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Abstract 

Most research on machine learning has focused on sce­
narios in which a learner faces a single isolated learning 
task The l i fe long learning framework assume, that the 
learner encounters a mult i tude of related learning tasks 
over Us l i fet ime providing the opportunity for the trans 
fer of knowledge among these This paper studies l i felong 
learning in the context of binary classification It presents 
the invanance approach in which knowledge is trans 
ferred via a learned model of the invariances of the do­
main Results on learning to recognize objects from color 
images demonstrate superior generalization capabilities 
if invanances are learned and used lo bias subsequent 
learning 



Support sets can be useful in a variety of real-world sce-
narios For example in [Lando and Edelman 1995] an ap­
proach is proposed that improves the recognition rale of hu 
man faces based on knowledge learned by analyzing different 
views of other related faces In speaker-dependent approaches 
to speech recognit ion, learning to recognize personal speech is 
often done by speaker adaptation methods Speaker adaptation 
simplifies the learning lask by using knowledge learned from 
other similar speakers (eg see [H i ld and Waibel 1993]) 
Other approaches that use related functions to change the bias 
of an inductive learner can be found in [Utgof f 1986] [Ren-
dell et al 1987] [Suddarth and Kergosicn 1990] [Moore et 
al 1992] [Sutton 19921, [Caruana 1993], [Pratt 1993] and 
[Baxter 1995] 

Table 1 summarizes the problem definit ions of the standard 
and the l i fe long supervised learning problem In l i felong su­
pervised learning the learner is given a collection Y of support 
sets in addit ion to the training set A and the hypothesis space 
// This raises two fundamental questions 

1 How can a learner use support sets to generalize more accu­
rately ? 

2 Under what conditions w i l l a learner benefit from support 
sets'? 

This paper docs not provide general answers lo these ques­
tions Instead it proposes one particular approach, namely 
learning invanance functions which relies on certain assump 
tions regarding the function set F It also presents empirical 
evidence that this approach to using support sets can signifi 
canlly improve generalization accuracy when learning to rec­
ognize objects based on visual data 
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Notice that in this approach is similar to d distance metric 
that is obtained from the support sets [Moore el al 1992 
Baxter 1995] The invanance ne tworks generalizes the notion 
of a distance metric because the triangle inequality need not 
hold and because an instance can provide evidence that 
is member of the opposite class 

In general might not be accurate enough to describe 
correctly This may be because of modeling l imitations, noise 
or lack of training data We w i l l therefore describe an alter­
native approach to the l i fe long learning problem that employs 
the invanance network which has been found empirically to 
generalize more accurately 

2 3 E x t r a c t i n g Slopes to G u i d e G e n e r a l i z a t i o n 

The remainder of this section describes a hybrid neural network 
learning algori thm for learning This algorithm is a special 
case of both the Tangent-Prop algorithm [Simard et al 1992) 
and the explanation based neural network learning (EBNN) 
algori thm [Mi tche l l and T h r i n 1993] Here we w i l l refer to it 
as E B N N 

Suppose we are given a training set and an invanance 
network a that has been trained using 2 collection of support 
sets Y We are now interested in l e a r n i n g O n e could, of 
course ignore the invanance network and the support sets alto­
gether and train a neural network purely based on the training 
data The training set X imposes a collection of constraints 
on the output values for the hypothesis h If h is represented by 
an artif icial neural network as is the case in the experiments 
reported below the Backpropagation (BP) algorithm can be 
used to fit 

E B N N does this, but it also derives additional constraints 
using the invanance network More precisely in addition to 
the value constraints in , E B N N denves constraints on the 
slopes (tangents) for the hypothesis h To see how this is 

Table 2 Appl icat ion of E B N N to learning w i th invanance 
networks 
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Figure 2 Objects (left) and corresponding network inputs 
(r ight) A hundred images of a bottle a hat a hammer a 
coke can and a book were used to train and test the invanance 
network Afterwards, the classification network was trained to 
distinguish the shoe from the glasses 

be large given that slight color changes imply that the object 
would belong to a different class 

When training the classification network slopes provide ad­
dit ional informat ion about the sensitivity of the target func 
t ion w i th respect lo its input features Hence, the invanance 
network can be said to bias the learning of the classification 
network However since E B N N trains on both slopes and 
values simultaneously errors in this bias (incorrect slopes due 
lo approximations in the learned invariance network) can be 
overturned by the observed training example values in \ The 
robustness of E B N N lo errors in estimated slopes has been 
verified empir ical ly in robot navigation [Mi tchel l and Thrun 
1993] and robot perception [O Sull ivan et al, 1995] domains 

3 E x a m p l e 

3 1 The Domain Object Recognit ion 
To illustrate the transfer of knowledge v ia the invariance net 
work, we collected a database of 700 color camera images of 
seven different objects (100 images per object) as depicted in 
Fig 2 (lefL columns) 

Object 
bottle 
hat 
hammer 
can 
book 
shoe 
glasses 

color 
green 
blue and while 
brown and black 
red 
yellow 
brown 
black 

size 
medium 
large 
medium 
medium 
depending on perspecuve 
medium 
small 

The objects were chosen so as to provide color and size cues 
helpful to their discrimination The background of all images 
consisted of plain whi le cardboard Different images of the 
same object vaned by the relative location and orientation of 
the object w i th in the image In 50% of all snapshots the 
location of the l ight source was also changed producing bright 
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Figure 3 Images along wi th the corresponding network in­
puts of the objects shoe and glasses These examples illustrate 
some of the invanances in the object recognit ion domain 

reflections at random locations in various cases In some of the 
images the objects were back 111 in wh ich case they appeared 
to be black Fig 3 shows examples of two of the objects the 
shoe and the glasses 

Images were encoded by a 300-dimensional vector, provid 
ing color brightness and saturation information for a down 
scaled image of size 10 by 10 Examples for the down-scaled 
images arc shown in Figures 2 ( r ightco lumns)and3 Al though 
each object appears to be easy to recognize f rom the original 
image in many cases we found it di f f icult to visually classify 
objects f rom the subsampled images However subsampling 
was necessary to keep the networks to a reasonable size 

The set of target functions F was the set of functions 
that recognize objects one for each object For example the 
indicator function for the bottle, was 1 if the image 
showed a bottle and 0 otherwise Since we only presented 
distinct objects all sets of positive instances were disjoint 
Consequently, F obeyed the invanance property The set of 
hypotheses H was the set of all artif icial neural networks wi th 
300 input units 6 hidden units and J output unit , as such a 
network was employed to represent the target funct ion 

The objective was to learn to recognize shoes i e , 
Five other objects namely the bott le, the hat the ham­

mer die can and the book were used to construct the support 
sets To avoid any overlap in the training set A and the sup 
port sets in> we exclusively used pictures of a scvcndi object 
glasses as counterexamples for fshoe Each of the five support 
sets in " ' contained 
100 images of the corresponding object (positive examples) 
and 100 randomly selected images of other objects (negative 
examples) When constructing training examples for the in 
variance network we randomly selected a subset of 1 000 pairs 
of images 800 of which were used for training and 200 for 
cross-validation 50% of the final training and cross-validation 
examples were positive examples for the invanance network 
(i e , both images showed the same object) and the other 50% 
were negative examples The invanance network was trained 
using the Back-Propagation algor i thm2 Af ter training the in-

2The classification accuracy of the invanance network was sig 
nificantiy improved using a technique described in ISuddarth and 
Kergosien 1990] See [Thrun and Mitchell 1994] for details 



Figure 4 Generalization accuracy wi th (solid black curve) and without (gray curve) the invanance network and E B N N 
measured on an independent lest set and averaged over 100 runs (a) neural network training curves one training example per 
class and (b) generalization curves wi th 959c confidence intervals, as a function of the number of training examples 

variance network managed to determine whether or not two 
objects belong to the same class wi th 79 5% generalization 
accuracy It also exhibited 67 0% accuracy when tested wi th 
images- of shoes and glasses 

3 2 L e a r n i n g to Recogn i ze Shoes 

Having trained the invanance network we were now inter 
ested in training the classification network fshoe The network 
employed in our experiments consisted ol 300 input units 6 
hidden units and 1 output un i t—no effort was made to opti 
mi ze the network topology A total of 200 examples of images 
showing the shoe and the glasses were available for training 
and lesting the shoe classification network In our first exper 
iment, we trained the classification network using only two of 
these a randomly selected image of the shoe (positive exam­
ple) and a randomly selected image of the glasses (negative 
example) Slopes were computed using the previously learned 
invanance network 

Our experiments mainly addressed the fo l lowing two ques 
tions which are central to the l i felong learning framework and 
the invanance approach 

1 How important arc the support sets i e to what extent does 
the invanance network improve the generalization accuracy 
when compared to standard supervised learning? 

2 How effectively can E B N N overcome errors in the invan 
ance network? How does E B N N compare to using the in 
variance nelwork as a learned generalized distance metric 
(cf Eq (4))? 
Fig 4a shows the average generalization curve as a function 

of training epochs with and without the invanance network 
The curve shows the generalization accuracy of the classifica 
t ion network each trained using one positive and one negative 
example Without the invanance network and E B N N the av 
erage generalization accuracy for Backpropagation is 59 1% 
However, E B N N increases the accuracy to 74 8% The in ­
vanance network alone, when used as generalized distance 
metric, classifies 75 2% of unseen images correctly Notice 
the accuracy of random guessing would be 50 0% 

'Since in our expenment the negative class i e the glasses forms 
itself a disjoint class of images those images are also used in de 
nve slopes (the slopes of u were simply multiplied by —1) This 
effectively doubles the number of slopes considered in Eq (5) The 
corresponding probabilities 1 - o{\ :™() can also be incorporated 
into Eq (4) See [Thrun and Mitchell 1994] lor details 

The difference between (the performance wi th and without 
support sets which is statistically significant at the 95% level 
can be assessed in several ways In terms of residual error 
Backpropagation exhibits a misclassification rate that is 60 I % 
larger than that of E B N N A second interpretation is to look 
at the performance .increase which is defined as the difference 
in classification accuracy after learning and before learning 
assuming that the accuracy before learning is 50% E B N N s 
performance increase is 24 8% which is 2 6 tiems better Uian 
Backpropagation s 9 1% On the other hand the difference 
between E B N N and the invanance network is not statistically 
significant (at the 95% confidence level) 

Each of these numbers has been obtained by averaging 100 
expenments Examining a single experiment provides addi 
tional insight For example when the neural network is trained 
using the single image of the shoe and the single image ol 
the glasses depicted in Fig 2 plain Backpropagation classifies 
only 52 5% of the test images correctly Here the generalization 
rate is particularly poor since the location ot the objects wi th in 
the image differs and Backpropagation mistakenly considers 
location the crucial feature for object recognit ion E B N N pro 
duces a nelwork that is much less sensitive to object location 
resulting in a 85 6% generalization accuracy in this particular 
experiment 

Notice that the results summarized above refer to the classi­
fication accuracy after 10 000 training epochs using just one 
positive and one negative training example As can be seen in 
Fig 4a, Backpropagation suffers f rom some over fitting as the 
accuracy drops after a peak at about 2 050 training epochs The 
average classification accuracy ai this point in time is 61 3% 
However due to lack of data it is impossible in this domain to 
use early slopping methods that rely on cross validation and it 
is not clear that such methods would have improved the results 
for Backpropagation significantly 

These results illustrate that support sets can significantly 
boost generalization accuracy when training data for the target 
function is scarce They also il lustrate that E B N N manages 
to make very effective use of the invanance knowledge cap­
tured in a- Results lor expenments wi th larger training set 
sjzes are depicted in Fig 4b As the number of training exam 
pies increases Backpropagation approaches the performance 
of EBNN After presenting 10 randomly drawn training ex­
amples of each class E B N N classifies 90 8% and Backprop­
agation classifies 88 4% of the testing data correctly This 
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matches our expectations as the need for background knowl­
edge decreases as the number of training examples increases 
"The invanance network alone using Eq (4) (dashed curve) 
performs slightly worse than both of these methods Its gener­
alization accuracy is 87 3% which is significantly worse than 
that of EBNN (at the 95% confidence level) 

3 .3 The Role of the Invanance Network 
The improved classification rales of EBNN which illustrate the 
successful transfer of knowledge from the support sets via the 
invanance network raise the question of what exactly are the 
invanances represented in this network What type information 
do the slopes convey? 

A plausible (but only approximate) measure of the impor 
lance of a feature is the magnitude of its slopes The larger 
the slopes the larger the effect of small changes in the feature 
on the classification hence the more relevant the feature In 
order lo empirically assess the importance of features average 
slope magnitudes were computed for all input pixels, averaged 
over all 100 pairs of training instances The largest average 
slope magnitude was found for color information O i l In 
comparison saturation slopes were on average only 0 063 
(this is 57% of the average for color slopes) and brightness 
slopes only 0 056 (51%) 

These numbers indicate that according to the invanance net­
work color information was most important for classification 
To verify this hypothesis we repeated our experiments omit­
ting some of the image information More specifically in one 
experiment color information was omitted from the images in 
a second saturation, and in a third brightness The results 

confirmed our belief that color information indeed dominates 
classification It is dear that without color the generalization 
accuracy over the test set is poor although EBNN still general­
izes belter If saturation or brightness is omitted however the 
generalization rate is approximately equivalent to the results 
obtained for the full images reported above However learning 
required significantly more training epochs in the absence of 
brightness information (not shown here) 

Fig 5 shows average slope matrices for the target category 
(shoes) with respect to the three input feature classes measur­
ing color brightness and saturation Grey colors indicate that 
the average slope for an input pixel is zero Bright and dark 
colors indicate strongly positive and strongly negative slopes 
respectively Notice that these slopes are averaged over all 100 
explanations used for training 

As is easily seen average color slopes vary over the ln 
age showing a slight positive tendency on average Average 
saturation slopes are approximately zero Brightness slopes 
however exhibit a strong negative tendency which is strongest 
in the center of the image One possible explanation for the lat­
ter observation is the following Both the shoe and the glasses 
are dark compared lo the background Shoes are on average 
larger than glasses and hence fil l more pixels In addition 
in the majority of images the object was somewhere near the 
center of the image whereas the border pixels showed signif­
icantly more noise Lack of brightness in the image center 

Figure 5 Slopes of the target concept (glasses) with respect 
to (a) color, (b) saturation, and (c) brightness White (black) 
color represents positive (negative) values 

is therefore a good indicator for the presence of the shoe as 
is clearly reflected in the brightness slopes derived from the 
invanance network The less obvious results for color and sal 
uration might be attributed lo the fact that optimal classifiers 
are non linear in color and saturation To discriminate objects 
by color for example the network has, to spot a specific in­
terval in color space Hence the correct slopes can be either 
positive or negative depending in the particular color of a pixel 
cancelling each other out in this plot 

As pointed out earlier slopes provide first-order information 
and invanances may well be hidden in higher order deriva­
tives However both the superior performance of EBNN and 
the clear correlation of slope magnitudes and generalization 
accuracy show that EBNN manages to extract useful invan-
ance information in this domain even if these invariances defy 
simple interpretation 

3 4 Using Support Sets as H in ts 

A related family of methods for the transfer of knowledge 
across learning tasks are proposed in [Suddarth and Kergosien 
1990] [Pratt, 1993] [Caruana, 1993] In a nutshell these ap­
proaches develop improved internal representations by consid 
enng multiple functions in F (sequentially or simultaneously) 
Following these ideas we trained a single classification net 
work providing the support data as hints for the development 
of more appropnate internal representations This approach re 
suited in 62 1% (20 hidden units) or 59 8% (5 hidden units) 
generalization accuracy when only a single pair of training in 
stances was used These numbers can directly be compared 
to the experiments reported above However, we observed 
significant overfitting when using this architecture The peak 
generalization rate of 70 6% (20 hidden units) or 69 8% (5 
hidden units) respectively occurred after approximately 450 
training epochs This generalization accuracy is significantly 
higher than that of standard Backpropagation though not as 
high as that of the invanance approach with EBNN 

4 D iscuss ion 

In the lifelong learning framework the learner faces a collec 
tion of related learning tasks The challenge of this framework 
is lo transfer knowledge across tasks in order to generalize 
better from fewer training examples of the target function it­
self 

This paper investigates a particular type of lifelong learning 
in which binary classifiers are learned in a supervised manner 
In the approach taken here invanances are learned and trans 
ferred using the EBNN learning algorithm The experimental 
results provide clear evidence of supenor generalization in the 
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object recognition domain when invanances learned from re 
lated tasks are used to guide generalization when learning to 
recognize a new object However the the invariance approach 
relies on several critical assumptions 

1 Well-defined invanance functions rest on the assumption that 
F obeys the invariance property Note even if the invanance 
property is not satisfied by F the support sets can be used 
to train an invanance network. Even the object recogni 
tion domain presented above provides an example in which 
the invariance property may hold only approximately This 
is because different objects may look alike in sufficiently 
coarse-grained, noisy images 

2 It is also assumed that functions in F possess certain m-
variances which can actually be fearned by the invanance 
network This does not follow from the invanance property 
The exact invanances that wil l be learned depend crucially 
on the input representation and function approximator used 
foro" 

3 We also assumed that the output space O of functions in / 
is binary However this assumption is not essential for the 
invanance approach In principle invariante functions may 
be defined for arbitrary high dimensional output spaces 
given that a notion of difference between output vectors is 
available as demonstrated in [Thrun and Mitchell [1994] 

in the experiments reported above all three assumptions were 
at least approximately fulfilled Wc conjecture that the real 
world offers a variety of tasks where learned invanances can 
boost generalization Problems such as face recognition cur 
sive handwriting recognition stock market prediction and 
speech recognition possess non Invial bul imponanl invari 
ances For example consider the problem of learning lo rec 
ognize faces o( various individuals Here certain .aspects are 
important for successful recognition (e g the distance between 
the eyes) whereas others are less important (c g the direction 
in which the person is looking) Alter training on a num 
ber of individuals wc conjecture that an invanance network 
might grasp some of these invanances reducing the difficulty 
of learning faces of new individuals 

The central question raised in this paper is whether learn 
ing can be made easier when the learner has already learned 
other related tasks Wil l a system that is trained to learn 
generalize better than a novice learner? This paper provides 
encouraging results in an object recognition domain However 
most questions that arise in the context of lifelong learning still 
lack satisfactory more general answers Wc expect that future 
research in this direction wil l be important lo going beyond 
the intrinsic bounds associated with learning single isolated 
functions 
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