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Abstract

Sequence-to-sequence (Seq2Seq) learning framework has been widely used in many natural
language processing (NLP) tasks, including abstractive summarization and machine trans-
lation (MT). However, abstractive summarization generates the output in a lossy manner,
in comparison with MT which is almost loss-less. We model this by introducing a joint
selective mechanism: (i) A selective gate is added after encoding phase of the Seq2Seq
learning framework, which learns to tailor the original input information and generates a
selected input representation. (ii) A selection loss function is also added to help our selective
gate function well, which is computed by looking at the input and the output jointly. Ex-
perimental results show that our proposed model outperforms most of the baseline models
and is comparable to the state-of-the-art model in automatic evaluations.

Keywords: Abstractive Summarization, Sequence-to-sequence Model, Selective Mecha-
nism, Selection Loss

1. Introduction

Text summarization aims to condense the original text while keeping the salient information.
It can be divided into two types: extractive and abstractive. Extractive methods simply
take sentences from source text to construct the final summary (Woodsend and Lapata,
2010; Cao et al., 2015; Cheng and Lapata, 2016). However, direct extraction can only copy
the partial content of original source text, and if the original content has no proper parts
to convey the main idea of the text, extractive methods can hardly produce high-quality
summaries.

Abstractive methods read full text and try to understand it so that they can capture
the key points from a higher level, and then, they create summaries by selecting words from
source text or generating words which do not appear in source text. Though abstractive
methods generate summaries just like humans, it is more difficult to realize in comparison
with extractive ones. In this work we focus on abstractive sentence summarization task.

Recently, neural Seq2Seq models have achieved remarkable progress in this task. (Rush
et al., 2015) utilize an attention-based model for generating abstractive summaries inspired
by the developments in neural machine translation. (Zeng et al., 2016) produce a rep-
resentation of each word by reading article twice aiming at avoiding yielding suboptimal
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representations. (Zhou et al., 2017) create a tailored representation of each input word by
adding a selective gate after encoding phase.

Many of existing models for abstractive summarization are enlightened by MT directly
or indirectly. However, though both abstractive summarization and MT can be achieved
using Seq2Seq models, there are some differences between the two tasks. One of the most
important differences is that the former only needs to convey the main idea of the input,
and some words themselves or even their meanings will not appear in the output, while the
latter needs to make an explicit alignment between the input and the output so as to get
the exact translation. (Zhou et al., 2017) noticed this problem and proposed a selective
mechanism to model the distilling process in abstractive summarization.

In this work, we also introduce a joint selective mechanism to model the lossy manner of
abstractive summarization: (i) A selective gate is computed after encoding by reading the
word representation directly, which is composed of the word embedding and its bidirectional
hidden representation, in comparison with (Zhou et al., 2017)’s work which calculates the
selective gate by incorporating the original encoder outputs and the sentence representation.
(ii) A selection loss function is added which is computed by looking at the input and the
output jointly to help the selective gate function well. The reason why we set it this way
is that we assume joint consideration of the input and the output can make selection more
accurate.

2. Related Work

Abstractive sentence summarization generates a summary at sentence level, and it can be
used for sentence fusing after getting extracted sentences from document-level extractive
summarization. (Rush et al., 2015) were the first to utilize neural models to the task
of abstractive text summarization. They generate summaries in an encode-attend-decode
paradigm, which uses an attention-based encoder and a neural network language decoder.
Following their work, (Chopra et al., 2016) replaced the decoder with an RNN decoder and
(Nallapati et al., 2016) designed an RNN encoder-decoder model for text summarization.

(Zeng et al., 2016) tackled the problem that the encoders only read the history of the se-
quence when computing the representation of a word by proposing a read-again mechanism.
This mechanism reads the input twice and produces a second read representation according
to the first read representation. (Zhou et al., 2017) created a selective gate network to gen-
erate a second level representation of each word, which can help capture highlights in the
original. (Lin et al., 2018) proposed a global encoding framework to control the informa-
tion flow from the encoder to the decoder. (Ma et al., 2018) took a summary autoencoder
to supervise the learning of the Seq2Seq model. Our work is enlightened by (Zhou et al.,
2017)’s work mostly, but we consider the relation between the input sentence and its sum-
mary comprehensively, in consideration of the fact that one can hardly learn to select the
highlights in a sentence if he has never seen a number of original long sentences and their
summaries jointly before.
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3. RNN-Based Seq2Seq Attentional Model

The RNN-based Seq2Seq attentional model has been a commonly used baseline for the task
of abstractive summarization, which consists of an encoder and an attentional decoder.
Encoder: Let x = {x1, x2, ..., xn} be a sequence of input words, and the goal of the encoder
is to generate a representation of the input sequence. Here we utilize a bidirectional RNN
to construct the encoder, which is implemented using gated recurrent unit (GRU) (Cho
et al., 2014):

~hi = GRU(xi,~hi−1) (1)

~hi = GRU(xi, ~hi−1) (2)

By using bidirectional GRU, we can get the forward outputs (~h1,~h2, ...,~hn) and the
backward outputs ( ~h1, ~h2, ..., ~hn). For each word xi, its representation hi is constructed by
simply concatenating the bidirectional outputs:

hi = ~hi ⊕ ~hi (3)

where operator ⊕ indicates concatenation.
Attentional Decoder: A unidirectional GRU with attention mechanism is used as the
decoder, and on each time step t, the decoder generates current hidden state st by reading
the word embedding of the previous word wt−1 and the previous context vector ct−1. The
decoder hidden state is initialized using the last backward encoder hidden state:

st = GRU(wt−1, ct−1, st−1) (4)

s0 = tanh(Wd
~h1 + b) (5)

The context vector ct at each time step is a weighted sum of the encoder outputs and
the weights can be computed through attention mechanism (Bahdanau et al., 2014):

eti = v> tanh(Wehi + Uest) (6)

αt = softmax(et) (7)

ct =
n∑

i=1

αt
ihi (8)

where We and Ue are weight matrices.
Finally, the probability of the next word is generated by passing a linear transforming

of the word embedding of the previous word wt−1, the context vector ct and the current
hidden state st through a softmax layer, and a maxout layer (Goodfellow et al., 2013) is
also used after getting ot as (Zhou et al., 2017) does.

ot = Wowt−1 + Uoct + Vost (9)

mt = [max{ot,2j−1, ot,2j}]>j=1,...,d (10)

p(yt|y1, ..., yt−1) = softmax(Wmmt) (11)

where Wo, Uo, Vo and Wm are weight matrices. ot is a 2d-dimensional vector.
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Figure 1: An overview of our proposed model. Each time a review gate is computed towards
the original encoder outputs and the Euclidean distance between the selective gate
and the mean of the review gate at each time step will be treated as an extra loss
function.

4. Proposed Model

In this section, we introduce our proposed model which is based on the RNN baseline model
described above. Figure 1 shows an overview of our proposed model.

4.1. Selective Mechanism

In consideration of the lossy manner existing in the task of abstractive summarization, a
selective mechanism is introduced to model it. (Zhou et al., 2017) has proposed a selective
mechanism before, and in their model, the selective mechanism combines each encoder
output and the input sentence representation generated by concatenating the last forward
hidden state and backward hidden state together to compute a selective gate, and then
a new encoder output can be created by element-wise multiplication between the original
encoder output and the selective gate. This process is just like letting the network know
which words in the input are important for generating a summary only by reading the input
text, while in this paper, we let the network learn to select by looking at the input and the
output jointly, and the selective gate is computed as follows:

gi = σ(Wghi + Ugui) (12)

h′i = hi � gi (13)

where Wg, Ug are weight matrices, σ denotes sigmoid activation function, and � is element-
wise multiplication. Here we combine the word embedding of the input word ui and its
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corresponding original encoder output hi to compute a gate vector gi. The word embedding
ui represents the meaning of the word itself and the original encoder output hi represents
potentially large input context, and both are taken into consideration for selection.

After getting new encoder outputs h′i, an input context vector can be computed through
attention mechanism using h′i and current decoder hidden state st.

4.2. Selection Loss Function

For a person who knows many words’ meanings and can read long sentences, he may hardly
know how to select the highlights of the original long sentences easily unless he has seen
many summaries of other long sentences before. He needs to read the summary and review
the original text to learn what information will be salient for summarization. Thus we
compute a review gate at each time step as follows:

ri,t = σ(Wrhi + Urui + Vrst−1 + Qrwt−1) (14)

where Wr, Ur, Vr and Qr are weight matrices. The embedding wt−1 is the output of
the last decoding time step, which represents the meaning of the word itself. The hidden
state st−1 is the hidden state of the last decoding time step, which represents the potential
context before generating the word wt−1.

Computing the review gate this way is just like a person reading the summary and
reviewing the input text so as to learn to select. The mean of the review gate at each time
step is calculated to get the final review gate ri, and then the Euclidean distance between
the selective gate and the final review gate is treated as an extra loss function:

ri =
1

m

m+1∑
t=2

ri,t (15)

d(g, r) =
1

n

n∑
i=1

|ri − gi| (16)

where m is the length of the output sequence and n is the length of the input sequence.
The review gate of the first time step ri,1 is ignored, because it is generated using the SOS
token.

5. Objective Function

We adopt commonly used negative log-likelihood (NLL) loss function as well as our proposed
selection loss function as our learning goal:

L = −p(y|x, θ) + λd(g, r) (17)

where p(y|x) is the conditional probability of summaries given input texts. d(g, r) is the
Euclidean distance between the selective gate and the final review gate. Minimizing d(g, r)
can make the selection more accurate because the review gate considers the source input and
the target output comprehensively. λ is a tunable hyperparameter to balance the selection
loss and the NLL loss.
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6. Experiments

6.1. Datasets

We conduct our experiments on English dataset and Chinese dataset both.
English Dataset: For training, we use the Annotated English Gigaword corpus (Napoles
et al., 2012) as with (Rush et al., 2015). The parallel corpus is produced by pairing the first
sentence and the headline in the news article with heuristic rules. The training set and the
development set can be constructed with the script1. The script helps preprocess the data
using various basic text normalization, including tokenization, lower-casing, replacing all
digit characters with #, and replacing word types seen less than 5 times with a UNK tag.
Finally we get 3.8M sentence-summary pairs for training and 189K pairs for the development
set.

For testing, we use the same test sets as (Zhou et al., 2017), including the English
Gigaword, DUC 2004 and the Microsoft Research Abstractive Text Compression test sets.
The English Gigaword test set are originally used by (Rush et al., 2015), which contains
1951 sentence-summary pairs after removing pairs with empty titles. As this test set still
has some invalid lines, an internal test set with 2000 pairs is also used which is sampled
by (Zhou et al., 2017). The DUC 2004 test set (Over et al., 2007) includes 500 pairs, and
each pair is composed of one source sentence and four reference summaries. The Microsoft
Research Abstractive Text Compression (Toutanova et al., 2016) test set contains 785 source
sentences with multiple manually-created summaries, and we denote this test set as MSR-
ATC in the following.
Chinese Dataset: Our Chinese dataset is Large Scale Chinese Short Text Summarization
Dataset (LCSTS) (Hu et al., 2015). This dataset contains more than 2.4M text-summary
pairs, which are constructed from a popular Chinese social media website named Sina
Weibo2. There are three parts of it, and we use PART I as training set, PART II as
development set and PART III as test set. PART II and PART III are manually annotated
with relevant scores ranged from 1 to 5, and we only keep pairs with scores no less than 3
following (Ma et al., 2017).

6.2. Experimental Setting

For English dataset, as the dataset has already been preprocessed, we simply extract words
from the training set to construct vocabularies, resulting in a 120K size source vocabulary
and a 69k size target vocabulary. The embedding size and the GRU hidden size are set to
300 and 512 respectively. We use dropout (Srivastava et al., 2014) with probability 0.4. For
Chinese dataset, in consideration of the risk of word segmentation mistakes (Xu and Sun,
2016), we train the Chinese dataset in character-level. The vocabulary size is limited to
4000 for both the source input and the target output. The settings of the embedding size,
the GRU hidden size and the dropout probability are the same as the settings of English
dataset. The parameter λ is 1. Following previous work, we evaluate the test performance
with the commonly used ROUGE-1, ROUGE-2, ROUGE-L (Lin, 2004). A beam search

1. https://github.com/facebookarchive/NAMAS
2. https://weibo.com/
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optimization (Koehn, 2004) is also used for decoding and the beam size is set to 5 for the
following experiments.

6.3. Baselines

We compare our proposed model with following baselines (baselines for the English dataset
and the Chinese dataset are both listed):
ABS: (Rush et al., 2015) use an attentive CNN encoder and neural network language
decoder for abstractive summarization.
ABS+: (Rush et al., 2015) further tune their model using additional dataset, leading to
improvements on the test performance.
Luong-NMT: A two-layer LSTM neural machine translation model proposed by (Luong
et al., 2015).
SEASS: (Zhou et al., 2017) propose a selective mechanism after encoding, which helps
produce a second sentence representation.
RNN and RNN context: Two Seq2Seq baselines with bidirectional GRU encoder and
unidirectional GRU decoder provided by (Hu et al., 2015).
CopyNet: (Gu et al., 2016) incorporate copying mechanism into Seq2Seq learning frame-
work to solve out-of-vocabulary problem.
SRB: (Ma et al., 2017) propose a model which tries to maximize the semantic similarity
between texts and generated summaries.
DRGD: (Li et al., 2017) propose a deep recurrent generative decoder model which combines
the decoder with a variational autoencoder.
CGU: (Lin et al., 2018) proposed a global encoding framework to control the information
flow from the encoder to the decoder.
superAE: (Ma et al., 2018) took a summary autoencoder to supervise the learning of the
Seq2Seq model.
s2s+att: We also implement a RNN-based Seq2Seq attentional model as our baseline and
denote it as ”s2s+att”.

6.4. Results

We refer to our proposed Joint Selective Mechanism model as JSM. Table 1 shows the
evaluation results on the English Gigaword test set used by (Rush et al., 2015). From Table 1
we can learn that our JSM model outperforms all the baseline models in ROUGE-1 and
ROUGE-L and is comparable to the best baseline in terms of ROUGE-2. As for the SEASS
baseline model, we both use a selective mechanism, but our JSM model outperforms it in
all evaluation metrics. Table 2 demonstrates the evaluation results on the internal English
Gigaword test set sampled by (Zhou et al., 2017). Our JSM model achieves 47.32 ROUGE-
1, 24.96 ROUGE-2 and 44.12 ROUGE-L, which owns an advantage of 0.46 ROUGE-1, 0.38
ROUGE-2 and 0.59 ROUGE-L compared with the SEASS model.

We report the ROUGE recall score for the DUC 2004 test set following (Zhou et al.,
2017). As shown in Table 3, our JSM model outperforms the SEASS model with 0.55
ROUGE-1, 0.34 ROUGE-2 and 0.56 ROUGE-L improvements. However, the DRGD model
achieves the highest evaluation results with 31.79 ROUGE-1, 10.75 ROUGE-2 and 27.48
ROUGE-L, and we think the fact that the reference summaries of the DUC 2004 test set
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Table 1: ROUGE F1 scores on the English Gigaword test set.

Model RG-1 RG-2 RG-L

ABS(beam) 29.55 11.32 26.42
ABS+(beam) 29.76 11.88 26.96
Luong-NMT(beam) 33.10 14.45 30.71
SEASS(greedy) 35.48 16.50 32.93
SEASS(beam) 36.15 17.54 33.63
DRGD(beam) 36.27 17.57 33.62
CGU(beam) 36.30 18.00 33.80
s2s+att(greedy) 33.53 14.94 30.86
s2s+att(beam) 34.62 15.93 31.86

JSM(greedy) 35.66 16.85 33.35
JSM(beam) 36.40 17.85 34.00

Table 2: ROUGE F1 scores on the internal English Gigaword test set.

Model RG-1 RG-2 RG-L

ABS(beam) 37.41 15.87 34.70
SEASS(greedy) 45.27 22.88 42.20
SEASS(beam) 46.86 24.58 43.53
s2s+att(greedy) 42.61 20.12 39.65
s2s+att(beam) 44.60 22.23 41.54

JSM(greedy) 46.03 23.63 43.07
JSM(beam) 47.32 24.96 44.12

are capped at 75 bytes has an impact on the evaluation of our model. The results on the
MSR-ATC test set is demonstrated in Table 4, and our JSM model performs significantly
better in terms of ROUGE-1, ROUGE-2 and ROUGE-L scores compared to the SEASS
model.

Table 5 presents the evaluation results on the LCSTS test set. Our JSM model achieves
the score of 37.90 ROUGE-1, 24.68 ROUGE-2 and 35.06 ROUGE-L while the highest CGU
baseline model outperforms our JSM model a lot. We can see that our JSM model performs
worse on the Chinese dataset compared to the English dataset. One possible reason is that
our JSM model does not have a good adaptability on the Chinese dataset when trained in
character-level.
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Table 3: ROUGE recall scores on the DUC 2004 test set.

Model RG-1 RG-2 RG-L

ABS(beam) 26.55 7.06 22.05
ABS+(beam) 28.18 8.49 23.81
Luong-NMT(beam) 28.55 8.79 24.43
SEASS(greedy) 28.68 8.55 25.04
SEASS(beam) 29.21 9.56 25.51
DRGD(beam) 31.79 10.75 27.48
s2s+att(greedy) 27.69 8.08 24.00
s2s+att(beam) 28.46 9.07 24.61

JSM(greedy) 28.79 8.96 25.22
JSM(beam) 29.76 9.90 26.07

Table 4: ROUGE F1 scores on the MSR-ATC test set.

Model RG-1 RG-2 RG-L

ABS(beam) 20.27 5.26 17.10
SEASS(greedy) 19.77 6.44 17.36
SEASS(beam) 25.75 10.63 22.90
s2s+att(greedy) 19.36 5.63 17.03
s2s+att(beam) 24.34 9.16 21.62

JSM(greedy) 21.43 7.62 19.28
JSM(beam) 27.98 12.90 25.36

7. Discussion

In this section, we first discuss the effectiveness of the modified selective gate and the
selection loss and then we compare the difference between our model and (Zhou et al.,
2017)’s model through case analysis.

7.1. Effectiveness of the Modified Selective Gate and the Selection Loss

We train our model with different values of the hyperparameter λ, including 0, 0.01, 0.1 and
1. We also incorporate the selection loss with (Zhou et al., 2017)’s selective mechanism to
make a comprehensive comparison, and the λ is set to 1. Table 6 shows the results on the
English Gigaword test set with different values of the λ. All of the results are produced using
beam search decoding. For the SEASS model, we find the model with the selection loss
performs worse than the original model, and one possible explanation is that the guidance of
the selection loss conflicts with the guidance of the source sentence representation. Without
the selection loss, the modified selective gate is inferior to the selective gate of the SEASS
model, but with the hyperparameter λ increasing within certain range, the performance of
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Table 5: ROUGE F1 scores on the LCSTS test set.

Model RG-1 RG-2 RG-L

RNN(W) 17.70 8.50 15.80
RNN(C) 21.50 8.90 18.60
RNN context(W) 26.80 16.10 24.10
RNN context(C) 29.90 17.40 27.20
SRB 33.30 20.00 30.10
CopyNet(W) 35.00 22.30 32.00
CopyNet(C) 34.40 21.60 31.30
DRGD 36.99 24.15 34.21
CGU 39.40 26.90 36.50
superAE 39.20 26.00 36.20
s2s+att 34.90 21.28 32.02

JSM 37.90 24.68 35.06

Table 6: ROUGE F1 scores on the English Gigaword test set with different values of the λ.

Model RG-1 RG-2 RG-L

SEASS(λ=0) 36.15 17.54 33.63
SEASS(λ=1) 35.58 17.14 32.98
JSM(λ=0) 35.37 17.36 32.81
JSM(λ=0.01) 35.63 17.22 33.18
JSM(λ=0.1) 36.06 17.35 33.41
JSM(λ=1) 36.40 17.85 34.00

the modified selective gate improves. In fact We also train our model with the λ setting to
10, but the results is so bad (even worse than the baseline s2s+att model) that we do not
list them in Table 6.

7.2. Case Study

As shown in Table 7, two examples are chosen to compare the summaries generated by
our JSM model and the SEASS model. From the cases we can see that both models can
figure out the general idea of the source texts, but our model can capture the key points
more accurate benefitting from a joint selective learning between the input and the output
during training. For example, the golden summary for S(1) is “un senior official says peace
process in middle east hopeful with immense challenges.”, and it points out two key points
“hopeful” and “challenges”. From the source text, we can observe that “challenges” is
more important than “hopeful” because of the word “although”. Our result points out
“challenges” while the result of the SEASS model pays more attention to “hopeful”.
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Table 7: Examples of the generated summaries.

S(1): un under-secretary-general for political affairs ibrahim gambari said on
wednesday that although the future of the peace process in the middle east is hope-
ful, it still faces immense challenges.
Golden: un senior official says peace process in middle east hopeful with immense
challenges.
SEASS: un official optimistic about future of mideast peace process.
JSM: un official says future of mideast peace process still faces challenges.

S(2): a russian plane filled with coal miners slammed into a mountain on a nor-
wegian island near the arctic circle on thursday, apparently killing all ### people
aboard.
Golden: UNK russian plane crashes in arctic rescue team finds no sign of.
SEASS: ### killed in russian plane crash.
JSM: russian plane crashes into mountain near arctic circle.

Following (Li et al., 2017), we visualize our selective gate to demonstrate how it works.
Fig. 2 shows the first derivative heat map of the selective gate of S(1). Although the words
“hopeful” and “challenges” are both lit up, the word “still” makes our model select the
relevant information of “challenges” finally.

Figure 2: First derivative heat map of the output with respect to the selective gate. In this
input sentence, the words “hopeful”, “still”, and “challenges” are highlighted in
the heat map. The ground truth summary is “un senior official says peace process
in middle east hopeful with immense challenges” and the output summary of our
model is “un official says middle east peace process still faces challenges”.

8. Conclusion

In this paper, we propose a joint selective mechanism for abstractive sentence summarization
which selects the important information by reading the input and the output jointly. The
selective gate is trained according to a selection loss function which is calculated from the
Euclidean distance between the selective gate and the mean of the review gate at each
time step. Experimental results show our proposed model outperforms most of the baseline
models and is comparable to the state-of-the-art model benefitting from the joint selective
mechanism.
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