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Abstract
Video captioning is a task of automatically generating the natural text description of a given video.
There are two main challenges in video captioning under the context of an encoder-decoder frame-
work: 1) How to model the sequential information; 2) How to combine the modalities including
video and text. For challenge 1), the recurrent neural networks (RNNs) based methods are current-
ly the most common approaches for learning temporal representations of videos, while they suffer
from a high computational cost. For challenge 2), the features of different modalities are often
roughly concatenated together without insightful discussion. In this paper, we introduce a novel
video captioning framework, i.e., Two-View Transformer (TVT). TVT comprises of a backbone of
Transformer network for sequential representation and two types of fusion blocks in decoder layers
for combining different modalities effectively. Empirical study shows that our TVT model outper-
forms the state-of-the-art methods on the MSVD dataset and achieves a competitive performance
on the MSR-VTT dataset under four common metrics.
Keywords: Video captioning; Sequence-to-sequence; Multi-modalities

1. Introduction

Describing videos with natural language, namely video captioning, has been a widely studied topic
in computer vision and natural language processing communities. It can be applied in various
applications such as video retrieval Song et al. (2018), visual question answering Antol et al. (2015),
and helping the disabled with visual impairment. The difficulties of video captioning mainly lie
in the modeling of temporal dynamics and the fusion of multiple modalities. In this paper, we
novelly introduce the Two-View Transformer (TVT) model which is a variant of the Transformer
network Vaswani et al. (2017) towards tackling the challenges.

The first challenge of video captioning is how to model the temporal dynamics. In the existing
literature, the encoder-decoder architecture is commonly adopted, where most previous work uti-
lizes convolutional neural networks (CNNs) for encoding visual contents in conjunction with the
recurrent neural networks (RNNs), particularly, the long short-term memory unit (LSTM) Hochre-
iter and Schmidhuber (1997) and gated recurrent unit (GRU) Chung et al. (2014), for processing
sequential data Venugopalan et al. (2015a); Yao et al. (2015); Yu et al. (2016); Pu et al. (2018).
In RNNs, a hidden state is computed based on the previous hidden state such that it disallows the
parallelization. The sequential computation introduces a high cost especially for long sequences.
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Inspired by the promising results of the Transformer network Vaswani et al. (2017) in machine trans-
lation, we propose to use the Transformer network as our backbone network for video captioning.
The Transformer network relies on the attention mechanism instead of RNNs to draw dependencies
between sequential data. We discuss how to adapt the Transformer network to video captioning task
in Section 3.2.

Another challenge of video captioning is how to fuse information of different modalities. Sever-
al previous methods roughly concatenate features of different modalities together Yao et al. (2015);
Pan et al. (2016b). Recently, the attention mechanism has been used for better fusion Long et al.
(2016); Hori et al. (2017). However, these approaches often fuse modalities from the video data on-
ly, such as image, motion, and audio representations. The fusion mechanism of video and text data
has not been adequately studied. In this work, we attempt to build a more effective language de-
coder. We novelly propose the attentive fusion block to utilize the multi-head attention mechanism
for the fusion of modalities from both video and text data period.

In summary, our proposed Two-View Transformer (TVT) model uses the Transformer network
as the backbone network and fuses the modalities from video and text data with attention mechanis-
m. TVT has the following advantages:

• Compared with RNNs, the attention layers of TVT allow for parallel computing, leading to a
much more efficient training process without performance decrease.

• Two different types of fusion blocks are designed for a more effective decoding process than
a simple concatenation. In particular, the attentive fusion block adjusts the flow of text infor-
mation for generating more natural sentences.

We summarize the contributions of this paper as follows:

• We propose a novel TVT model for video captioning. TVT learns the long-term dependencies
of sequential data based on the multi-head attention mechanism instead of the widely used
RNN units.

• We propose two types of late fusion blocks to provide a novel way to exploit information
from three different modalities containing features of frames, motions, and previous generated
words.

• Empirical study shows that TVT achieves the state-of-the-art performance on the MSVD
dataset and competitive performance on the MSR-VTT dataset. Ablation study further reveals
the effectiveness of our proposed fusion blocks.

2. Related Work

Image Captioning. The goal of image captioning is to present a caption for describing a given
image. Many existing image captioning approaches have adopted the encoder-decoder framework
for generating image captions. Vinyals et al. (2015) proposed a model consisting of a deep CNN
encoder for encoding the visual information and a following RNN decoder for generating descrip-
tions. Xu et al. (2015) further utilized the spatial attention mechanism to improve the performance
of RNN decoder. You et al. (2016) and Gan et al. (2017) incorporated the semantic features of
images into a language model. Lu et al. (2017) proposed an adaptive attention model that can auto-
matically decide whether to rely on the image when generating the next word. Our attentive fusion
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block is inspired by the adaptive attention mechanism. Different from their approaches, in this work
we consider more perspectives of visual contents, that better help the learning of video captioning
model.
Video Captioning. Video captioning is a more challenging task than image captioning, mainly due
to the temporal dynamics underlying in videos. Venugopalan et al. (2015b) proposed a model that
averages all the frames’ feature extracted by a 2-D CNN, and then feeds the averaged visual feature
to an LSTM decoder to generate video descriptions. However, their model lacks the ability to
address temporal dynamics of videos. Venugopalan et al. (2015a) proposed the S2VT model which
employs LSTM as an additional encoder to model the long-term dependency of frames and feeds
the output of last step in this LSTM layer to another LSTM decoder. Similarly to the sequence-
to-sequence models used in other applications, Yao et al. (2015) proposed an attention mechanism
to assign every frame a weight when generating words. As videos have different modalities, Jin
et al. (2016) proposed a multi-modal fusion encoder to combine all the available modalities with
one fully connected layer. Long et al. (2016) and Hori et al. (2017) both employed the attention
mechanism in the multi-modal fusion models. In our approach, the attentive fusion block combines
two modalities including the frame and motion features.
Machine Translation. In recent years, sequence-to-sequence models Bahdanau et al. (2014);
Sutskever et al. (2014); Cho et al. (2014b,a); Vaswani et al. (2017) have been widely used in ma-
chine translation task. Specifically, an RNN encoder maps the source sentence into a context vector
and then an RNN decoder generates the target sentence conditioned on the context vector. Since
the context vector is fixed when generating each word for target sentence, Bahdanau et al. (2014)
proposed an encoder-decoder network equipped with soft attention mechanism to adaptively learn
the context vector according to individual words of the source sentence. Although the RNNs based
encoder/decoder learns the long-range dependence of sequences, it has a high computational cost;
further, the context vector in each position is not well balanced due to the chained architecture
of RNNs. Instead of the use of recurrent layers, Vaswani et al. (2017) proposed the Transformer
network to accelerate the training process based on dot-product attention mechanism, showing a
promising performance in machine translation. Similar to machine translation, video captioning is
also the sequence-to-sequence learning task as its goal is encoding a video into a sequence of vec-
tors. Zhou et al. (2018) proposed an end-to-end transformer model for both detecting and describing
events of dense video captioning. Thus, inspired by Transformer network, we adopt the dot-product
attention mechanism Vaswani et al. (2017) as the main module of our video captioning approach.

3. Methodology

Our video captioning framework includes two basic modules, including 1) a 2-D CNN serving as the
visual feature extractor, and 2) a Transformer network Vaswani et al. (2017) serving as the caption
generator. Fig. 1 shows a general architecture of our framework. In this section, we first give a brief
introduction to the original Transformer network before we describe our model.

3.1. Transformer Network

3.1.1. DOT-PRODUCT ATTENTION

The scaled dot-product attention is different from the conventional attention mechanisms as its
attention weights are computed by dot-product operation. Given queries Q ∈ RTq×dk , keys K ∈

849



CHEN LI ZHANG HUANG

Visual Features

Caption

a
man
is

playing
the
guitar

<bos>

Input 
Embedding

Output 
Embedding

Layer
Norm

Layer
Norm

Self-
Attention

Layer

Masked
Self-

Attention
Layer

Layer
Norm

Layer
Norm

Feed
Forward

Layer

Attention
Layer

Layer
Norm

Feed
Forward

Layer
Linear Softmax

Output
a

man
is

playing
the
guitar
<eos>

Encoder Layer

Decoder Layer

Nx

Nx

...

CN
N

Video Frames
Position

Encoding

Position
Encoding

Layer
Norm

Figure 1: Base Model architecture

RTv×dk and values V ∈ RTv×dv , the attention output is

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V, (1)

where Tq is the sequence length of queries and Tv is the sequence length of keys and values. dk is
the vector dimension of queries and keys, and dv is the vector dimension of values.

√
dk is used for

scaling here which guarantees the numerical stability.
The multi-head attention is built upon the scaled dot-product attention. It consists of h different

“heads” of (query, key, value), where each head is independently and computed in parallel. For the
i-th head, the attention output is

headi = Attention(QWQ
i ,KW

K
i , V W

V
i ). (2)

The multi-head attention concatenates the heads as

MultiHead(Q,K, V ) = Concati=1...h(headi)W
O. (3)

We employ the multi-head attention as the attention layers in our framework.

3.1.2. FEED-FORWARD NETWORK

Each block in our encoder and decoder contains a two-layered fully connected feed-forward network
with an ReLU activation. This module is defined as:

FFN(x) = ReLU(xW1 + b1)W2 + b2, (4)

where W1 ∈ Rdmodel×dh , b1 ∈ Rdh , W2 ∈ Rdh×dmodel , b2 ∈ Rdmodel are trainable weights. dh is the
hidden state size.
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3.1.3. POSITIONAL ENCODING

Since the multi-head attention and feed-forward network contain no convolutional layers or re-
current cells, positional encoding is essential for leveraging the relative position information in
sequence. The encoding method is defined as:

PE(pos, 2i) = sin(pos/100002i/dmodel)

PE(pos, 2i+ 1) = cos(pos/100002i/dmodel),
(5)

where pos is the position of a frame in the video on the encoding side or a word in the sentence
on the decoding side. i denotes the corresponding dimension of the embeddings. Here different
dimensions of the embedded positional vector represent different frequencies when using sinusoidal
or cosinusoidal function. Different positions represent different phases in these periodic functions.

3.2. Two-View Transformer Network

3.2.1. TRANSFORMER ENCODER

Our proposed Two-View Transformer Network includes two views of visual representations extract-
ed by the encoders, i.e., the frame representationEf and the motion representationEm, respectively.
The frame representation Ef ∈ RT×dmodel is obtained by a 2-D CNN on individual frames and sub-
sequent self-attention layers. The motion representation Em ∈ RT×dmodel is obtained by a 3-D CNN
on consecutive frames and independent self-attention layers.

3.2.2. TWO-VIEW TRANSFORMER DECODER

Two types of fusion blocks of our Two-View Transformer Decoder are shown in Fig. 2, where the
fusion attention layer provides a special way for computing attention weights. Given the sentence
representation Ds from previous masked self-attention layer and the outputs of two visual encoders
Ef and Em, the tuple of (query, key, value) is computed as

Qf = LayerNorm(Ds)W
Q
f

Kf = EfW
K
f

Vf = EfW
V
f

(6)

where WQ
f , WK

f , W V
f ∈ Rdmodel×dmodel are parametric matrices. Another tuple for motion presen-

tation is computed in the same way with different parameters. Then the frame context Cf and the
motion context Cm are computed by two independent multi-head attention layers as

Cf = MultiHead(Qf ,Kf , Vf )

Cm = MultiHead(Qm,Km, Vm).
(7)

3.3. Fusion Block

3.3.1. ADD-FUSION BLOCK

To fuse the frame context Cf and the motion context Cm, we propose to use two types of fusion
blocks. The first type of fusion blocks is the add-fusion block. It uses a simple add operation which
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Figure 2: Two types of fusion blocks in Two-View Transformer decoder.

combines Cf and Cm with fixed weight α ∈ [0, 1] to balance the contributions from the two view
visual representations

C = αCf + (1− α)Cm. (8)

The add-fusion block is a non-parametric fusion method such that it does not change the way of
fusion according to the context of words. It lacks robustness for integrating the complex and diverse
two-view representations.

3.3.2. ATTENTIVE-FUSION BLOCK

We propose another type of fusion blocks, named attentive-fusion block, to fuse the two-view rep-
resentations in a learnable way. For each position in a sentence, we generate a new query vector
from the representation of current position and stack context vectors from different modalities to
compute new keys and values matrices.

St = Stack(cft , c
m
t ,dt)

qt =W qdt

Kt = StW
K

Vt = StW
V ,

(9)
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where the weight matrices W q, WK and W V are shared across different positions. cft , c
m
t and dt

are vectors of the t-th column of frame context Cf , motion context Cm, and sentence context Ds,
respectively. Intuitively, the attentive-fusion block computes the attention weights depending on qt
and Kt, and performs a weighted average operation on Vt to obtain the context vector ct in current
position. Then, it adopts the scaled dot-product attention to give the output as

ct = Attention(qt,Kt, Vt). (10)

3.3.3. DISCUSSION ON FUSION METHODS

• Early fusion. Given a sequence of frame features X = (x1,x2, ...,xT ), and a sequence of
motion features Z = (z1, z2, ...,zT ), an early fusion method fuses xt and zt as

x′t =

[
xt

zt

]
(11)

where x′t is then fed into a Transformer decoder. Early fusion lacks flexibility as it only works
when the lengths of different sequences are the same. In this work, we use two independent
Transformer encoders to encode two different features, respectively, enabling a much more
flexible approach for fusion in the decoder.

• Add-fusion and attentive-fusion. Theoretically, an attentive-fusion block has two advan-
tages over an add-fusion block. First, the attention weight varies depending on the context of
current position. Second, the decoder can adopt an appropriate sentence context by selecting
dt in Ds, such that the frame representation, the motion representation, and the previously
generated words are able to jointly guide the description generation process.

4. Experimental Setup

4.1. Datasets

We evaluate our model on two video captioning benchmark datasets: Microsoft Research Video De-
scription (MSVD) Guadarrama et al. (2013) and Microsoft Research Video to Text (MSR-VTT) Xu
et al. (2016).

• The MSVD dataset consists of 1,970 short Youtube video clips with an average length of
9s around. Each clip is labeled with about 40 English sentences provided by Amazon Me-
chanical Turk workers. Following the existing literature Venugopalan et al. (2015a); Dong
et al. (2017), we split the datasets into three parts: 1200 videos for training, 100 videos for
validation, and 670 videos for testing.

• The MSR-VTT dataset is a large-scale video benchmark dataset that contains 10,000 video
clips, covering a wide variety of video categories. Each clip is annotated with about 20 natural
sentences. This dataset is divided into three parts: 6513 videos for training, 497 videos for
validation, and 2990 videos for testing.
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4.2. Evaluation Metrics

We evaluate the performances of generating descriptions with four metrics: BLEU@4 Papineni
et al. (2002), METEOR Denkowski and Lavie (2014), ROUGE-L Lin (2004) and CIDEr Vedantam
et al. (2015). We use the standard evaluation protocol from Microsoft COCO evaluation server Chen
et al. (2015).

4.3. Implementation Details

Preprocessing. For the MSVD dataset, we sample the videos at 5 fps and set the maximum number
of frames as 50 to extract image features. For motion features, we sample the videos at 25 fps and
extract features for every 64 consecutive frames with overlap, setting the interval as 5 frames.

For the MSR-VTT dataset, we sample the videos at 3 fps and set the maximum number of
frames as 60 to extract image features. For motion features, we sample the videos at 15 fps and
extract features for every 64 consecutive frames with overlap, setting the interval as 5 frames.
Model Details. On encoder side, we compare two image feature extractors, ResNet-152 and Nas-
Net Zoph et al. (2017), which are both pretrained on the ImageNet dataset Krizhevsky et al. (2012).
The extracted image features are 2048-dimension and 4032-dimension, respectively. For motion
features, we use I3D Carreira and Zisserman (2017) network pre-trained on the Kinetics dataset Kay
et al. (2017) to obtain 1024-dimension features. Since the MSR-VTT dataset contains audio tracks
for most videos, pre-trained Vggish Hershey et al. (2017) network is utilized to extract deep au-
dio features with 128-dimension. Our fusion models are simply extended in the same ways in two
different fusion blocks for incorporating audio features to secure improvements.

On decoder side, for text descriptions, we remove punctuations in every sentence and build
vocabulary containing 9861 and 10551 words by filtering words whose count is less than 1 and 3,
respectively in two datasets. Maximum sentence length is set as 20 for two datasets.

For the Transformer network, model dimension dmodel is set as 512 and hidden state size of the
feed-forward layer is set as 2048. We use 8 heads in the multi-head attention layer where dimension
dk = dv = 64. We set 4 encoder layers and 4 decoder layers to build the whole Transformer
network. α in the add-fusion block is set as 0.4.
Learning settings. For the training process, dropout Srivastava et al. (2014) with a drop rate of 0.3
is adopted for regularization. We stop training after reaching 20 epochs or the METEOR score is
not increased on the validation set in the last 10 checkpoints. We use Adam optimizer Kingma and
Ba (2014) with a learning rate of 0.0001 to train neural networks. Beam search with a beam size of
5 is adopted for testing.

5. Results and Analysis

5.1. Comparison with State-of-the-Art Methods

Table. 1 shows performances of our proposed model and several state-of-the-art methods on the
MSVD dataset. Our method performs significantly better than the previous methods on this dataset.
There is a 7.84% relative improvement over the previous best CIDEr score. The performance of our
model under BLEU@4 metric is also higher than all the previous methods.

Table. 2 shows performances against the top-3 teams from the MSR-VTT Challenge 2017,
v2t navigator, Aalto and VideoLAB, and results of three recent methods containing CIDEnt-RL,
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Table 1: Results on the MSVD dataset. Att-TVT is our proposed model using Two-View Trans-
former with attentive fusion block. Here our ROUGE score is omitted since previous work
did not report it.

Models BLEU@4 METEOR CIDEr

LSTM-YT Venugopalan et al. (2015b) 33.29 29.07 -
S2VT Venugopalan et al. (2015a) - 29.80 -
LSTM-I Dong et al. (2017) 44.60 29.70 -
SA Yao et al. (2015) 41.92 29.60 51.67
LSTM-E Pan et al. (2016b) 45.30 31.00 -
GRU-RCN Ballas et al. (2015) 43.26 31.60 68.01
h-RNN decoder Yu et al. (2016) 49.90 32.60 65.80
h-RNN encoder Pan et al. (2016a) 46.70 33.90 -
SCN-LSTM Gan et al. (2017) 51.10 33.50 77.70
TSA Pan et al. (2017) 52.80 33.50 74.00
M&M TGM Chen et al. (2017) 48.76 34.36 80.45
dualAFR Pu et al. (2018) 51.77 36.41 72.21
RecNet Wang et al. (2018a) 52.30 34.10 80.30

Att-TVT 53.21 35.23 86.76

Table 2: Results on the MSR-VTT dataset.
Models BLEU METEOR ROUGE CIDEr

VideoLAB Ramanishka et al. (2016) 39.10 27.70 60.60 44.10
Aalto Shetty and Laaksonen (2016) 39.80 26.90 59.80 45.70
v2t navigator Jin et al. (2016) 40.80 28.20 60.90 44.80

CIDEnt-RL Pasunuru and Bansal (2017) 40.50 28.40 61.40 51.70
Dense-Cap Shen et al. (2017) 41.40 28.30 61.10 48.90
HRL Wang et al. (2018b) 41.30 28.70 61.70 48.00

Att-TVT 40.12 27.86 59.63 47.72
Att-TVT(+audio) 42.46 28.24 61.07 48.53

Dense-Cap, and HRL on MSR-VTT dataset. For a fair comparison, we simply extend Att-TVT to
three views by adding audio features. The results of our method are competitive on this dataset.

5.2. Ablation Study

We report ablation studies to empirically demonstrate the effectiveness of our proposed fusion meth-
ods. We compare the performances of our base models and two-view models with different types
of fusion. Table. 3 and Table. 4 shows the results of our ablation study. Our base model achieves a
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Table 3: Ablation study on the MSVD dataset. Here, R, N, I are short for ResNet-152, NasNet
and I3D visual features. TVT is the Two-View Transformer with early fusion and Add-
TVT is the Two-View Transformer with add-attention fusion decoder.

Models BLEU METEOR ROUGE CIDEr

Base model(R) 50.25 33.41 70.16 72.11
Base model(N) 52.55 34.36 70.12 75.94

TVT(R+I) 52.07 33.18 69.71 77.02
Add-TVT(R+I) 52.17 34.40 71.11 77.98
Att-TVT(R+I) 52.96 34.73 71.71 80.84

TVT(N+I) 53.04 34.52 70.79 77.69
Add-TVT(N+I) 53.94 34.77 71.88 78.95
Att-TVT(N+I) 53.21 35.23 72.01 86.76

Table 4: Ablation study on the MSR-VTT dataset. Here V is short for Vggish audio feature.

Models BLEU METEOR ROUGE CIDEr

Base model(R) 38.27 27.23 58.72 44.99
Base model(N) 37.96 27.05 58.79 45.60

TVT(N+I) 38.96 27.52 59.33 45.67
Add-TVT(N+I) 40.16 27.53 59.64 46.87
Att-TVT(N+I) 40.12 27.86 59.63 47.72

Add-TVT(N+I+V) 41.61 28.29 60.72 47.89
Att-TVT(N+I+V) 42.46 28.24 61.07 48.53

strong baseline with only frame features extracted by ResNet-152. To utilize better frame features
for this task, we select the NasNet, which achieves a higher accuracy on the image classification
problem, as another feature extractor for comparison. Results on both datasets show that NasNet
performs slightly better for generating video descriptions.

Comparing different fusion methods, the early fusion with a simple concatenation provides a
little performance boost than without motion features. The late fusion in the decoding stage is a
better way to integrate motion features into frame features. The attention mechanism applied in the
fusion block makes two-view Transformer decoder attend to appropriate context adaptively. For
example, Att-TVT(R+I) has performed better than Add-TVT(R+I) and TVT(R+I) with 2.86% and
3.82% margin on the MSVD dataset in the metric of CIDEr, respectively.

The results in Fig. 3 show that a fixed fusion weight should be replaced by adaptive attention
weights, which introduces only a little computational cost. Attentive fusion method actually brings
in a significant performance boost especially on the CIDEr score.
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Figure 3: Results of Add-TVT with different fusion weights α and Att-TVT on MSR-VTT dataset.

5.3. Comparison with RNN Based Model

Table 5: Performance of transformer and RNN based models on the MSR-VTT dataset. All the
experiments were performed using a GTX 1080Ti GPU.

Models # Params Training Time(sec) BLEU METEOR ROUGE CIDEr

BiLSTM(R) 26M 2717 38.38 26.72 59.43 43.46
Transformer(R) 24M 975 38.55 27.07 58.90 44.86

BiLSTM(N) 27M 3055 36.96 26.34 58.71 43.09
Transformer(N) 25M 1047 37.26 26.88 58.31 44.57

Table. 5 lists the training cost and performance of transformer and RNN based models under
the same training strategy. The BiLSTM model uses a bidirectional lstm layer as its encoder and an
unidirectional lstm layer as its decoder, equipped with attention mechanism proposed by Bahdanau
et al. (2014). The Transformer model is the base model with 2 encoder and decoder layers for almost
the same number of parameters with the BiLSTM model. The Transformer model achieves about
2.8× training speed compared with the BiLSTM model and better performance on three evaluation
metrics.
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5.4. Qualitative Results

Base Model(R): zebras are eating.
Add‐TVT(N+I): zebras are standing in a field.
Att‐TVT(N+I): zebras are playing with each other.
GT: two zebras are playing with each other.

Base Model(R): a man and woman are singing.
Add‐TVT(N+I): a man and woman are riding a bike.
Att‐TVT(N+I): a man and woman are riding a motorcycle.
GT: a man and woman are riding a motorcycle.

Base Model(R): a man is playing a gun.
Add‐TVT(N+I): the person is playing the music.
Att‐TVT(N+I): a group of people are playing the drums.
GT: four men are playing musical instruments.

Base Model(R): a man is playing football.
Add‐TVT(N+I): a group of men are fighting.
Att‐TVT(N+I): a man is doing martial arts.
GT: a man is demonstrating martial arts.

Figure 4: Examples on MSVD testing set. Here GT is short for ground truth, where a sample from
candidates is shown.

Several examples on MSVD testing set generated by our proposed models are shown in Fig. 4.
We see that without motion features our base model lacks the ability to capture the accurate action
in videos. Our fusion methods, Add-TVT and Att-TVT, both generate correct descriptions of these
samples, while Att-TVT performs slightly better than Add-TVT due to more detailed context of
sentences caught by the attentive-fusion module.

To show the effectiveness of attentive-fusion module, Fig. 5 shows an example in the MSVD
dataset and visualize the attention weights of the fusion block in the first layer of Att-TVT. It is clear
that the nouns in the sentence, including words “woman”, “liquid”, and “glass”, have a reasonable
strong relationship with visual features extracted from every frame. The verb “mixing” is assigned
with a higher weight of motion features. Note that the words “is”, latter “a”, and “〈eos〉” have a few
cues from visual contents, while they secure more information from the context of the previously
generated words.

6. Discussions

This paper presents a novel video captioning framework, i.e., Two-View Transformer (TVT) model.
In the framework, TVT learns the long-term dependencies of sequential data based on the multi-
head attention mechanism. The fusion blocks including Add-TVT and Att-TVT provide a novel
way to exploit information from three different modalities containing features of frames, motions,
and the previously generated words. Empirical results show that our framework achieves the state-
of-the-art performance on the MSVD dataset and competitive results on the MSR-VTT dataset using
visual and audio features. In the ablation study, we comprehensively demonstrate the effectiveness
of our proposed fusion modules. An additional enlightenment of this work is that the Transformer
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Figure 5: Visualization of attention weights of the first layer of Att-TVT decoder. The three
bars show the attention weights of frame representation, motion representation, and the
previously generated words, respectively.

network is able to well address the video captioning problem without the help of RNNs. In the
future, more other modalities can be incorporated into the TVT framework. We also expect that this
work may further inspire more future studies on the fusion approaches for video captioning.
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