rules, we distinguish the properties pertinent to the 
relation itself from those pertinent to the occurrences of it 

Relations are objects with two properties, namely, ordered 
sets of the uses of this relation in literals in (1) a positive sense and 
(2) a negative sense. The ordering reflects the order in which rules 
are made known to the system, to preserve the sequential nature 
needed for Prolog-style programming For some alternate modes of 
deduction, it will be possible to express the measure of confidence 
in each rule by means of a plausibility factor This factor can then 
be used to control deduction by ordering the rule set or the uses of 
rules according to the strength of the plausibility factors. 

In the only-if (<■) direction of the biconditional, the Horn 
clause equivalent of the Prolog definition is simply transformed as 
represented in the upper branch of the tree from BACHELOR 
(figure 2). Distribution of negation by De Morgan's law causes the 
reversal of sign in the components of the original conjunct, so the 
equivalent disjunctive form would read: x is a bachelor or x is not 
male or x is married. 

In the case of the if (■>) direction of the biconditional, a new 
literal, not(GPred0(X)), is generated to represent the conjunction 
in the consequent of the rule, so we first rewrite the original as two 
rules: 

and 

bachelor(X) -> not(GPred()(X)) 

not(GPred0(X)) -> male(X) A not (married(X)) 

Literal occurrences are objects with a number of properties. 
These properties are: 

SIGN: whether usage is (P - ) or (NOW --)). 

LITERAL: the literal exclusive of any negation, e.g. (P --), 

ORMATES: links of this occurrence to other parts of the rule 
containing this occurrence, 

UNIFIERS: links to occurrences which represent potential 
resolvents when this occurrence is a goal 

The internal representation of a rule set as a conjunctive 
normal form expects each rule to be convertible to a disjunction of 
literals and negated literals. Pure Horn clause rules, which consist 
of a conjunction of literals as antecedent and a single literal as 
conclusion, meet this expectation by using the transformation: 

De Morgan's law then converts the conjunctive antecedent to a 
disjunction: 

Other logical forms are transformed by the generation of new, 
unique literals to replace complex forms in the disjunction and the 
creation of new rules connecting the new literals with the forms 
replaced. Such a situation is encountered with the PCG 
representation of the rule defining bachelorhood previously 
mentioned (figure 2): 

In the only-if («-) direction of the biconditional, the Horn 
clause equivalent of the Prolog definition is simply transformed as 
represented in the upper branch of the tree from BACHELOR 
(figure 2). Distribution of negation by De Morgan's law causes the 
reversal of sign in the components of the original conjunct, so the 
equivalent disjunctive form would read: x is a bachelor or x is not 
male or x is married. 

(Negation of generated literals is introduced to minimize negated 
terms in the ultimate normal forms ) The first of these is 
equivalent to the normal form: 

) 

The second is rewritten into two more rules, 

and 

which find equivalent normal forms in 

and 

GPredO(X) v male(X) 

GPredO(X) V not(married(X)). 

This situation can now be read off from the lower branch of the tree 
from BACHELOR. (Since the UNIFIERS field of a given 
occurrence represents potential unifications for the purpose of 
resolution, there is a difference of sign between occurrences so 
connected). 

Queries are also treated as occurrences of relations which are 
connected to the PCG. Because the FDE uses resolution as its main 
technique and resolution is a form of proof by contradiction, the 
negation of a query is actually entered into the PCG For queries, 
resolution is done primarily by backchaining, and exclusively so 
when emulating Prolog, so unifications for queries are actually 
connected in only one direction (from query occurrence to PCG 
occurrence) instead in the bidirectional form of the PCG proper 
The main reason for using the unidirectional links is robustness of 
the implementation. Because there are no links from the PCG to 
the query, abnormal termination of query processing never leaves 
any unwanted connections. Another reason for avoiding reverse 
links is to avoid begging the question, since queries are not rules, 
so they should not be backchaining resolvents 
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B. The PCG and the deduction cycle I I I . Work in progress 

The search engine of the FDE uses an AND/OR tree to 
represent progress through the knowledge base. Growth of this 
tree is governed by the suite of functions which encode the control 
strategy The tree contains alternating levels of AND nodes and 
OR nodes. An OR node represents a literal to be resolved. Each OR 
node contains a list of alternate potential unifiers obtained from 
the PCG, the AND-node children of the OR node represent the 
resolvents of the goal literal obtained from the alternates 

Submitting a query causes it to be conjoined to the PCG and a 
root AND-node initialized with its children OR nodes. Resolution 
of an OR-node causes a new branch to be added to the tree if the 
alternative unified with has ORMATES. In that case, the resolved 
OR acquires a child AND-node representing each alternative. If 
there are no ORMATES, then the OR node is solved 

A trace of the deduction cycle and the AND/OR tree for the 
sample query NOT(MARRIED( <—X))< are shown in figure 3 and 
illustrate some of the details of this process, and can be compared 
with the PCG structure of figure 2 The goal under And 1 in figure 
3 corresponds to the PCG node (NOT(MARRIEl) <-X)) connected 
to the root of the PCG display for MARRIED (fig 2), and is the first 
chosen goal node. The immediate subgoal is found by following the 
ORMATES arc to the single goal (GPredO <-X) The goal under 
And-2 is one of the UNIFIERS (in this case, the only) of this node, 
(NOTfGPredO *-X)). From here, we again follow the ORMATES 
arc of (NOT (GPredO <-X)) to its immediate subgoal 
(NOT(BACHELOR «-X)). The goal under And 3 (fig. 3) is the only 
unifier of the node (BACHELOR a) Since this node has no 
ORMATES, it is resolved. This represents deducing 
NOT(MARRIED(a)) from BACHELOR(a) 

One of the primary targets of the current development is an 
effective solution to problems of aggregation and the related 
problems associated with the setof and bagof predicates of Prolog, 
as well as a general treatment of evaluable predicates and 
functions. One case concerns the problem of determining a value 
for, e.g., the number of bachelors in our database. In line with the 
overall adaptability of the FDE, we intend to allow different 
strategies for different predicates: a Prolog style for computing 
this number would abort the inference procedure if an evaluable 
predicate were called with not all of its arguments instantiated. 
The DA DM strategy would be to check the status of the arguments 
routinely during the course of deduction until all are instantiated, 
and then perform the computation. 

We are also developing a more general treatment of database 
access than exists in DADM. The FDE will allow for a relation to 
be defined in both the intensional rule base and in the extensional 
database. A special choice function will control the point at which 
database access is performed: eagerly, as in Prolog, or in batched, 
deferred mode as in the current DADM 
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