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Abstract

Inference using deep neural networks may be outsourced to the cloud due to its high
computational cost, which, however, raises security concerns. Particularly, the data in-
volved in deep neural networks can be highly sensitive, such as in medical, financial, com-
mercial applications, and hence should be kept private. Besides, the deep neural network
models owned by research institutions or commercial companies are their valuable intellec-
tual properties and can contain proprietary information, which should be protected as well.
Moreover, an untrusted cloud service provider may return inaccurate and even erroneous
computing results. To address above issues, we propose a secure outsourcing framework
for deep neural network inference called SecureNets, which can preserve both a user’s data
privacy and his/her neural network model privacy, and also verify the computation results
returned by the cloud. Specifically, we employ a secure matrix transformation scheme in
SecureNets to avoid privacy leakage of the data and the model. Meanwhile, we propose a
verification method that can efficiently verify the correctness of cloud computing results.
Our simulation results on four- and five-layer deep neural networks demonstrate that Se-
cureNets can reduce the processing runtime by up to 64%. Compared with CryptoNets,
one of the previous schemes, SecureNets can increase the throughput by 104.45% while
reducing the data transmission size by 69.78% per instance.

Keywords: Inference, deep neural networks, secure outsourcing, chosen-plaintext attack

1. Introduction

Deep learning techniques have been widely applied to various areas, including biomedical
engineering (Park et al. (2018); Ji et al. (2018a)), computer vision (Goodfellow et al. (2016)),
natural language processing (Socher et al. (2012); Ji et al. (2018b)). However, both obtain-
ing a well-trained neural network (the training process) and utilizing the trained model for
predictions (the inference process) can be extremely computationally expensive, which hin-
ders the large-scale implementation of deep neural networks for many practical applications.
As a new computing paradigm that enables resource-limited users to conduct intensive com-
puting, cloud computing can potentially relieve users from expensive computations in deep
learning. However, directly outsourcing data and computations to the cloud raises criti-
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cal security concerns (Papernot et al. (2016)). In particular, in many application such as
medicine, finance, and marketing, the data are typically too sensitive to be exposed to any
untrusted third-party including the cloud. Besides, the architecture of a well-trained deep
model, such as the network structure, each layer’s information, and the model weights, is
valuable intellectual property and can contain proprietary information of a company or a
designer, which should be protected as well. No matter training a deep model in the cloud
or deploying a well-trained model to the cloud can lead to models being compromised. In
addition, cloud service providers have financial incentives to reduce its computational cost,
which thus may return inaccurate or even erroneous results to users.

The privacy and security issues in cloud computing have spurred technical advances in
the area of secure outsourcing (Salinas et al. (2016a); Luo et al. (2018); Liao et al. (2017); Luo
et al. (2017); Salinas et al. (2018)). Most previous works utilize traditional cryptographic
techniques, such as homomorphic encryption (Gennaro et al. (2010); Liu et al. (2015); Urs
(2013)). Researchers have also harnessed similar techniques to securely outsourcing deep
learning networks. (Chen and Zhong (2009); Orlandi et al. (2007); Piva et al. (2008);
Gilad-Bachrach et al. (2016)). In particular, (Barni et al. (2006)) and (Orlandi et al.
(2007)) propose interactive algorithms for privately using deep models in cloud computing.
For each layer of the neural networks, a user encrypts the data and the model’s weights,
and sends them to the cloud. The cloud computes an inner product between the data and
the weights, and send the result back to the customer. Then, the user decrypts the result,
conducts element-wise non-linear transformation, encrypts the new data and the next layer’s
weights and sends them to the cloud. The process continues until the user gets the inference
results. In 2016, (Gilad-Bachrach et al. (2016)) proposed the CryptoNets, a high-throughput
outsourcing method that applies neural networks to encrypted data with a non-interactive
cloud computing paradigm. The data owner encrypts the data and sends it to the cloud.
The cloud uses deep networks to process the data and sends back the results. However, the
proposed CryptoNets framework only works on a specific class of neural networks that can
be transformed into arithmetic circuits (Shpilka et al. (2010)). The major concern about the
above traditional cryptographic techniques based outsourcing schemes is that they require
the data owner to perform computationally expensive operations due to data encryptions
and decryptions. Moreover, the data owner forces the cloud to conduct computations on
ciphertexts, which has to be handled with specialized software and hence adds significant
overhead to the cost of using cloud service. In addition, although the above works can
provide privacy-preserving outsourcing for neural network inference, they cannot verify the
correctness of returned results (Lai et al. (2014)). (Ghodsi et al. (2017)) attempt to address
this issue, but their scheme only works for neural networks that can be transformed into
arithmetic circuits.

In this paper, we propose a new secure outsourcing framework for deep neural network
inference called SecureNets. We consider that a user has a well-trained deep neural network
and aims to accelerate the inference process by utilizing cloud computing, while preserving
the privacy of both the data and the model and assuring the correctness of computations
performed by the cloud. Specifically, to protect the privacy of both the data and the deep
neural model, we multiply data and weights matrices by carefully designed pseudorandom
sparse matrices respectively. The multiplications can be proved to be chosen-plaintext
attack (CPA) secure in both value and structure. Then the cloud performs matrix multi-
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plications on the transformed data and link weights and sends the result to the user, who
can efficiently verify the correctness of the computation and find out the true result. Lo-
cally, the user performs a non-linear function on the obtained result and gets the output
of the current layer. Therefore, iteratively the user can efficiently and securely obtain the
prediction results with the help of the cloud. The main contributions of this work can be
summarized as follows:

• We develop a general framework SecureNets, which can efficiently and securely out-
source neural network inference to the cloud.

• In SecureNets, the user performs computations with only Opn2q complexity, where
n is the dimension of the data, while the cloud conducts computations with Opn3q
complexity. Moreover, the cloud only conducts traditional linear algebra operations,
which have much lower computational burden compared to the computations based
on homomorphic encryptions.

• We show that the transformed data and weights are secure. In particular, the data
transformation schemes in SecureNets are CPA-secure in both value and structure.

• Experiment results demonstrate that SecureNets can significantly accelerate the infer-
ence process of deep models. Specifically, compared to a previous scheme CryptoNets,
SecureNets increases the throughput by 104.45% while reducing the data transmission
size by 69.78% per instance.

2. Preliminaries

In this section, we introduce the threat model and the secure definitions considered in this
paper.

2.1. Threat Model

Low Complexity

Computations Large-scale

computations

Solution to the

transformed problem

Transformed large-

scale data
Private large-scale

data

Solution to the

original problem

User
Cloud

User’s device

Figure 1: The architecture for securely outsourcing inference of deep neural networks.

As shown in Fig. 1, we consider that a user has a well-trained deep neural network,
which is a valuable intellectual property of the user, and also has sensitive data that needs
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to be processed by this model. Besides, we consider a malicious cloud. In particular, the
cloud attempts to learn sensitive information about both the user’s data and his/her model
from the outsourced data, operations and the results of its own computations. In addition,
the cloud may return inaccurate computation results to the user for financial motivations,
or even deviate the proposed protocols and return erroneous results.

2.2. Security Definitions

To securely outsource the deep neural network inference, we adopt the concept of indistin-
guishability under a chosen-plaintext attack (CPA) (Katz and Lindell (2007)). We formulate
the input of a deep neural network as a matrix (for examples, if the input data is a vector,
we aggregate a batch of samples to build a matrix; if the input data is a high-dimensional
tensor, we concatenate the multiple dimensions to construct a matrix). Besides, we convert
the weights in each neural layer into a weight matrix (for example, the weights in each
layer of an artificial neural network are obviously a weight matrix; in a convolutional neural
network, the convolutional kernels can be converted to Toeplitz matrices (Vasudevan et al.
(2017))). Therefore, we focus on the secure outsourcing of matrices and matrix operations.
Note that in a matrix, both the elements’ values and the matrix structure carry impor-
tant private information. In the following, we formally define CPA security in value and in
structure, respectively.

We first introduce the definition of a pseudorandom function (Lindell and Katz (2014)).

Definition 1 Let F be a function and f a truly random function. F is a pseudorandom
function if for all probabilistic polynomial-time distinguishers D, there exists a negligible
function µ such that

ˇ

ˇ

ˇ
Pr

“

DF p1nq “ 1q
‰

´ Pr
”

Df p1nq “ 1q
ıˇ

ˇ

ˇ
ď µ, (1)

Distinguishers DF and Df have oracle access to function F and f , respectively.

The following Definition 2 given by (Salinas et al. (2016b)) defines CPA-security in
value.

Definition 2 CPA-security in Value (Salinas et al. (2016b)): A matrix transformation
scheme has indistinguishable transformations in value under a chosen-plaintext attack (or
is CPA-secure) if for all probabilistic polynomial-time adversaries A there exists a negligible
function µ, such that the probability of distinguishing two matrix transformations in value
in a CPA indistinguishability experiment is less than 1{2` µ.

To protect a matrix’s structure, the positions of the non-zero values in a matrix need to
be protected.

Definition 3 CPA-security in Structure (Salinas et al. (2016b)): A permutation scheme
has indistinguishable permutations under a chosen-plaintext attack (or is CPA-secure) if
for all a probabilistic polynomial-time adversaries A there exists a negligible function µ,
such that the probability of distinguishing two permutations in a CPA indistinguishability
experiment is less than 1{2` µ.
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3. SecureNets: Secure Inference of Deep Neural Networks

In this section, we develop a secure and efficient outsourcing framework for deep neural net-
work inference. First, we formulate the mathematical model of a deep neural network. Then
we introduce the secure matrix transformation schemes for protecting matrix values and
structure, respectively. Building upon secure matrix transformations, we finally elaborate
the details of SecureNets.

3.1. Mathematical Model of A General Deep Neural Network

In general, an L layer feed-forward neural network can be modeled as follows. We denote
the input to the network as x P Fn0

p , where Fp represents the finite field of order p, with p
being a large prime, and n0 is the dimension of the input sample. Layer l P r1, Ls has nl
neurons, and is defined by a weight matrix Wl P F

nlˆnl´1
p and a bias vector bl P Fnlˆ1

p . Its
output yl`1 P Fnlˆ1

p is defined as1

yl`1 “ σ pWlyl ` blq @l P r1, Ls , (2)

where σp¨q is a non-linear activation function (particularly, when l “ L, σp¨q is the activation
function of the output layer, which typically is the softmax function).

Without loss of generality, we consider a batch of m samples as the input matrix. We

redefine Wl “ rWl bls P Fnlˆpnl´1`1q
p , yTl “ ry

T
l 1s, and Yl “ ry

1
l ...y

m
l s P Fpnl´1`1qˆm

p ,
where ykl is the output of the pl´ 1qth layer of sample k for 1 ď k ď m. Thus, Eq. (2) can
be rewrite as

Zl “ WlYl, (3)

Yl`1 “ σpZlq, (4)

where l P r1, Ls and Zl P Fnlˆm
p . Note that Eq. (3) is a matrix multiplication and Eq. (4)

is a column-wise non-linear transformation. This model can capture both fully connected
and convolutional layers, and in the latter case the weight matrix is sparse.

3.2. Secure Matrix Transformation

To securely utilize an untrusted cloud server, the user must protect his/her private data
and model weights, which can both be denoted as matrices as demonstrated above. Here,
we introduce the secure matrix transformation methods developed in our previous works
(Salinas et al. (2016b)). Particularly, we consider a private matrix X P Fmˆnp , with pi, jq P
SX, where SX is the structure of X and defined as

SX “ tpi, jq|xi,j ‰ 0,@i P r1, ns @j P r1,msu. (5)

3.2.1. Secure Matrix Multiplication

To hide the values of non-zero values in X, the user performs the following multiplications

X̃ “ DXF. (6)

1. The input is considered as layer 0, and hence we have y1 “ x.
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In Eq. (6), D P Fmˆmp is a diagonal matrix that is defined as

di,j “

#

vi i “ j for i, j P r1,ms ,

0 otherwise.
(7)

The value vi (for i P r1,ms) is the ith element of a vector vX P Fmˆ1p and determined by
using a function Fc : t0, 1uw ˆ t0, 1uw Ñ t0, 1uw, i.e.,

vi “ Fc pri, gq ,@i P r1,ms , (8)

where ri is a random string and g is a constant one.
F P Fmˆmp in Eq. (6) is also a diagonal matrix, i.e.

fi,j “

#

ti i “ j for i, j P r1, ns ,

0 otherwise.
(9)

where ti is the ith element of vector t P Fnˆ1p and set to an arbitrary positive constant.

Therefore, although the structure of X̃ in Eq. (6) remains the same with X, the non-zero
elements are given by

h̃i,j “ di,ifj,jhi,j “ vitjhi,j @i, j P SH (10)

where pi, jq P SX.
(Salinas et al. (2016b)) prove that if Fcp¨, ¨q is a pseudorandom function, the matrix

transformation in Eq. (6) is computationally indistinguishable in value under a chosen-
plaintext attack (CPA), i.e., CPA-secure in value.

3.2.2. Secure Matrix Permutations

Eq. (6) protects a matrix’s non-zero values but it still reveals the structure information of
the matrix. Then we perform matrix permutation to hide X’s structure SX by randomly
permutating the rows and columns of X̃.

To randomly permute X̃’s row index vector e P Rmˆ1, the user computes the following

e1 “M peq , ê1 “ F 1c
`

r, e1
˘

, ê “M´1
`

ê1
˘

, (11)

where M : Rm Ñ t0, 1uk (for k “ rlog2m!s) is a function that maps index vectors to bit
strings, F 1c : t0, 1uw ˆ t0, 1uw Ñ t0, 1uw is a permutation function, r P t0, 1uk is a random
bit string; and M´1 : t0, 1uk Ñ Rm is the inverse of M.

We denote these operations as

PermF 1c pr, eq “ ê. (12)

We also use PermF 1c pr1,uq to denote the random permutation of X̃’s column index vector
u P Rn, where r1 P t0, 1uk is a random bit string.

The user can thus perform both row index vector permutation and column index vector
permutation by

X̂ “ EX̃U (13)
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where E P Rmˆm and U P Rnˆn in Eq. (13) are permutation matrices, and their elements
are

ei,j “ δπpiq,j @i P r1,ms , j P r1,ms ,

ui,j “ δπpiq,j @i P r1, ns , j P r1, ns ,

where the function π p¨q maps an original index i to its permuted index, i.e., π piq “ êi (for
i P r1,ms) and πpiq “ ûi (for i P r1, ns). Besides, the Kronecker delta function is given by

δi,j “

#

1, i “ j,

0, i ‰ j.
(14)

(Salinas et al. (2016b)) also prove that if F 1cp¨, ¨q is a pseudorandom function, the matrix
transformation in Eq. (13) is computationally indistinguishable in structure under a CPA,
i.e., CPA-secure in structure.

3.3. SecureNets

Algorithm 1 The SecureNets Framework

Input: Deep Model M with L layers and data X
Initialization: Generate weights matrices M :“ tW1,W2, ¨ ¨ ¨ ,WLu

for l=1 to L do
User(Secure Matrix Transformation):

Transform the data Yl to Ŷl

Transform the weight matrix Wl to Ŵl

Transfer Ŷl and Ŵl to the cloud
Cloud(Masked Matrix Multiplication):

Calculate Ẑl “ ŴlŶl

Return Ẑl
User(Correctness Verification):

if (Ẑl is correct) then:
User(True Result Recovery):

Recover Zl from Ẑl
Conduct column-wise non-linear transformation Yl`1 = σ pZlq

else:
Send a recalculation request

end if
end for
Output: Inference result yL`1

We first describe the general idea of the proposed SecureNets. As shown in Algo-
rithm 1, in the initialization phase, the user requires to conduct inference by using his/her
deep neural network model. As described in Sec. 3.1, the user generates weight matrices
W1,W2, ¨ ¨ ¨ ,WL for the deep model M. Then for layer l P r1, Ls, the user locally conducts
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secure matrix transformations on the data X and the weights matrix Wl, which are sent
to the cloud to perform matrix multiplication. When the cloud sends back its computation
result, the client first checks the correctness of the cloud’s result. If the result is correct,
the user recovers the original results and repeats the process for the next layer. If not, the
user requires the cloud to conduct the computation again. The iterations continue until the
user obtains the final inference results.

We divide the SecureNets framework into four main phases, secure matrix transforma-
tion, matrix multiplication outsourcing, correctness verification, and true result recovery,
which are detailed below. Note that the cloud only performs the masked matrix multipli-
cation while other phases are performed locally. The details are as follows.

3.3.1. Secure Matrix Transformation

Recall that the input to layer l is Yl and the weight matrix is Wl. Both of them contain
sensitive information that need to be protected. To this end, the user applies secure matrix
transformation to Wl and Yl as follows:

Ŵl “ VWWlTW, (15)

where VW is formed by a pseudorandom permutation matrix and a pseudorandom diagonal
matrix, i.e., VW “ EWDW, and TW is formed by a diagonal matrix of arbitrary positive
constants and a pseudorandom permutation matrix, i.e., TW “ FWUW. Similarly, the
user conceals Yl as follows:

Ŷl “ VYYlTY, (16)

where VY “ U´1
WF´1W , and TY is formed by a diagonal matrix of arbitrary positive constants

and a pseudorandom permutation matrix, i.e., TY “ FYUY. As mentioned before, both
Eq. (15) and Eq. (16) are CPA-secure in both value and structure, and hence can protect
the user’s model information and his/her data, respectively.

Computational Complexity Recall that Wl P Fnlˆpnl´1`1q
p and Yl P Fpnl´1`1qˆm

p . For
simplicity, we assume nl “ m “ n for all l P r1, Ls. For permutation matrices, they
have the orthogonal property, i.e., UWUW

ᵀ “ I, where I is the identity matrix, so we
have U´1

W “ UW
ᵀ. Therefore, the complexity of computing U´1

W , F´1W is Opnq. For the
permutation matrices EW,UW,UY and the diagonal matrices DW,FW,FY, they just
have n non-zero elements in the matrices, one for each row and each column. Thus, for
Yl and Wl, the computational complexity is Opn2q when multiplied by a diagonal matrix
or a permutation matrix. In summary, the computational complexity of secure matrix
transformation is Opn2q.

3.3.2. Matrix Multiplication Outsourcing

After transforming the input Yl and Wl to masked matrices Ŷl and Ŵl, the user transmits
them to the cloud to perform matrix multiplication:

Ẑl “ ŴlŶl, (17)
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which can be derived as

Ẑl “ ŴlŶl

“ pVWWlTWq pVYYlTYq

“ VWWl pFWUWq
`

U´1
WF´1W

˘

YlTY

“ VWWlYlTY.

(18)

Zl is then sent back to the user for verification and result recovery.

Computational Complexity Note that the masked matrices Ŷl and Ŵl remain the
same sizes as Yl and Wl. Reall that we assume nl “ m “ n for all l P r1, Ls. Thus, the
computational complexity of this phase is Opn3q in the cloud.

3.3.3. Correctness Verification

We consider a malicious cloud that may derivate from the proposed protocols and return
erroneous results. Thus, the user needs check the correctness of the result returned by the
cloud. Specifically, the user randomly selects ẑli,j from Ẑl, where pi, jq P SẐl

and SẐl
is the

structure of Ẑl. Since Ẑl “ ŴlŶl, the user just checks

ẑli,j
?
“ ŵlpi,:q ¨ ŷ

l
p:,jq, (19)

where ŵl
pi,:q is the ith row in Ŵl and ŷl

p:,jq is the jth column in Ŷl. If Eq. (19) holds,

the user can ensure the correctness of the computation for this element ẑli,j . To be more

confident in the correctness of the computing, the user can select c points in Ẑl to verify,
where 1 ă c ! n. This partial correctness verification has been studied in the Freivalds’
algorithm (Freivalds (1977)), where it is proved that in Opcn2q time the algorithm can verify
a matrix product with probability of failure less than 2´c.

Computational Complexity The verification of each element in the returned matrix
Ẑl is an inner vector product, whose complexity is Opnq. If the user verifies c points, the
computational complexity of the correctness verification phase is Opcnq.

3.3.4. True Result Recovery

Once the returned result passes the verification, the user can recover the true result, which
is

Zl “ WlYl. (20)

Compared to Eq. (18), the user can recover the true result by

Zl “ V´1
W ẐlT

´1
Y

“ pEWDWq
´1 Ẑl pFYUYq

´1

“ D´1
WE´1W ẐlU

´1
Y F´1Y .

(21)

Once the user gets Zl, the user conducts column-wise transformation and obtains Yl`1.
Then, the process continues to the next layer.
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Computational Complexity As we discussed in Sec. 3.3.1, the inverses of matrices
D´1

W , E´1W , U´1
Y , and F´1Y each only has complexity of Opnq, and the multiplication between

each of them and Ẑl has complexity ofOpn2q. The computational complexity of column-wise
transformation is Opn2q. Thus, the total complexity is Opn2q in this phase.

3.3.5. Computational Complexity Analysis

To summarize the computational complexity analysis of SecureNets for each layer, the
computational complexity at the user is Opn2q, and Opn3q at the cloud. In contrast, if the
user performs one layer computing locally, the computational complexity would be Opn3q.
Therefore, when there are L layers in a deep neural network model, SecureNets can reduce
the computational complexity from Opn3Lq to Opn2Lq by securely outsourcing intensive
computations to the cloud. Thus, SecureNets can significantly reduce the local computing
time and accelerate the inference process.

4. Discussions on Privacy

The goal of SecureNets is to provide a secure and efficient outsourcing scheme for inference
of general deep models. SecureNets aims to protect the user’s data X and the model M,
which includes the weights W1,W2, ¨ ¨ ¨ ,WL. In this section, we analyze the privacy of
SecureNets.

(a) Images from MNIST and their corresponding masked images

(b) Images from CIFAR10 and their corresponding masked images

Figure 2: Images and their corresponding SecureNets transformed images

Human Perception As shown in Fig. 2, we select several images and display them with
their corresponding images masked by the secure matrix transformation scheme introduced
before. In Fig. 2(a), we select different images from the MNIST dataset, which is a digit
recognition database where each image only has one channel. In Fig. 2(b), we select
different images from CIFAR10, which is an image classification database where each image
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has three channels. From the figures, we can see that the images transformed by our methods
are unrecognizable with human eyes. Moreover, after secure matrix transformation, it is
impossible to distinguish the different types of images in the same dataset, which makes the
masked images hard to convey any sensitive knowledge. Thus, from the human perception
perspective, SecureNets well preserves the privacy of the data.

Privacy Analysis Inspecting the secure outsourcing scheme proposed in Sec. 3, we ob-
serve that the cloud only has access to the transformed input and weight matrices of each
layer, and thus it is unable to learn private information from the user since the trans-
formations are CPA-secure. Specifically, the user sends the matrices Ŷl and Ŵl to the
cloud. However, according to secure matrix transformation, the transformed matrices are
CPA-secure in both value and structure. Therefore, the cloud is unable to find out any
information about the true data X (X “ Y1) and layer weights W1,W2, ¨ ¨ ¨ ,WL. Due
to page limit, we do not include the proof for CPA-security in this paper. In summary,
SecureNets can protect the user’s data X as well as the model M.

5. Performance Evaluation

In this section, we conduct experiments to evaluate the performance of the proposed Se-
cureNets.

5.1. Experiment Setup

Datasets We evaluated SecureNets on two classification tasks, MNIST dataset for digit
recognition and CIFAR10 for image classification. For both datasets, we train the deep
model with 50, 000 images and test on 10, 000 images.

Neural Networks In the experiments, we apply three neural networks to the SecureNets
framework, two for MNIST task and one for CIFAR-10 task. First, we use a multilayer
perceptron (MLP) for MNIST with two hidden layers of 512 nodes. Both of the hidden
layers are followed by rectifier activations. The output layer uses softmax activation.

Second, we use a convolutional neural network (CNN) for MNIST with two convolutional
layers with 5ˆ 5 filters, a stride of 1 and a mapcount of 16 and 32 for the first and second
layer, respectively. Each convolutional layer is followed by rectifier activations and 2 ˆ 2
max-pooling with a stride of 2. The fully connected layer uses softmax activation.

For CIFAR-10, we use a four-layer network with two convolutional layers followed by
two fully-connected layers. The convolutional layers use 5 ˆ 5 convolutions with stride 1,
followed by a rectifier activation and 2 ˆ 2 max pooling, with 64 channels each. The first
fully connected layer uses rectifier activation and the second uses softmax activation.

Experiment Environment We train the deep models with Keras, then convert the
model to be suitable for the SecureNets framework. For user side, we run on a laptop with
2.7 GHz CPU, 8 GB RAM, and a 256 GB solid state drive, and we run the cloud side on an
Amazon Elastic Compute Cloud (EC2) with 1 P2 instance. We implemented SecureNets
by Python’s scientific computing libraries Numpy, and we did not optimize the SecureNets
application with multi-thread programming or parallel computing. Thus, SecureNets runs
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slowly than using Keras directly. To fairly analyze the performance of our proposed scheme,
we use Numpy to implement the mentioned models and then run them locally.

5.2. Performance Analysis

In this section, we analyze the performance of SecurityNets in terms of model accuracy and
runtime cost to demonstrate its efficiency.

Table 1: The runtime (s) and accuracy (%) of SecureNets

Methods
MNIST with MLP

local cloud trans. total Acc.

Local 25.74 - - 25.74 98.32%
SecureNets (0) 18.91 25.15 5.82 49.88 98.32%
SecureNets (10) 19.06 26.23 6.01 51.30 98.32%
SecureNets (100) 19.35 24.72 5.90 49.97 98.32%

Methods
MNIST with CNN

local cloud trans. total Acc.

Local 3968.0 - - 3968.00 99.21%
SecureNets (0) 628.3 851.8 12.56 1492.66 99.21%
SecureNets (10) 659.7 831.4 10.98 1502.08 99.21%
SecureNets (100) 714.6 842.7 11.65 1568.95 99.21%

Methods
CIFAR10 with CNN

local cloud trans. total Acc.

Local 6437.3 - - 6437.30 74.68%
SecureNets (0) 1005.0 1303.7 45.12 2353.82 74.68%
SecureNets (10) 1055.2 1386.9 41.98 2484.08 74.68%
SecureNets (100) 1140.8 1285.7 49.51 2476.01 74.68%

Accuracy Analysis One benefit of SecureNets is that it has no restrictions on the struc-
ture of deep models. From Table 1, we can see that for all three models, the performance
of networks remains the same, even with a different number c, c “ 0, 10, 100, of verification
points, which demonstrates that SecureNets accelerates the inference process without any
accuracy compromise. For the MNIST dataset, SecureNets with MLP achieved the accu-
racy of 98.32%, and SecureNets with CNN achieved the state-of-art performance accuracy
(99.21%). For CIFAR10, SecureNets with CNN achieved 75.68%.

Timing analysis In Table 1, we also compare the runtime cost for three different models.
For each model, we process 50, 000 images locally, in SecureNets without verification, in
SecureNets with c “ 10 verification points, and in SecureNets with c “ 100 verification
points, respectively.
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Table 2: Performance Comparison of SecureNets and CryptoNets

CryptoNets SecureNets

Accuracy 98.95% 99.15%
Throughput per hour 58,982 120,590
Message size (User to Cloud) per instance 91.875 KB 18.75 KB
Message size (Cloud to User) per instance 1.17 KB 9.37 KB
Total message size per instance 93.046 KB 28.12 KB

Compared with running predict models locally, SecureNets with CNN reduces by 62.38%
for MNIST and 63.43% for CIFAR10 in terms of the total computing runtime. However,
the SecureNets extends the total run-time for MLP model for MNIST. The reason is that
the MLP model for MNIST is too simple and the power of cloud computing has not been
fully used. Even though, SecureNets do reduce the local run-time for this “shallow” model.
We also observed that with increasing of the models’ complexity, the reduction percentages
of the local run-time becomes more significant. Further, we also demonstrated the efficiency
of the proposed verification methods. With more verification points, the users can ensure
the correctness of the cloud service more confidently. Meanwhile, the local computational
time almost remains the same as the ones without the verification scheme. Therefore, the
proposed SecureNets framework is suitable for complex deep models to process large-scale
data.

5.3. Performance Comparison

In this section, we compare the performance of SecureNets with one of the state-of-art deep
model outsourcing schemes, the CryptoNets. In the CryptoNets, the user protects its data
by Homomorphic encryption and outsources the inference process to the cloud.

For the CryptoNets, the local computer handles the encryption and decryption process.
The computational complexity of Homomorphic encryption depends on the length of the
public key, which usually is Op2nq. Meanwhile, the local computational complexity in the
proposed SecureNets is only Opn2q. The cryptography-based data protection methods also
inevitably introduce redundant data, which increases the transmission cost when outsourc-
ing data processing to the cloud. In our framework, we utilize secure matrix transformation
to protect the data. The matrix transformation only masks the sensitive information of the
data while the data are remaining the original size. Moreover, the CryptoNets assumes the
cloud is always honest and reliable, so it does not have additional verification scheme to
ensure the correctness of the returned results. Therefore, the SecureNets scheme is more
suitable for the cloud service renter to deploy deep models for large-scale data processing
securely.

In Table 2, we compare the performance of SecureNets and the CryptoNets. In this
experiment, the CryptoNets and SecureNets are using similar deep convolutional neural
networks trained on MNIST. The structure of both CNN models are the same, and the
difference lies in the activation functions. The CryptoNets can only apply to the neural net-
works which can be transformed into arithmetic circuits. Therefore, the activation function
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of CNN in CryptoNets is the polynomial function. Meanwhile, we use rectifier activation
function for the CNN in SecureNets. From the table, we can see that both SecureNets and
the CryptoNets can achieve the state-of-art performance on MNIST dataset. Nonetheless,
compared to SecureNets, the restriction on activation functions slightly impacts the perfor-
mance of the CryptoNets. To be clear, the accuracy error is CNNs testing error, and the
conversion does not compromise the precision of the model. In the experiment, we define
the system throughput as the number of images can be processed in one hour. We observe
that the CryptoNets can make 58,982 predictions per hour while SecureNets scheme can
process 120, 590 images per hour, which increase the throughput by 104.45%. In terms
of data transmission, the CryptoNets is a non-interactive cloud computing paradigm and
SecureNets is an interactive cloud computing paradigm. The CryptoNets only transmit and
receive messages once while SecureNets executes several times, thus the CryptoNets should
transmit smaller amounts of data. However, the encryption introduces redundancy to the
CryptoNets’ message size. We observe that although the CryptoNets scheme costs fewer
transmission data from the cloud to the user, SecureNets reduces the total message size by
69.78% per instance.

6. Conclusions

In this paper, we have presented SecureNets, a new framework that allows a client to
securely outsource deep neural networks based inference to an untrusted cloud. Particularly,
building upon CPA-secure matrix transformations, we have designed a secure and efficient
outsourcing protocol for general deep neural network inference, which can protect both
a user’s data and his/her the model and verify the correctness of the cloud computing
results. We have shown that the proposed SecureNets can significantly reduce the local
computational complexity and accelerate the inference process of deep models.

Moreover, the proposed SecureNets scheme is a general secure outsourcing framework
which can be applied to different types of neural networks. Although we have only discussed
feed-forward neural networks, it can also be applied to neural networks with cross-layer
structures. Taking recurrent neural networks as an example, we can divide each node into
several matrix multiplications, which can be outsourced to the cloud, and other operations
which remain locally.
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