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Abstract

Most research on machine learning has focused on sce-
narios in which a learner faces a single isolated learning
task The lifelong learning framework assume, that the
learner encounters a multitude of related learning tasks
over Us lifetime providing the opportunity for the trans
fer ofknowledge among these This paper studies lifelong
learning in the context of binary classification It presents
the invanance approach in which knowledge is trans
ferred via a learned model of the invariances of the do-
main Results on learning to recognize objects from color
images demonstrate superior generalization capabilities
if invanances are learned and used lo bias subsequent
learning

1 Introduction

Supervised learning 14 concemed with learning an unknown
target funcuion from a finile collection of 1nput outpul exam
ples of that function Formaily the framework ot supervised
learning can be charactenzed as follows Let Fodenote the set
ol all target funcuons For example 1n a robot arm domain
F might be the set of all kinematic functions for robots with
three joints Every function f € I" maps values from an inpul
space denoted by ! into values i an outpul space, denoled
by @ The learner has a sel of hypotheses thal it can consider
denoted by H which mught or might not be different trom £
For example the set & could be the set of all aruficial neural
networks with 20 hidden units or alternatively the set of all
decision trees with depth less than 10 Throughout this paper,
we make the simplhifying assumption that all functionsin I” are
binary classifiers 1 ¢ O = {0, 1} We will refer to instances
(hat fall into class 1 as positive mnstances and Lo Lhose thal fall
inte class {F as negative instances

To learn an unknown target funcuon f° € [ the lcarner
1s given a finne collechon of input-oupul examples (training

sramples) % = {{ 1)), (1)

which are pussibly distorted by noise The goal of the learner is
lo generate a hypothesis i € H such that the deviathion (error)

E = ZPmb(:) |15 (2) = A2))| (2)
vjint

between the Larget funcuion f~ and A on future examples will be
as small as possible Here Prod 15 the probability distnbuuon
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according to which the traiming cxamples are peneraled Prob
15 generally unknown 1o the learner as s f°

Standard supervised learming focuses on lcaming a single
target funcbion f° and traimng data 1v assumed (o be avall
able only for this one tunction However 1f Funciions in F
are appropnately related 1t can be helpful 10 have access to
traning examples of other tunchions £ F as well For ex
ample consider a robol whose task 1« 1o find and fetch vanous
objects using 1. camera for object recogniion Let I be the
sel of recogmition (1 ¢ classihcation) functions for all objects
one for each potential tarpet object and let the Larget function
f° € F correspond Lo an object the robol must leamn Lo recog
nize % the traming set will consist of posiiive and negative
examples of this object The lask of the learner 15 1o find an
A which minimizes £ In particuler the robol should learn
Lo recogmize the target object invariant of rolation translation
waling insize change of lightingand vo on  Intuiavely speak
ing the more profound the learner s inttial understanding of
these nvanances the fewer traming examples 1t will require
for reliable learning Because these mmvarniances are common 10
all funcuens in £ images showing other ohjects can provide
addiional information and hence support learning f

This example illustrates the 1dea ol lifelong leaming  In
lifelong learning a collecuon of relaled learning problems 1y
cncountercd over the ifetime of the learner When learning
the n th task the learner may employ knowledge gathered 1n
the previous » — | tasks to improve its perlormance [Thrun
and Mitchell to appear]

This paper considers a parucular form of hfelong learming
in which the learning tasks correspond (o learming hoolean
classifications (concepts) and in which previous expenence
consists of tramming examples of olher classihcation funciions
Irom the same family ! More formally 1n addition o the et
of traming cxamples A for the target function [ the learner
15 also provided » — | sels of examples

e = {4 fil)} (k€ {k k2 kn_1}
with &, € {1,2, 7|}
Yie{l2 n—1}) &)

of other funcuons {f¢ , fe fe._,} € F ldken from the
same function family & Since this additional data can suppon
learning f* we shall call each X a suppori set for ¥ The set
of avalable support sets for \ {\g|k = k| 42 Anot}
will be denoted by 3  Motice that the mput outputexamples n
the support sets ¥ may have been drawn from n — 1 different
prababibty distribulions
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Given
¢ aspace of hypotheses H T — O

o a sel of traning examples X = {{z, f*(+)}} of some un
known target function f* € F drawn with probability dis
tnbution Prob

¢ 1n lifelong supervised learntng a collection of support sels
Y = { %}, which characlenze other functions f; € F

Here Y, = {{1 fi(1)}}

Delermine
a hypothesis & € H that minimizes

Z Prod () 11/7 () = h(D)|

[1=¥)

Table ! Standard and lifelong supervised leaming

Support sets can be useful in a variety of real-world sce-
narios For example in [Lando and Edelman 1995] an ap-
proach is proposed that improves the recognition rale of hu
man faces based on knowledge learned by analyzing different
views of other related faces In speaker-dependent approaches
to speech recognition, learning to recognize personal speech is
often done by speaker adaptation methods Speaker adaptation
simplifies the learning lask by using knowledge learned from
other similar speakers (eg see [Hild and Waibel 1993])
Other approaches that use related functions to change the bias
of an inductive learner can be found in [Utgoff 1986] [Ren-
dell et al 1987] [Suddarth and Kergosicn 1990] [Moore et
al 1992] [Sutton 19921, [Caruana 1993], [Pratt 1993] and
[Baxter 1995]

Table 1 summarizes the problem definitions of the standard
and the lifelong supervised learning problem In lifelong su-
pervised learning the learneris given a collection Y of support
sets in addition to the training set A and the hypothesis space
/I This raises two fundamental questions

1 How can a learner use support sets to generalize more accu-
rately’

2 Under what conditions will a learner benefit from support
sets'?

This paper docs not provide general answers lo these ques-
tions Instead it proposes one particular approach, namely
learning invanance functions which relies on certain assump
tions regarding the function set F It also presents empirical
evidence that this approach to using support sets can signifi
canlly improve generalization accuracy when learning to rec-
ognize objects based on visual data

2 The Invanance Approach

The invanance approach firsl learns an invanance function &
from the support sets in ¥ This funcuion s then used 1o bias
the learner as it selects a hypothesis Lo fil the training examples
A of the target function f*

21 Invanance Functions

Let ¥ = {\:} be a collection of supporl sets for tearming
/= Recall our assumption that all functions in F* have binary
oulput values Hence each example in a support set 1s eather
positive (1 & output 1) or negative (1¢, output ) Consider a
target function f, € Fwithk € {1, ||F|}, and a pair of
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examples say 1 € ] and 7 € I A local irvaniance operator
e Ix I — {0,1} 152 mapping from a pair of mput vectors
defined as follows

] if fil2) = fe(a) = 1
{ 0 if fil3) # fe(3)
noldefined 1f fi(1) = fe(z) =0

The local invanance operalor indicates whether both nstances
are members of class | {positive examples) relative 1o fi 1
1:(1,7) = 1 then fy 15 invanant with respect to the difference
belween ¢ and ; Nouce that posihive and negative instances of
Ji are not trealed symmetrically in the definition of 7

The local invanance operators 7, (£ = 1, |F[} define a
(global) irvarrance funcrton for F, denotedby o ¥ I —
{0 1} Fortwoexamples : and ; (1, 7} 1s 1 1f there exists a
k for which re{s,7) = 1 Likewise o(1,2) 15 O of there exists
a k for which 7 (2,3) =0

() =

1, if3k € {l Al Y withn(z ) =1
o(r 3) = { 0, 1Mk e {l JF|}withr(e 3) =0
not defined otherwise

The 1nvanance function o behaves like an invarnance operalor
but 1t docs not depend on & 1t 1s 1mportant to notice that the
invanance function can be ill-defined This 1s the case if there
exist two examples which both belong to cless | under ane
target function but which belong (o different classes under a
second targel function

J el k k' e{l JI) @)=t Amefa 3)=0

In such cases the 1nvanance mappmg 1s ambiguous and s not
even amathematical function A class of functuons £ 1s said (o
obey the invanance property if its invanance function 1s non
ambtguous' The invanance property ts a central assumpuion
for the invanance approach to lifelong classification learmung
The concept of invanance functions 1s quite powerful Sup
pose F holds the mvanance properlty If ¢ 1s known, every
traning insiance ¢ for an arbitrary function f € F can be cor
rectly classified given there 15 at least one positive instance of
fr avalable To see assume zpo; € [ 15 known to be a positive
nstance for fp Then for any inslance t € I (1 2pas) will be
11«f and only if fe(3) = | Although the invanance property
Imposes a restriction on the funcuon famuly 7 1t holds truc
for quite a few real-world problems such as those typically
siudied 1n character recogmtion speech understanding and
varous olher domains For example a function family obeys
the :nvariance property If all postive classes {of all functions
fi) are disoint  One such function tamly is the family of
object recognition funcuions defined over distinct objects

22 Learning the Invariants

In the lifelong learning regime studied 1n this paper o 1s nol
given However an approximanon to ¢ denoted by & can
be leamed Since o doey not depend upon the specific target
function f° every support set X, € Y can he used o train
&, & long as there 15 a1 least one posiive mstance available
mA; Forallk € {1, ,|Y¥|}, raining examples for & arc
construcied from examples ¢, ; € ¥,

((!ijlv Tk ('v.’f)}

'It1s generally acceptable for the invanance function to be ambigu
ous as long as the probability for genemtng ambiguously classified
pairs of examples 1s zero
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Figure 1 Fitting values and slopes Let 7 be the target
function for whuch three examples {z|, /" (z|)} (z2, [~(z3)),
and (Z+, f*(z4}) are known Based on these points the learner

might generate the hypothesis 2y If the slopes are also known,
the learner can do much betier A,

Here 7. must be defined 1 €, atleast one of the example< s and 7
must be positive under f; In the expenments descnbed below,
¢ 1 approximated by traaming an artthcial neural network using
the Backpropagat:on algorithm
The wavaniance network once learned can be used i Lon

junction with a rauning sel 1 to infer values fer § Let
Ypos C ¥ be the set of positive training examples :n 1 Then
for any 1p, 10 Wpos (1, 3p0s) estimates f~(2) forr € 1 Ifthis
estimate 15 interpreted as a probability (of the event that ¢ 1y
positive under f*) Bayes rule can be applied

I

€A pe

-y
A 1pas)

1= 1=8(1 tpoa)

Prob(f*(1)=1} = L+ 4

Notice that in this approach & is similar to d distance metric
that is obtained from the support sets [Moore el al 1992
Baxter 1995] The invanance networks generalizes the notion
of a distance metric because the triangle inequality need not
hold and because an instance can provide evidence that
is member of the opposite class ([ &1 tpgs) < O 5)

In general & might not be accurate enougﬁ to describe I
correctly This may be because of modeling limitations, noise
or lack of training data We will therefore describe an alter-
native approach to the lifelong learning problem that employs
the invanance network which has been found empirically to
generalize more accurately

23

The remainder of this section describes a hybrid neural network
learning algorithm for learning f* This algorithm is a special
case of both the Tangent-Prop algorithm [Simard et al 1992)
and the explanation based neural network learning (EBNN)
algorithm [Mitchell and Thrin 1993] Here we will refer to it
as EBNN

Suppose we are given a training set A and an invanance
network a that has been trained using 2 collection of support
sets Y We are now interested inlearnif“ One could, of
course ignore the invanance network and the support sets alto-
gether and train a neural network purely based on the training
data X The training set X imposes a collection of constraints
on the output values for the hypothesis h If h is represented by
an artificial neural network as is the case in the experiments
reported below the Backpropagation (BP) algorithm can be
usedtofit X

EBNN does this, but it also derives additional constraints
using the invanance network More precisely in addition to
the value constraints in X, EBNN denves constraints on the
slopes (tangents) for the hypothesis h  To see how this is

Extracting Slopes to Guide Generalization

1 Let Apoy C X bethe set of posttive training examples m \
2 LetY' =§
3 For each trarning example {2, f* (1)} € \po do

1 06(”(%0-)
[\ posl 2

the nvariance network &

(a) Compute V,&(x) = using

(b) Let ' = \' 4 {2 [*(1),T.8(1)
4 Fn v’
Table 2 Application of EBNN to learning with invanance

networks

done censider a traimng example @ laken from the training
set X Let 1,4 be an arbitrary posuive example in X Then
& (4, tpea) delermmines whether z and 2, belong 10 the same
classv—snformation that 1s readily avallable since we are given
the classes of ¢ and 1,,, However predicling the class using
the mvariance network afso atlows us to detertune the output
input slopes of the 1nvaniance network These slopes measure
the sensiuvily of class membership with respect o Lhe inpul
features in ¢+ This 18 done by computing the partial denvatuive
ol & with respect 10 1 a1 {1 1o} (Making use of the tact that
artificial neural networks are differenuable)

B (1 tpon)
o

V. d{i¢) measures how mfiniiesimal changes tn ¢ will aflect the
tlassification of 2 Since &( 2pas) 15 an approximation to f
V(1) approximaies the slope V', f*(2) Consequently n
siead of fitting raining examples of the type (1 (1)} EBNN
fits rasming examples of the type

{£. J7(2), V. ()

Gradient dewcent can be used 1o fit training examples of this
type as explarned in [Simard ef al  1992] Fig 1 1llustrates the
ettty of this additronal siope nformanion m fupction Atting

Notwe 1f muliiple positive instances are available 1n 3
slopes can be derived from cach one o this case averaged
slopes are used (0 constrain the targel funciion

1 DF(t 1y )
| % posl Z ch

e €A

Ve =

v.a{1) = {5}

Here Yo, C Y denotes the set of posiive examples in A The
apphcation of the EBNN algorithm (o leaming with invanance
networks 15 summarized in Table 2

Generally speaking slope information extracled from the
mvariance network 15 a linear approximation 1o the variances
and invanances of F* al a specific pointin /  Along the mvan
ant directions slopes wall be approximately zero while along
others they will be large For example 1n the aforementioned
find-and fetch 1asks suppose color 15 an important feature for
classification while brightness 15 not Ths s typically the case
in situanions with changing illurmination In this case the n
vanance network coufd fearn to rgnore brightness and hence
the slapes of 1ts classification wilh respect to bnghtness would
be approximately zero  The slopes for color however would
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Figure 2
(right)
coke can and a book were used to train and test the invanance
network Afterwards, the classification network was trained to
distinguish the shoe from the glasses

Objects (left) and corresponding network inputs
A hundred images of a bottle a hat a hammer a

be large given that slight color changes imply that the object
would belong to a different class

When training the classification network slopes provide ad-
ditional information about the sensitivity of the target func
tion with respect lo its input features Hence, the invanance
network can be said to bias the learning of the classification
network However since EBNN trains on both slopes and
values simultaneously errors in this bias (incorrect slopes due
lo approximations in the learned invariance network) can be
overturned by the observed training example values in \  The
robustness of EBNN lo errors in estimated slopes has been
verified empirically in robot navigation [Mitchell and Thrun
1993] and robot perception [O Sullivan et al, 1995] domains

3 Example
31

To illustrate the transfer of knowledge via the invariance net
work, we collected a database of 700 color camera images of
seven different objects (100 images per object) as depicted in
Fig 2 (lefL columns)

The Domain Object Recognition

Object color size

bottle green medium

hat blue and while large

hammer | brown and black  medium

can red medium

book yellow depending on perspecuve
shoe brown medium

glasses black small

The objects were chosen so as to provide color and size cues
helpful to their discrimination The background of all images
consisted of plain while cardboard Different images of the
same object vaned by the relative location and orientation of
the object within the image In 50% of all snapshots the
location of the light source was also changed producing bright
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Figure 3
puts of the objects shoe and glasses These examples illustrate
some of the invanances in the object recognition domain

Images along with the corresponding network in-

reflections at random locations in various cases In some of the
images the objects were back 111 in which case they appeared
to be black Fig 3 shows examples of two of the objects the
shoe and the glasses

Images were encoded by a 300-dimensional vector, provid
ing color brightness and saturation information for a down
scaled image of size 10 by 10 Examples for the down-scaled
images arc shown in Figures 2 (rightcolumns)and3 Although
each object appears to be easy to recognize from the original
image in many cases we found it difficult to visually classify
objects from the subsampled images However subsampling
was necessary to keep the networks to a reasonable size

The set of target functions F was the set of functions
that recognize objects one for each object For example the
indicator function for the bottle, fpoule was 1 if the image
showed a bottle and 0 otherwise Since we only presented
distinct objects all sets of positive instances were disjoint
Consequently, F obeyed the invanance property The set of
hypotheses H was the set of all artificial neural networks with
300 input units 6 hidden units and J output unit, as such a
network was employed to represent the target function

The objective was to learn to recognize shoes ie, f* =
Sfinoe Five other objects namely the bottle, the hat the ham-
mer die can and the book were used to construct the support
sets To avoid any overlap in the training set A and the sup
port sets in> we exclusively used pictures of a scvendi object
glasses as counterexamples for fsnoe Each of the five support
sets inY, Lponle Ahay Apumnma Acan @ Xpogk contained
100 images of the corresponding object (positive examples)
and 100 randomly selected images of other objects (negative
examples) When constructing training examples for the in
variance network we randomly selected a subset of 1 000 pairs
of images 800 of which were used for training and 200 for
cross-validation 50% of the final training and cross-validation
examples were positive examples for the invanance network
(i e, both images showed the same object) and the other 50%
were negative examples The invanance network was trained
using the Back-Propagation algorithm2 After training the in-

’The classification accuracy of the invanance network was sig
nificantiy improved using a technique described in ISuddarth and
Kergosien 1990] See [Thrun and Mitchell 1994] for details
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Generalization accuracy with (solid black curve) and without (gray curve) the invanance network and EBNN

measured on an independent lest set and averaged over 100 runs (a) neural network training curves one training example per
class and (b) generalization curves with 959c confidence intervals, as a function of the number of training examples

variance network managed to determine whether or not two
objects belong to the same class with 79 5% generalization
accuracy It also exhibited 67 0% accuracy when tested with
images- of shoes and glasses

32

Having trained the invanance network we were now inter
ested in training the classification network fsnoe The network
employed in our experiments consisted ol 300 input units 6
hidden units and 1 output unit—no effort was made to opti
mi ze the network topology A total of 200 examples of images
showing the shoe and the glasses were available for training
and lesting the shoe classification network In our first exper
iment, we trained the classification network using only two of
these a randomly selected image of the shoe (positive exam-
ple) and a randomly selected image of the glasses (negative
example) Slopes were computed using the previously learned
invanance network

Our experiments mainly addressed the following two ques
tions which are central to the lifelong learning framework and
the invanance approach

Learning to Recognize Shoes

1 How important arc the support sets i e to what extent does
the invanance network improve the generalization accuracy
when compared to standard supervised learning?

2 How effectively can EBNN overcome errors in the invan
ance network? How does EBNN compare to using the in
variance nelwork as a learned generalized distance metric
(cf Eq (4))?

Fig 4a shows the average generalization curve as a function
of training epochs with and without the invanance network
The curve shows the generalization accuracy of the classifica
tion network each trained using one positive and one negative
example Without the invanance network and EBNN the av
erage generalization accuracy for Backpropagation is 59 1%
However, EBNN increases the accuracy to 74 8% The in-
vanance network alone, when used as generalized distance
metric, classifies 75 2% of unseen images correctly Notice
the accuracy of random guessing would be 50 0%

'Since in our expenment the negative class i e the glasses forms
itself a disjoint class of images those images are also used in de
nve slopes (the slopes of u were simply multiplied by —1) This
effectively doubles the number of slopes considered in Eq (5) The
corresponding probabilities 1 - ofl :™) can also be incorporated
into Eq (4) See [Thrun and Mitchell 1994] lor details

The difference between (the performance with and without
support sets which is statistically significant at the 95% level
can be assessed in several ways In terms of residual error
Backpropagation exhibits a misclassification rate that is 60 | %
larger than that of EBNN A second interpretation is to look
at the performance .increase which is defined as the difference
in classification accuracy after learning and before learning
assuming that the accuracy before learning is 50% EBNN s
performance increase is 24 8% which is 2 6 tiems better Uian
Backpropagation s 9 7% On the other hand the difference
between EBNN and the invanance network is not statistically
significant (at the 95% confidence level)

Each of these numbers has been obtained by averaging 100
expenments Examining a single experiment provides addi
tional insight For example when the neural network is trained
using the single image of the shoe and the single image ol
the glasses depicted in Fig 2 plain Backpropagation classifies
only 52 5% of the test images correctly Here the generalization
rate is particularly poor since the location ot the objects within
the image differs and Backpropagation mistakenly considers
location the crucial feature for object recognition EBNN pro
duces a nelwork that is much less sensitive to object location
resulting in a 85 6% generalization accuracy in this particular
experiment

Notice that the results summarized above refer to the classi-
fication accuracy after 10 000 training epochs using just one
positive and one negative training example As can be seen in
Fig 4a, Backpropagation suffers from some over fitting as the
accuracy drops after a peak at about 2 050 training epochs The
average classification accuracy ai this point in time is 61 3%
However due to lack of data it is impossible in this domain to
use early slopping methods that rely on cross validation and it
is not clear that such methods would have improved the results
for Backpropagation significantly

These results illustrate that support sets can significantly
boost generalization accuracy when training data for the target
function is scarce They also illustrate that EBNN manages
to make very effective use of the invanance knowledge cap-
tured in a- Results lor expenments with larger training set
sjzes are depicted in Fig 4b As the number of training exam
pies increases Backpropagation approaches the performance
of EBNN After presenting 10 randomly drawn training ex-
amples of each class EBNN classifies 90 8% and Backprop-
agation classifies 88 4% of the testing data correctly This
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matches our expectations as the need for background knowl-
edge decreases as the number of training examples increases
"The invanance network alone using Eq (4) (dashed curve)
performs slightly worse than both of these methods Its gener-
alization accuracy is 87 3% which is significantly worse than
that of EBNN (at the 95% confidence level)

3.3 The Role ofthe Invanance Network

The improved classification rales of EBNN which illustrate the
successful transfer of knowledge from the support sets via the
invanance network raise the question of what exactly are the
invanances represented in this network What type information
do the slopes convey?

A plausible (but only approximate) measure of the impor
lance of a feature is the magnitude of its slopes The larger
the slopes the larger the effect of small changes in the feature
on the classification hence the more relevant the feature In
order lo empirically assess the importance of features average
slope magnitudes were computed for all input pixels, averaged
over all 100 pairs of training instances The largest average
slope magnitude was found for color information OQil In
comparison saturation slopes were on average only 0 063
(this is 57% of the average for color slopes) and brightness
slopes only 0 056 (51%)

These numbers indicate that according to the invanance net-
work color information was most important for classification
To verify this hypothesis we repeated our experiments omit-
ting some of the image information More specifically in one
experiment color information was omitted from the images in
a second saturation, and in a third brightness The results

[ withoutinv net  withinv nel

no color 32 4% 57 9%
no saluration 59 D% 72 0%
no hrightness 58 7% 76 3%
full informaiion 99 7% 74 8%

confirmed our belief that color information indeed dominates
classification It is dear that without color the generalization
accuracy over the test set is poor although EBNN still general-
izes belter If saturation or brightness is omitted however the
generalization rate is approximately equivalent to the results
obtained for the full images reported above However learning
required significantly more training epochs in the absence of
brightness information (not shown here)

Fig 5 shows average slope matrices for the target category
(shoes) with respect to the three input feature classes measur-
ing color brightness and saturation Grey colors indicate that
the average slope for an input pixel is zero Bright and dark
colors indicate strongly positive and strongly negative slopes
respectively Notice that these slopes are averaged over all 100
explanations used for training

As is easily seen average color slopes vary over the In
age showing a slight positive tendency on average Average
saturation slopes are approximately zero Brightness slopes
however exhibit a strong negative tendency which is strongest
in the center of the image One possible explanation for the lat-
ter observation is the following Both the shoe and the glasses
are dark compared lo the background Shoes are on average
larger than glasses and hence fill more pixels In addition
in the majority of images the object was somewhere near the
center of the image whereas the border pixels showed signif-
icantly more noise Lack of brightness in the image center
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Figure 5 Slopes of the target concept (glasses) with respect
to (a) color, (b) saturation, and (c) brightness White (black)
color represents positive (negative) values

is therefore a good indicator for the presence of the shoe as
is clearly reflected in the brightness slopes derived from the
invanance network The less obvious results for color and sal
uration might be attributed lo the fact that optimal classifiers
are non linear in color and saturation To discriminate objects
by color for example the network has, to spot a specific in-
terval in color space Hence the correct slopes can be either
positive or negative depending in the particular color of a pixel
cancelling each other out in this plot

As pointed out earlier slopes provide first-order information
and invanances may well be hidden in higher order deriva-
tives However both the superior performance of EBNN and
the clear correlation of slope magnitudes and generalization
accuracy show that EBNN manages to extract useful invan-
ance information in this domain even if these invariances defy
simple interpretation

34

A related family of methods for the transfer of knowledge
across learning tasks are proposed in [Suddarth and Kergosien
1990] [Pratt, 1993] [Caruana, 1993] In a nutshell these ap-
proaches develop improved internal representations by consid

enng multiple functions in F (sequentially or simultaneously)
Following these ideas we trained a single classification net

work providing the support data as hints for the development
of more appropnate internal representations This approach re

suited in 62 1% (20 hidden units) or 59 8% (5 hidden units)
generalization accuracy when only a single pair of training in

stances was used These numbers can directly be compared
to the experiments reported above However, we observed
significant overfitting when using this architecture The peak
generalization rate of 70 6% (20 hidden units) or 69 8% (5
hidden units) respectively occurred after approximately 450
training epochs This generalization accuracy is significantly
higher than that of standard Backpropagation though not as
high as that of the invanance approach with EBNN

Using Support Sets as Hints

4 Discussion

In the lifelong learning framework the learner faces a collec
tion of related learning tasks The challenge of this framework
is lo transfer knowledge across tasks in order to generalize
better from fewer training examples of the target function it-
self

This paper investigates a particular type of lifelong learning
in which binary classifiers are learned in a supervised manner
In the approach taken here invanances are learned and trans
ferred using the EBNN learning algorithm The experimental
results provide clear evidence of supenor generalization in the



object recognition domain when invanances learned from re
lated tasks are used to guide generalization when learning to
recognize a new object However the the invariance approach
relies on several critical assumptions

1 Well-defined invanance functions rest on the assumption that
F obeys the invariance property Note even if the invanance
property is not satisfied by F the support sets can be used
to train an invanance network. Even the object recogni
tion domain presented above provides an example in which
the invariance property may hold only approximately This
is because different objects may look alike in sufficiently
coarse-grained, noisy images

2 It is also assumed that functions in F possess certain m-
variances which can actually be fearned by the invanance
network This does not follow from the invanance property
The exact invanances that will be learned depend crucially
on the input representation and function approximator used
foro"

3 We also assumed that the output space O of functions in /
is binary However this assumption is not essential for the
invanance approach In principle invariante functions may
be defined for arbitrary high dimensional output spaces
given that a notion of difference between output vectors is
available as demonstrated in [Thrun and Mitchell [1994]

in the experiments reported above all three assumptions were
at least approximately fulfiled Wc conjecture that the real
world offers a variety of tasks where learned invanances can
boost generalization Problems such as face recognition cur
sive handwriting recognition stock market prediction and
speech recognition possess non Invial bul imponanl invari
ances For example consider the problem of learning lo rec
ognize faces o( various individuals Here certain .aspects are
important for successful recognition (e g the distance between
the eyes) whereas others are less important (c g the direction
in which the person is looking) Alter training on a num
ber of individuals wc conjecture that an invanance network
might grasp some of these invanances reducing the difficulty
of learning faces of new individuals

The central question raised in this paper is whether learn
ing can be made easier when the learner has already learned
other related tasks Will a system that is trained to learn
generalize better than a novice learner? This paper provides
encouraging results in an object recognition domain However
most questions that arise in the context of lifelong learning still
lack satisfactory more general answers Wc expect that future
research in this direction will be important lo going beyond
the intrinsic bounds associated with learning single isolated
functions
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