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Abstract

Quadrilaterals are figures with which everybody
becomes familiar in his/her very early stage of edu-
cation. By studying these seemingly simple figures
we can obtain some insights into the nature of the
general problem of interpreting image contours. This
paper discusses in detail how quadrilaterals are in-
terpreted three-dimensionally, and draws feasible in-
ferences about the general properties of the human
system of processing line drawings. First the rectan-
gularity regularity is proposed to be the prime con-
straint in the visual interpretation of quadrilaterals.
The subjective "image center'' and focal length (finite
and infinite) are determined together with rectangle
orientation. Secondly, interpretation of quadrilater-
als as faces of a rectangular polyhedron is examined
at both the geometrical level and the perceptual level.
Finally the gravity regularity is proposed to derive
constraints on the rectangle orientation by analyzing
the relation among the camera, the ground and the
rectangles supported by the ground.

1. Introduction

An image is a two-dimensional projection of a three-
dimensional scene, and a contour image represents signifi-
cant changes in surface shape, reflectance and illumination,
which are reflected directly or indirectly in the 2-D image.
A contour image can be a. line drawing, drawn by human
hands, which only includes topologically well-defined, se-
mantically significant, but not necessarily positionally ac-
curate contours; or it can be generated by computer from
a real image, which may include many noise edges, if not
processed very carefully.

Line drawing is probably the most abstract and ef-
ficient means of describing our 3-dimensional world in a
2-dimensional manner. Thus it is often used in human
communications and is potentially very useful in human-
machine interfaces. Although the contours alone do not
provide sufficient constraints on the surfaces, humans seem
not to have any difficulty in recovering 3-D shapes from the
2-D contours. The task is so effortless for our eyes that we
rarely pause to ask ourselves how we do. As we try to
answer, however, we realize that it is a difficult question.
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A number of papers have been published that try
to answer this "shape from contour" question. Among
them are [Barrow &; Tenenbaum, 1981], (Kanade, 1981],
[Barnard, 1983] and [Brady & Yuille, 1984]. All the pa-
pers listed above generally deal with only closed contours
and assume that the image contours are, globally or lo-
cally, projections of planar space curves. Ellipses are inter-
preted as circles by additional assumptions of: uniformity
of curvature [Barrow &; Tenenbaum, 1981], maximum en-
tropy [Barnard, 1983] and maximum compactness [Brady
& Yuille, 1984], and quadrilaterals or parallelograms are in-
terpreted as rectangles by additional assumptions of maxi-
mum symmetry [Kanade, 1981; Barnard, 1983]. Reviewing
the papers, it is not difficult to find that the approaches
are based on the psycological facts that ellipses and quadri-
laterals (including parallellograms) are perceived as circles

and rectangles, respectively. The approaches differ only
iIn how the facts are accounted for and in what specific
criteria, they choose to achieve the predetermined aims.
The psyoology of line drawing perception was first studied
by the Gestalt school. They propose prdgnanz, or figural
goodness, to be the criterion on which the human per-
ception is based. The circle and rectangle interpretations
are preferred because they are the most beautiful inter-
pretations among the possible. Unfortunately, however,
the Gestalt psycologists could not give a theoretical ac-
count of the term prdgnanz from a standpoint of informa-
tion processing, and figural goodness remains to be judged
mainly by human eyes (note that a recent progress is an at-
tempt to characterize pragnanz by transformational invari-
ance [Palmer, 1983].) The lack of a definition of pragnanz
leaves room for proposal of various specific criteria. The
uniformity of curvature, entropy, compactness and symme-
try criteria are developed in, and thus well suited to the
specific cases, but they are not surely universal and may
not apply to other cases.

Under the circumstances, two general paradigms are
available. The first is the quantitative paradigm, in which
a universal criterion is developed and interpretations are
selected by maximizing or minimizing that criterion, as
done in [Barrow & Tenenbaum, 1981], [Barnard, 1983]
and [Brady & Yuille, 1984], The second is the qualita-
tive paradigm, in which specific figural configurations that
have definite interpretations are searched for and inter-
preted. Examples are [Stevens, 19S1&1986], in which par-
allel (curved) contours are interpreted as lines of curva-
ture on a cylindrical surface, [Xu & Tsuji, 1987a,b], in



which a closed boundary is segmented and interpreted as
four lines of curvature if certain conditions are satisfied,
and [Barnard & Pentland, 1983], in which elliptic arcs are
directly interpreted as circular arcs. The causal relation
between the interpreted and the interpretation is referred
to as regularity. The task is thus to discover regularities,
or causal relations, and then to apply them to specific in-
terpretation processes. We consider that the qualitative
paradigm is more advantageous because (1) a line drawing
IS generally only qualitative, not quantitative, especially
when it is hand-drawn; and (2) while interpretations are
qualitatively stable, they are not always quantitatively sta-
ble.

2. The Rectangularity Regularity
and Rectangle Orientation

2.1 The rectangularity regularity

The human visual perception, as a part of the brain,
Is the product of millions of years of evolution. As a conse-
quence, various regularities of nature have been embedded
into the vision system. It is these natural regularities that
are secrets of the human vision (and the human perception
at large.) They fill in the blank inherent in the mapping
from two-dimensionality onto three-dimensionality. Only
by understanding them, can we really understand the hu-
man vision and further develop any computer vision sys-
tems. (See [Pentland, 1986] for a general discussion on the
role that natural regularities play in visual perception, and
[Ullman, 1979a,b; Reuman & Hoffman, 1986] for how nat-
ural regularities play in the visual perception of motion.)

On the other hand, the human visual perception is
not simply a copy of external regularities; it has its own
internal structure, which functions in its own right. One
indication of such an internal structure is the perceptual
system's prefenice of pragnanz, or simple, regular forms
over complex, irregular ones. It is unfair to contribute this
property to regularities of external world. Circles are pre-
ferred over ellipses [Barrow & Tenenbauin, 1981; Brady &.
Yuille, 1984] not because we regularly see circles in our
environment, but mainly because the internal structure of
the perceptual system appreciate the simplicity or figural
goodness of the circle interpretation. This kind of regular-
ities If one would also like to call them regularities—is
subjective regularities, in contrast to external natural reg-
ularities. (In fact, the preference of simplicity is not the
privilege of perception; all the phases of cognition show
this tendency [Kanizsa, 1979, p.238].)

All quadrilaterals can be queued, according to the de
gree of regularity, as: rectangle, parallelogram, trapezium
and generic quadrilateral (Fig. 1). It is generally difficult
to define degree of regularity universally, but here it is in-
tuitive and we do not try to give a theoretical definition
Palmer, 1983]. It is observed that a single quadrilateral
tends to be always perceived as a rectangle'. To put it an-
other way, a quadrilateral in image, whatever its degree
of regularity is, is interpreted to be a rectangle in space,
the most regular interpretation among the possible, and
the 2-D irregularity is thought of as being caused by the
projection. It is from this observation that the rect angular-
ity regularity is generalized. This regularity, as discussed
In the last paragraph, is a. subjective regularity resulting

a rectangle a paralielogram

A trapezium a generic quadrilateral
Fig. 1 Quadrilaterals are queued by the de-
gree of regularity.

from the internal structure of the perceptual system.

The rectangularity regularity has long been recognized
a;,, being of importance. Barnard (1983) computes the pla-
nar orientation of a rectangle from its image, a quadrilat-
eral, under perpspective projection. Kanatani (1986) dis-
cusses how to compute spatial orientations of the faces of a
rectangular trihedral polyhedron. Xu and Tsuji (1987a,b)
extends this regularity to curved surfaces and proposes
the LOC (line of curvature) regularity to recover shape
of curved surfaces. In this paper we give a unified and
detailed account of interperting quadrilaterals in image as
rectangles in space under both orthographic and perspec-
tive projections.

2.2 The focal point and rectangle orientation

In the following we discuss how and to what extent the
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Fig. 2 The coordinate system

3D orientation of a quadrilateral is determined by incorpo-
rating the rectangularity regularity. The coordinate system
we assume, as shown in Fig. 2, is different from those we
usually use, in that, the coordinate origin is located on the
image plane and in that the z-axis is independent of the
focal print, which has the coordinates (:7'0, y/0, — f). Both
the "image center" (x(),y0) and the focal length /are then
to be determined in the process of interpretation. While
the camera system is an objective one if the image is a. real
one, it is a. subjective one if the image is a hand drawn
figure.

What is known is a quadrilateral in the image, and
what is to be known is the orientation of the rectangle
that projects that quadrilateral, and the location of the
focal point, but not the distance or size of the rectangle.
Let the four corners of the quadrilateral be A, B, C and
D, as shown in Fig. 3. Extending the segments AB and
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Fig. 3 Extending the laterals we have two
vanishing points P and Q.

CD, we have the intersection P (x\yl. Since AB and
CD are the images of two parallels, P is the vanishing
point of the parallels. Similarly, extending the segments
BC and DA, we have the intersection Q (x2,y2), which
Is also a vanishing point, of the other group of parallels.
P and/or Q approach infinity if the corresponding image
segments are parallel.

A straightforward demonstration of the concept of
vanishing point is that the line connecting the focal point
and a vanishing point is parallel to the parallel lines that
give rise to that vanishing point. As shown in Fig. 4, we
know that PF is parallel to A'B' and CD', and QF is
parallel to B'C and D'A\ Since A'B'C'D"' is a rectangle,
PF is perpendicular to QF. The plane determined by PF
and QF is parallel to the plane on which the rectangle lies,
and thus the orientations of the two planes are identical.

N

<PFQ = 90

image plane

Fig. 4 PF 1s parallel to A’B’ and C’D’
and QF 1s parallel to B’C’and D’A’. Thus Pl
1s Perpendicular to QF.

The segments PF and QF can be expressed in vector form
as (xI-x0,y1--y0,f) and (x2-:x0,y2-y0,/), respectively.
From the perpendicularity, the inner product of the two
vectors is zero. By this equation F can be either deter-
mined or at least constrained. Once F is determined, the
plane normal of (let it be called n) can also be determined
as the outer product of PF and QF. In the following, we
discuss three cases of PF and QF: (1) neither P nor Q
approaches infinity; (2) either P or Q approaches infinity;
and (3) both P and Q approach infinity.
(casel) If both P and Q do not appproach infinity,
then the quadrilateral is a generic one. From the perpen-
dicularity of PF and QF we have

(21 — 20)(22 — 20) + (y1 — y0)(y2 — y0) + f* = 0. (1)
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Clearly, f (f > 0) can be determined as

f=v=(x1 - 20)(z2 — z0) — (y1 — y0)(y2 — y0). (2)

This equation describes a hemisphere with a diameter PQ,
on which F is constrained to lie, as shown in Fig. 5. For/
to have a solution, the point O (x0,y0,0) must satisfy the
following inequality:

(r1 — z0) (22 — 20) + (y1 — y0)(y2 — y0) < 0.

This means that O must lie inside the circle with PQ on
the image plane. When Q reaches the midpoint of PQ,
all of PO, QO and FQ become radii of the hemisphere,
and / has the maximal value, half the length of PQ. To
determine F completely, however, we have to first know
where the attention is oriented:; i.e., where O is. If there
are three or more quadrilaterals in a real image, then P can
be determined as the intersection point of the hemispheres
corresponding to the quadrilaterals (see Section 4 for a spe-
cial case.) A prerequisite to this solution is that the hemi-
spheres do have a common point; i.e., the image is a real
one. However, as in hand-drawn figures, quadrilaterals are
usually prodticed by individual attentions. Consequently,
they should be, and can only be, perceived separately. One
reasonable choice for each quadrilateral is the intersection
of the two diagonals, which is the centroid of the corre-
sponding rectangle in space, if the centroid is within the
circle with a diameter PQ. As mentioned above, the max-
imal value for /is half the length of PQ. Trially, the closer
to a parallelogram the quadrilateral is, the greater / is.
On the other hand, humans prefer long focal lengths in
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Fig. 5 F lies on the hemisphere with a di-
ameter PQ.

the perception of figures. This answers why a parallelo-
gram is more often used to represent a rectangle, and why
a parallelogram is more easily perceived by our eyes as a
rectangle.

(Case 2) If one of P and Q approaches infinity, then
the quadrilateral is a trapezium. Without loss of generality,
suppose that P approaches infinity, while Q does not. PO
(xI ~x0, y1-y0) can be expressed by (a, b) as P approaches
infinity. Adding the z-component, PF can be expressed by
(a,b, c), where a, b and c are all constants, ¢ approaches 0
If f does not approach infinity, and ¢ may still be 0 even if

/does approach infinity. Can/approach infinity? Suppose

that it does. Then clearly BC is parallel to DA, and their
Intersection Q also approaches infinity. This leads to a

contradiction. Thus/cannot approach infinity and ¢ equals
ZEero.
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Fig. 6 F lies on the plane that 1s projected
onto the image as 1Q.

From the perpendicularity of PF and QF, we have
a(r2 — x0) + b(y2 - y0) = 0. (3)

This equation constrains OQ to be perpendicular to AB
and CD: 1.e., O must lie on the line perpendicular to AB
and CD drawn from O. Let us call the line IQ (Fig. 6).
Since f is free, F 1s constrained to lie on the plane that
projects onto the image as 1Q. When O 1s located at Q, the
orientation is completely determined by the orientations of
AB and CD as (b, —a,0).

(case 3) If both P and Q approach infinity, then the

gquadrilateral is a parallelogramn or a rectangle. In this case,
PO is parallel to AB and CD, and QO 1s parallel to BC
and DA. O is actually not constrained. Suppose that the
ortentations of PO and QO arc expressed by (a,b) and
(', "), respectively. Adding the z-components, PF and
QF are expressed by (a,b,¢) and (a', b, '), respectively.
a,b,c,a', b and ¢ are all constants. Both ¢ and ¢ approach
0 if f does not approach infinity, and ¢ and ¢’ may still be 0
even if f does appoach infinity. ;Fromn the perpendicularity

of PF and QF, we have

aa’ + b + ¢’ = 0. (4)

A special case is that ABCD is a rectangle;

aa 4+ bb = 0 (5)

then

cc! = 0. (6)

Three cases are possible:

/
c=0,c =
¢c=0,c # 0;

!

c# 0,c¢ = 0.

If one of ¢ and ¢’ is not zero, then f approaches infimty;
the projection can only be orthographic. If both ¢ and ¢’
are zero, then fis not constrained; the projection can be
either orthographic or perpspective. In this case, the rect-
angle normal can be determined as (0,0, 1); the rectangle

is parallel to the immage plane.

3. Quadrilaterals as Faces of
a Rectangular Polyhedron

Any figures can be interpreted at two diferent levels:
the peometrical level and the perceptual level [Sugihara,
1986]. While interpretations at the geometrical level must
strictly obey mathematics, interpretations at the percep-
tual level show humanlike flexibility. Interpretations at

two levels may be fairly different. We first deal with the
geometrical level.

It can be mathematically proven that a trihedral poly-
hedron with quadrilateral faces 1s a hexahedron. If all the
faces are parallelograms, the hexahedron becomes a par-
allclepiped. If the parallelograms are rectangles, then the
parallelepiped becomes a rectangular polyhedron.

- nvially, When a parallelepiped is projected onto au
image from a general position, orthographically or perspec-
tively, at most three of its six faces are visible. All the
three visible faces in the image are parallelograms if the
projection is orthographic, and are not if the projection is
perspective,

Now we consider the inverse problem - how to in-
fer the original object from its non-degenerate image. We
are given three quadrilaterals, every two of which have a
common edge — this condition 1s sufficient to define their
iterrclations.  Since there are three common edges, the
total number of edges 1s 9 (=12-3). They can be grouped
into three, each of which has three non-intersecting edges,
as c¢l-e2-¢5, e4-¢5-e0, ¢7-¢8-¢9 shown in Fig. 7. The first
condition for the figure to mean a real object 1s that the
edges of cach group meet at a cominon point, which may
approach mnfinity.

In the following we try to find the conditions for the
three quadnlaterals to be simultaneously interpreted as

Fig. 7 Three quadnlaterals have totally 9
edges, if every two quadnlaterals have a common
edg:.

rectangles.

If none of the three intersection points approaches n-
finity, we need only to examine whether or not the three
hemispheres, each of which 1s determined by two common
imtersection points as the vanmishing points as described 1n
the last section, have a common point; 1.e., whether or not
the following three equations have a solution for (0, 0, f).

(1 — 20} (22 — x0) + (y1 — yO)(y2 — y0) + 4 =0,

(12 — 20)(x3 — z0) + (y2 — y0)(y3 ~ y0) + f* = 0,

(:1?3 - I‘O)(Il — C{'O) T (y3 _ 3/0‘)(?]1 _ UO) n fi’ — 0’ (7)

where (x1,y1), (z2,y2) and (z3,y3) are the three intersec-
tion points. Taking the differences of every two equations,
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we have

(x1 — 20) (23 — x2) + (y1 = y0)(y3 — y2) = 0,
(2 —x0)(21 — 23) + (y2 — y0)(y1 — y3) = 0,
(23 — 70)(22 — 1) + (y3 -~ yO)(y2 —y1) = 0. (8)

These equations mcean that (x0,40) 15 the orthocenter of
the triangle formed by the three mtersection points
(r1,y1), (z2,y2) and (x3,y3). Thus, fortunately, the three
hemmspheres always have a common point.

If one of the three intersection points approaches in-
finity, then we have the following three equations,

a(xl — 20) 4 byl ~ y0) = 0,

a(rx2 — x0) + b(y2 — y0) = 0,
(1 — 20)(x2 — 20) + (y1 — y0)(y2 — y0) + f* = 0, (9)

where (a,b) is the orientation vector, and (x1,y1l) and
(x2,y2) are the coordinates of the other two intersection
points. The difference of the first two equations means that
the parallel edges are perpendicular to the line linking the
other two intersection points. The focal point is not com-
pletely determined, but constrained to lie on a semicircle,
whose two end points are the two intersection points, and
the plane on which the semicircle lies is perpendicular to
the image plane.

If two of the three intersection points approach infinity
and the other one does not, then one of the three quadrilat-
erals must be a rectangle. As discussed in Section 2, if two
vanishing points approach infinity, then the corresponding
iImage quadrilateral is a parallelogram or a rectangle. Ifthe
parallelogram is to be interpreted as a rectangle in space,
then the projection must be orthographic. If the projection
Is orthographic, then all rectangles in space are projected
as parallelograms in image. Thus, if two of the three in
tersection points approach infinity and their corresponding
quadrilateral is not a rectangle, then the other one must
also approach infinity. As described in Section 2, if a space
rectangle is parallel to the image plane, then it is projected
as an image rectangle under the perspective projection. If
it is a face of a rectangular polyhedron, then the other two
visible faces are projected as generic quadrilaterals, with
the corresponding vanishing points not approaching irifin
itv.

If all the three intersection points approach infinity,
then the projection is orthographic. The condition for a
rectangular polyhedron interpretation is that the following
three equtions have a common solution for cl,c2 and c3.

V1-V2 4+ ¢le2 = 0,
V2-V3 + ¢2¢3 = 0
V3-V1 + e3¢l = 0, (10)

where V1 = (al,b1), V2 = (a2,b2) and V3 = (a3, b3)

pJ

are the orientation vectors of the three groups of parallel
cdges. Basily we have

(V1:V2)(V1.V3)

) _
‘ (V2-V3)
o2 _ _(V2:-V3)(V2. V1)
- (V3-V1) ’
(V3-V1)(V3-V2) |
3% = : 1
' (V1-V2) (11)

1614 Vision and Robotics

Fig. 8 Perception says, "it is a cube.” Math-
ematics argues, "you are wrong.”

The condition for a solution of cl, ¢c2 and ¢3 is that all the
three inner products are negative all the three angles
around the central corner are greater than 90 degrees. It is
iImpossible that two of the three inner products are positive
and the other one is negative, because otherwise one of the
angles around the central corner would be greater than 180
degrees, reducing three quadrilaterals to two.

While interpreting figures at the geometrical level is
strictly governed by mathematics, it must possess certain
degree of flexibility at the perceptual level; otherwise it
would not work on hand-drawn figures in a humanlike way
[Sugihara, 198G]. Both the condition for a real object inter-
pretation and the condition for a rectangular polyhedron
iInterpretation derived at the geometrical level have te be
changed. First, in a hand-drawn figure, it is too strict
a condition that the three edges of each group, when ex

tended, meet at a common point. Also, the parallel edges
are nearly parallel. Secondly, as given in Fig. 8, even when
one of the three angles around the central corner is ex-
actly 90 degrees, the figure is still perceived as a rectan-
gular polyhedron (the interpretation is impossible math
ematically.) A feasible explanation for this fact is that
the individual quadrilaterals are first interpreted separately
(as rectangles) and then integrated as faces of a rectangu-
lar polyhedron in a less strict way than at the geometri-
cal level. This kind of perception seems quite ubiquitous.
When drawing a man or an animal, children usually put
together a frontal view of the face and a side view of the
body. But the flexibility has its limit; if one of the three
angles around the central corner is more than 90 degrees,
the figure is no longer perceived as a rectangular poly-
hedron (Fig. 9,) but an ordinary parallelepiped [Perkins,
1983; Kanade & Render, 1983].

Lastly, although the rectangular polyhedron interpre-
tation is mathematically correct if all the three intersection
points of each edge group do not approach infinity, it does
not always agree with human perception, if the orthocen-
ter of the triangle formed by the three intersection points
is far away from the figure itself.

4. The Gravity Regularity

Everything, including the perceiver itself, is attracted
by gravity. As a consequence, objects must be supported
by something. It is usually perceived to be the ground,
perpendicular to the direction of gravity, if no evidence
iIndicates otherwise. The gravity regularity is generalized
from this universal fact. Unlike the rectangularity reg-



Fig. 9 |If one of the three angles around the
central corner is less than 90 degrees, then the fig-
ure is no longer perceived as a rectangular poly-
hedron.

ularity, it is a natural regularity objectively existing in
the external world. So far it has attracted only a little
attention. Kanade et al. (1983) analyzes skewed symme-
try under gravity. Recently, Sedgwick (1987) reports a
production system that generates an interpretation of the
environment based on linear perspective information and
contact relations between surfaces and the ground. Tsuji et
al. (1986) also reports a mobile robot that perceives and
navigates in an indoor environment with a horizontal flat
floor and objects standing vertically on the floor.

To perceive the world is, in essence, to perceive the
relations among the perceiver, the ground and the objects
on the ground. By introducing the ground, the relation
between the perceiver and the rectangles reduces to the
sum of the relation between the perceiver and the ground,
and the relation between the ground and the rectangles
supported by it. All these relations can be described in
either a viewer-centered representation or a world-centered
representation based on the ground.

Let the normal of the ground plane be expressed by
ng in the viewer-centered coordinate system. ng actually
iImplies the relation between the perceiver and the ground.
It is not difficult to find by introspection that we usually
assume the following relation to the ground. Suppose that
the camera is originally so set that the optical axis of the
camera and the horizontal axis of the image plane are par-
allel to the ground, as humans look forward while keeping
two eyes horizontal. Rotate the camera around the hori-
zontal axis of the image plane by an angle of a (see Fig. 10)
as humans look some feet ahead on to the road. Then the
normal of the ground plane is projected to be upright onto
the image under orthographic projection; i.e.,

ng (0,1, — tan a), (12)
To keep ng upright everywhere, which is desirable, it is
necessary to assume the orthographic projection, if a / 0.

Because of the planarity of rectangle and the linearity
of its sides, there exist only three kinds of contact rela-
tions between the ground and a rectangle; (1) the whole
rectangle contacts the ground; (2) one of the four sides
contacts the ground; and (3) only one of the four corners
contacts the ground. When the whole rectangle contacts
the ground, the orientation of the rectangle and that of the
ground are identical. All the four sides are perpendicular to
the ground. When only one side contacts the ground, that

image
plane

ground

Fig. 10 The camera-ground 1odel

side is perpendicular to the normal of the ground. If the
rectangle does not stand vertically, it is interpreted to be
prevented from falling by something else behihnd it. When
only one of the corners contacts the ground, it is most likely
that we perceive the rectangle standing vertically.

Which contact relation is perceived is largely depen-
dant on the assumption of the perceiver's posture. The
full contact relation is perceived only if the upper and
lower corners are obtuse angles much greater than 90 de-
grees (Fig. 11a) — i.e., the rectangle is remarkably slanted
towards the sky — because we are not used to looking
downward (see [Stevens, 1981] for an analysis of the re-
lation between the image angle of two orthogonal space
vectors and the orientation of their outer product.) The
corner contact relation is perceived if one of the diagonal,
of which the midpoint is the centroid, is vertical in image,
and the upper and lower corners are acute angles (Fig. lib)

(c) (d)

Fig. 11  (a) the full contact, (b) the cor-
ner contact, and (¢) and (d) the one side contact,

.
I"‘l"\]ﬂ +1t"\.1"\ (3]

again because of the posture assumed by the perceiver.
The one side contact relation is perceived if the full contact
and the one corner contact relations are not. The side that
has the smaller angle to the horizontal axis is most likely
perceived to contact the ground plane, because we prefer
interpretations that are less slanted from the image plane
(Fig. llc,l1d).

We do not intend to claim the completeness of the
analysis, because perception of one contact relation is not
necessarily exclusive of another and the conditions are not
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completely quantified. Even so, however, if we manage
somehow to quantifyt the conditions — e.g., for the full
contact relation, the condition may be that the upper and
lower angles are greater than 150 degrees — then we can
completely determine the contact relations.

The above three contact relations can be respectively
expressed as

PF-ng =0, and QF - -ng = 0; (13)
(PF x QF) -ng = 0; (14)
PF-ng =0, or QF -ng = 0. (15)

Before concluding this section, we have one point to
note. The orthographic projection is a necessity of the
vertical-to-vertical mapping, but it at the same time does
not exclude perspective projection for other purposes. The
rectangles can still be projected as non-parallelograms. To
perceive local shape of an object, the perspective infor-
mation iIs required; whereas to perceive the more global
relation between the perceiver and the ground, the orthog-
raphy is required. It is really of interest to observe human's
this flexibilty to swing between orthographic and perspec-
tive projections.

5. Conclusions

We have proposed the rectangularity regularity to be
employed in the visual interpretation of quadrilaterals. By
this subjective regualrity resulting from the internal struc-
ture of human perception, quadrilaterals in image axe in-
terpreted as rectangles in space, with the rectangle orien-
tation and the focal point being completely determined or
partially constrained. Projection is perceived altogether.
As the second part, we have examined interpreting quadri-
laterals as faces of a rectanuglar polyhedron at both the
geometrical level and the perceptual level. Interpretations
at the two levels may be fairly different. Finally we have
analyzed the relations among the perceiver (camera,) the
ground and the rectangles supported by the ground, and
proposed the gravity regularity to derive constraints on the
rectangle orientation. Through studying these seemingly
simple quadrilaterals we have obtained some insights into
the nature of the general problem of interpreting image
contours: the rectangularity regularity is just a specific
example of the perceptual system's preference of regular
forms over irregular forms; while interpreting figures at
the geometrical level strictly obey mathematics, interpret-
ing figures at the perceptual level is much more flexible;
and the gravity regularity can be widely applied in differ-
ent forms.
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