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Here we present further details of our method and additional results on the MPII set.

1. CNN Part Detector and the Conditional Random Field

Among several options to represent body parts, we consider that heatmaps with Gaussian representa-
tions rest between two extremes, namely discrete 2D points (pose vector) and per-pixel annotations,
as illustrated in Fig. 1. Such representation convey more information than discrete 2D coordinates,
yet still are much cheaper to obtain than per-pixel part labelling. We proposed our simple weakly
supervised and part type-specific strategy, based on annotated 2D joint locations (Johnson and Ever-
ingham, 2010; Andriluka et al., 2014; Gong et al., 2017), for constructing heatmaps. The proposed
CRF fully connects all body parts in the multi-level appearance model. The pairwise relations are
based on Gaussian kernels that measure the likelihood of a given displacement between each pair
of parts in the model. The means X, ,» and the standard deviations Y, ,» of these Gaussian kernels
are defined, prior to the network training, with maximum likelihood estimation over the training set.
In Fig. 2 we show some of the learned parameters for the MPII dataset. In each graph, a sample
position for one given part is defined to be at the centre of a 256 x 256 frame. The continuous
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Figure 1: Range of body parts representations: (a) single 2D discrete point representation; (b) dense Gaussian
representation; (c) dense per-pixel representation. Heatmaps with Gaussian representation stand on the cen-
tral position of the spectrum. It takes into account inherent uncertainties about the location of the body parts
and conveys much more spatial information that the point representation. However, with our weak annotation
strategy, it is much cheaper to obtain in terms of annotation cost than the per-pixel labelling.
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lines show the normalized expected displacements calculated between each other body part and the
sample part in the center of the frame, whereas the dashed ellipses show the computed normalized
standard deviations. These parameters, and consequently the Gaussian kernels, relate directly to the
message-passing step of the mean-field inference, which is interpreted as follows; given a sample
body part (e.g. the central ones in Fig. 2), at each mean-field iteration it receives messages from all
the other parts conveying their expectations about its position. All these expectations are combined
with the unary energies through the learnable weights and compatibility matrices. It is important
to notice that Fig. 2 only shows the part in the central position of the frames “receiving messages”,
however for each body part at each possible location of the image there is a corresponding binary
random variable, thus the messages are in fact exchanged efficiently between all these random vari-
ables at each mean-field iteration.
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Figure 2: Spatial priors: mean displacements and standard deviations between sample parts (i.e. head,
left wrist, right ankle and body) and all other parts in the model for the MPII dataset. Parameters learned
prior to the network training through maximum likelihood estimation. Displacements and standard deviation
ellipses between the sample parts and other joints are showed in blue, while the analogous parameters are
showed in red for rigid parts and in green for the body. Note, for instance, that for the MPII dataset the
mean displacement of the head w.r.t. all other parts corresponds to a person standing and looking towards the
camera. All parameters are normalized w.r.t. the size of the frame. Best viewed in colour.
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2. Additional Results on MPII Dataset

(a) Heatmaps predicted for a person standing in front of the camera.

Figure 4: Samples of the heatmaps predicted for images from the MPII test set. From the top left to the
bottom right we have: original image with the limbs superimposed, heat top, neck, thorax, pelvis, right
shoulder, right elbow, right wrist, right hip, right knee, right ankle, left shoulder, left elbow, left wrist, left hip,
left knee, left ankle, head, torso, right upper arm, right lower arm, right upper leg, right lower leg, left upper
arm, left lower arm, left upper leg, left lower leg, whole body, background.
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