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Abstract

Graph clustering has attracted much attention in recent years, which has wide applications
in social and biological networks. Recent approaches on graph clustering mainly focus on
either certain graphs with node attributes or uncertain graphs without node attributes.
However, many real-world graphs have both uncertainty on the edges and attributes on the
nodes. We refer to such networks as attributed uncertain graphs. Different from conven-
tional graphs, attributed uncertain graphs post two major challenges for graph clustering:
1) uncertainty on the edges, which makes it difficult to extract reliable clusters; 2) high
dimensional attributes on the nodes, which contain irrelevant and noisy information. In
this paper, we study the problem of node clustering on attributed uncertain graphs, where
we exploit both the uncertain edges and a set of important attributes for graph clustering.
The uncertain edges can help identify the set of relevant attributes in the nodes, which are
called focus attributes. While the focus attributes can help reduce the uncertainty in edges
for graph clustering. We propose two novel approaches: AUG-I based upon integrated
attribute induced graphs and AUG-U based upon the unified partition over possible worlds
of a uncertain graph. Extensive empirical studies on real-world datasets demonstrate the
effectiveness of our approaches for clustering tasks on attributed uncertain graphs.

Keywords: Uncertain graphs, Node attributes, Graph clustering

1. Introduction

Many social and biological systems usually involve interconnected components. Such sys-
tems are often modeled as graphs, where nodes represent individuals, edges represent rela-
tionships between them, like friendship, kinship, interaction (Guimera and Amaral, 2005;
Aggarwal and Reddy, 2013), etc. With the rapid development of Internet and mobile tech-
nology, such graph data are becoming easier to get access to. However, due to errors in data
collection, privacy concerns, or preprocessing, such graph data are usually cluttered with
inherent uncertainty on the edges. Every edge in these uncertain graphs is labeled with
a probability of existence. For example, in protein-protein interaction networks, edges are
usually experimentally inferred, which indicate the connection probability among proteins;
in social networks, various complex relationships among users, such as influence and trust,
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(a) An attributed uncertain graph
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(b) Clusters extracted by our method
Figure 1: (a) is an example of attributed uncertain graph. Partitions by dashed line and

solid line result in the same partition probability. (b) shows the clusters detected
by our methods, which consider both alleviated uncertainty on the edges and
focus attributes on the nodes.

are not directly observable, but are estimated indirectly from user activities. Such network
data with uncertain edges are denoted as uncertain graphs or probabilistic graphs. Cluster-
ing uncertain graphs has recently gained popularity with widespread applications (Liu et al.,
2012; Langohr and Toivonen, 2012; Kollios et al., 2013; Halim et al., 2015; Boonma and
Natwichai, 2015; Ceccarello et al., 2017), such as identifying functional modules in biological
networks, grouping authors sharing similar research interest in co-author networks.

Conventional approaches to uncertain graph clustering problems usually focus on only u-
tilizing the uncertainty in graph structure. However, many real-world uncertain graphs have
abundant attributes associated with the nodes, in addition to their uncertain connectivity
information. For example, a protein-protein interaction network not only has interaction
relations but also has the gene expressions associated with the proteins. Social networks
contain uncertain edges as well as personal attribute information, including age, gender,
interest, etc. We refer to these uncertain graphs with attributes on nodes as attributed
uncertain graphs. To cluster these graphs, only considering the structural information is
inadequate to accurately determine the community structure, due to the uncertainty on the
edges. Hence, the abundant node attributes can be leveraged to reduce the edge uncertainty
and identify desirable clusters. However, the attributes of nodes are usually high dimen-
sional which contain irrelevant and noisy information. If we use all attributes for clustering,
irrelevant attributes can significantly harm the clustering performance.

In order to effectively cluster the nodes in attributed uncertain graphs, we need to
exploit both the uncertainty on the edges and the relevant attributes on the nodes. We give
an example of the relationship network in Fig. 1 (a). In this graph, seven users (marked
as A to G) are linked with a probability representing the degree of collaboration with each
other. Each user is also associated with a list of features denoting research interest, work,
and location, etc. If we ignore the attribute information in this uncertain graph, with the
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possible world semantics (Kollios et al., 2013; Liu et al., 2012), the probability to partition
the graph with the dashed line is (1 − 0.1)2 = 0.81. To separate with the solid line is also
(1 − 0.1)2 = 0.81. In this case, it is hard to decide which is the desirable partition. If we
take all of the attributes into account, E and G might be grouped separately as a result of
the major difference in affiliation.

To address the above challenges in clustering attributed uncertain graphs, in this study,
we propose two clustering methods, AUG-I based upon integrated attribute induced graphs,
and AUG-U based on the unified partition over all possible worlds of a uncertain graph. The
main idea is to use a subset of relevant attributes to alleviate the edge uncertainty so as to
find reliable clusters, where nodes are unlikely to be disconnected, besides, nodes in the same
cluster are of high semantic homogeneity. To be specific, the literature on uncertain graphs
assumes the existence of the edges in the graph are independent from one another. Thus,
in this study, to deal with the edge uncertainty, we adopt the well-known possible-world se-
mantics model (Liu et al., 2012; Kollios et al., 2013), which generates possible deterministic
attributed graphs by independently sampling each edge with its appearance probability in
an attributed uncertain graph. Each possible deterministic graph is assumed to be a view
of the true graph structure, which captures a particular aspect of node connections. Also,
nodes in each deterministic graph are embedded with abundant attributes describing per-
sonal features. We assume that nodes in each deterministic attributed graph are connected
for the reason that nodes share high similarity in subset of relevant attributes, called focus
attributes. Start with this, these focus attributes are inferred to enrich the connections
between nodes to alleviate edge uncertainty. With the set of attribute induced graphs, to
extract clusters, we propose AUG-I method by integrating all attribute refined graphs. We
also present AUG-U to partition nodes by a single unified cut over all attribute induced
graphs. An example by considering node attributes is shown in Fig. 1 (b), where every
edge is refined and assigned with a new weight. Specifically, nodes with common research
interest and work are linked with a large weight, like the edges between A and D, C and
D. Otherwise, the edge has a smaller weight, like D and E, D and G. After refinement,
nodes circled are grouped into the same clusters shown in Fig. 1 (b).

We summarize our contributions below:
1) To the best of our knowledge, this is the first work to define attributed uncertain

graphs and exploit the problem of clustering uncertain graphs with node attributes.
2) We present two novel methods, AUG-I and AUG-U, to address the challenges in

attributed uncertain graph clustering, i.e., uncertainty of edges and high dimensionality of
attributes.

3) We conduct extensive studies to show the effectiveness of our proposed approaches.

2. Related work

Our work is related to both uncertain graph clustering and attributed graph clustering. We
briefly discuss both of them.

Clustering uncertain graphs is to find clusters in graphs with probabilistic edges. Cur-
rently, some efforts have been made in uncertain graphs clustering (Liu et al., 2012; Langohr
and Toivonen, 2012; Kollios et al., 2013; Halim et al., 2015; Boonma and Natwichai, 2015;
Ceccarello et al., 2017). A representative approach, coded kmeans, is presented by Liu et
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al. (Liu et al., 2012). They use coding methods from the information theory to represent
the structures in clustering process. Authors in (Langohr and Toivonen, 2012) defined a
probabilistic similarity measure for nodes and used it to find clusters among groups of nodes
by conventional clustering methods. Kollios et al. extend the edit-distance based definition
of graph clustering to uncertain graphs (Kollios et al., 2013). Halim et al. cluster uncertain
graphs based on multi-population evolutionary algorithm (Halim et al., 2015). Ceccarello
et al. partition nodes by maximizing the minimum/average connection probability of any
node to its cluster center (Ceccarello et al., 2017). However, all of these methods are limited
to uncertain graphs without attributes.

Attributed graph clustering has been widely investigated by many researcher in recent
years (Zhou et al., 2009; Yang et al., 2009, 2013; Rafailidis, 2016; Jia et al., 2017). They
aim to partition the given graph into groups, in which nodes are cohesive connected and
attribute-wise homogeneous. However, these methods enforce attribute homogeneity in
all attributes. Though some methods loosen this constraint by subspace clustering and
extract dense subgraphs with semantic similarity in a subset of attributes (Moser et al.,
2009; Günnemann et al., 2010; Perozzi et al., 2014), all of these methods are designed for
conventional deterministic graphs, and they can not directly applied for attributed graphs
with uncertain structures. If we treat the attributed uncertain graph as attributed weighted
graphs by casting edge probability into edge weight. It will be problematic that it fails to
reflect the connectivity of uncertain graphs correctly.

3. Problem formulation

In this study, we introduce the novel problem of focused clustering in attributed uncertain
graphs. We first give the basic definitions of an attributed uncertain graph and induced
deterministic attributed graphs.

Definition 1 (Attributed uncertain graph) An attributed uncertain graph is represent-
ed as G = (V,E, F, P ), where V corresponds to the set of n nodes in G; E ∈ V × V denotes
the undirected edges between nodes; F is a set of n attribute vectors, which indicate the d
attributes associated with each node; P maps every pair of nodes to a real number in the
interval [0, 1]; puv represent the probability that the edge (u, v) ∈ E exists.

Definition 2 (Deterministic attributed graph) A deterministic attributed graph G =
(VS , ES , FS) is a particular case of an attributed uncertain graph, where edges show a binary
relationship between nodes. Each deterministic attributed graph G is achieved by sampling
each edge (u, v) ∈ E in G according to its probability puv, denoted as G v G.

For an uncertain network, reliability (Colbourn, 1987) is widely used to capture the
probability that a set of vertices are connected. It generalizes the connectivity to the
probabilistic scenario. The reliability for vertex set Vs ⊆ V of an uncertain graph G is
defined as

R(Vs) =
∑
GivG

Pr(Gi)I(Vs, Gi),

where Gi is a deterministic graph generated from G, Pr(Gi) is the sampling probability.
I(Vs, Gi) is 1, if Vs is contained in a connected component in Gi, and 0 otherwise. The reli-
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ability value of an uncertain graph lies in the interval (0, 1), which quantifies the probability
of the vertices remaining connected in an uncertain graph.

Given an attributed uncertain graph G, our purpose is to extract k clusters that are:
1) high reliability and structurally dense; (2) homogenous on the relevant attributes. We
assume that nodes connected in the deterministic attributed graph Gi are similar to each
other and share high semantic similarity in certain axes from high feature dimensionality, as
nodes usually have many noisy and irrelevant attributes. From this point, we aim to infer
the implicit attribute weights βi that qualify the similarity of nodes in a subset of feature
dimensions. Thus, βi is expected to be a sparse vector with large weights for only a few
attributes.

Having learnt the attribute weights βi in each deterministic attributed graph, our first
goal is to build a weighted graph, denoted as attribute induced graph. It is a key issue
of utilizing the associated relevant attributes to refine structural connections. In this way,
edge uncertainty is alleviated by consistence of attribute with large weights. With attributes
refined graphs, we present two methods, AUG-I and AUG-U, to partition the graphs.

4. Proposed methods

In this section we first introduce our sampling deterministic attributed graphs from G. Then
we present how to alleviate edge uncertainty between nodes with attribute weights. Next
we introduce our AUG-I and AUG-U methods to partition the graphs.

4.1. Sample deterministic attributed graphs

We adopt the possible-world semantic model to inject an uncertain attributed graph G =
(V,E, F, P ) to deterministic attributed graphs G = (VS , ES , FS) by sampling each edge
(u, v) independently according to its existence probability puv. The larger the probability
puv is, the higher possibility (u, v) is present in the deterministic attributed graph G. The
probability of sampling a deterministic attributed graph is:

Pr(G) =
∏

{u,v}∈ES

puv
∏

{u,v}∈E\ES

(1− puv).

The deterministic attributed graphs generated from G have binary values on edges, which
imply the possible definite connections of nodes. If nodes are connected, it is 1, otherwise, 0.
Each deterministic graph G is a particular case of G according to the probability distribution
Pr(G). Hence, each sampled deterministic attributed graph can be regarded as a view of
G and observed with the probability Pr(G).

4.2. Attribute induced graphs

For G v G, the sampled deterministic graph is assumed to reflect the true connections
among nodes to some degree. However, there still exists some noise in the linkage, as a
result of low probability edge will be selected in the deterministic scenario. Hence, we
expect to utilize the rich attributes of nodes to refine the connections and construct a new
weighted graph.
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Based on the edges between nodes, our first goal is to infer the relevance weights of node
attributes that make the nodes similar and connect to each other in this deterministic graph.
To achieve this, we capture this weighted similarity by the (inverse) Mahalanobis distance,
which measures the distance between nodes u and v with their attribute feature vector fu
and fv by (fu − fv)>W (fu − fv). If we restrict W to be diagonal, this corresponds to
learning a weight in each attribute dimension. Specially, if we set W = I, the distance is
degenerated into Euclidean distance.

Given the deterministic graph, we adopt the distance metric learning (Xing et al., 2003)
to infer W such that two connected nodes have small distance to each other. The learning
problem can be formulated as follows:

min
W

∑
(u,v)∈S

||fu − fv||2W − γ log

( ∑
(u,v)∈D

||fu − fv||W
)
, (1)

which is a convex optimization problem and it enables to be solved by efficient, local-
minima-free algorithms, especially for a diagonal solution.

Ḡ=AttInduce(G)

Input:
Gi : Deterministic attributed graph Gi = {VS , ES , FS};
α : A threshold that filter weighted edges;

Process:
// Create must-link and cannot-link node pairs;

1 S = ∅, D = ∅;
2 S ← ES ;
3 repeat
4 Random sample unconnected node pair {u, v} \ ES , D ← D ∪ (u, v) ;
5 until |D| = |S|;
6 Solve function in Eq. 1 for diagonal W ;
7 β ← diag(W ) ;
8 for edge (u, v) ∈ ES do
9 ES [w(u, v)]← 1

(1+
√

(fu−fv)>diag(β)(fu−fv))

10 end for
11 ĒS ← ∅;
12 for all edge (u, v) ∈ ES do
13 Seq ← sort(ES [w(u, v)])
14 end
15 if ES [w(u, v)] > α|ES | do
16 ĒS ← ĒS ∪ (u, v);
17 end if
18 Ḡ← (VS , ĒS);

Output:
Ḡ : the attribute induced weighted graph.

Figure 2: Construct attribute induced graph.

The details of inferring attribute weights is given in Fig. 2 (Lines 1-7), where S and
D are respectively the must-link and cannot-link pairs of nodes. In our setting, all the
connected node pairs in the deterministic graph constitute S. This is a suitable assumption,
nodes linked with a larger probability in G have a higher chance to be selected as a pair of
connected nodes in each possible graph. Thus, the connectivity is a reflection of similarity
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C = AUG-I(G, N , k)

Input:
G : Attributed uncertain graph G = (V,E, F, P )
N : Number of sampled deterministic graphs
k : Number of clusters

Process:
1 Ee ← ∅;
2 for 1 ≤ i ≤ N do
3 Pr(Gi) =

∏
{u,v}∈ES

puv
∏
{u,v}∈E\ES

(1− puv);

4 Ḡi=AttInduce(Gi);
5 for (u, v) ∈ ĒS do
6 if (u, v) 6∈ Ee then
7 Ee ← Ee ∪ (u, v);
8 end if

9 Ee[w(u, v)]← Ee[w(u, v)] + Pr(Gi)ĒS [w(u,v)]∑N
i=1 Pr(Gi)

;

10 end for
11 end for
12 Ge ← (Ee, V );

13 Aij ←

{
Ee[w(u, v)], (u, v) ∈ Ee

0, otherwise.

14 Dii ←
∑|V |

j=1 Aij ;

15 L = I −D−1/2AD−1/2;
16 {C1, C2, . . . , Ck} ← Spectral(L, k);
17 return C;

Output:
C : Set of k clusters

Figure 3: The AUG-I method

between nodes, if there exists no edge between two nodes, it means they are dissimilar with
each other. With this observation, we create D by randomly drawing pairs of nodes that do
not connect with each other. Meanwhile, to alleviate the affect of unbalance size of selected
node pairs, we keep |D| = |S|.

Having inferred the attribute weights, we reweigh the edges in G with the weighted
similarity of end nodes (Lines 8-10 of Fig. 2), which is induced by attributes of nodes with
large weights. However, as discussed above, noisy edges may be selected in the deterministic
graph. Hence, to further refine the attribute induced graph, we filter edges under a weight
threshold and construct a new graph Ḡ (Lines 15-18 of Fig. 2).

4.3. AUG-I

Given a set of attribute induced graphs, to partition the original uncertain graph, an intu-
itive way is to integrate all graphs into a combination one. Following this idea, we propose
our first method, called AUG-I. We note that each deterministic attributed graph Gi can be
taken as an instance of the original attributed uncertain graph G according to its sampling
probability Pr(Gi). Accordingly, the attribute induced graph Ḡi from Gi is proportional
to the probability distribution Pr(Gi). By refining edges with attributes of large weights,
each induced graph Ḡi is assumed to be a particular view of the uncertain graph structure,
which captures a certain aspect of the true connections between nodes. To integrate all pos-
sible aspects of true connections and get an overview observation, we combine all attribute
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induced graphs (views) to build a new weighted graph. This is done by an average weighted
combination according to its probability distribution as described in Fig. 3 (Lines 5-10).
After integration, we identify clusters in this weighted graph, denoted as Ge, by normalized
spectral clustering shown in Fig. 3 Lines 13-16.

4.4. AUG-U

We also propose a unified partition method, called AUG-U, which aims to find a single cut
on all induced graphs, instead of a cut on an integrated graph. Given the set of attribute
induced graphs {Ḡ1, Ḡ2, . . . , ḠN}, correspondingly, {Ā1, Ā2, . . . , ĀN} is the collection of
adjacency matrices. Assuming each individual induced graph has an optimal cut partition-
ing the graph with minimum cost, the single cut should satisfy the following criterions:
• It has low cut costs on on all attribute induced graphs.
• It is similar to each induced graph’s individual cut.

The first goal requires the costs of the final single cut over all induced graphs is small.
To achieve this, we average the weighted cut costs on all graphs according to the sampling
probability of each individual graph. As each attribute induced graph Ḡi is associated with
a sample probability Pr(Gi), which reflects the possibility nodes are connected, further,
it influences the cut costs with the single unified cut. We note that the cost of a cut
vi on a graph Ḡi is defined typically in clustering C(vi,Ai) = v>i Livi, where Li = I −
D
−1/2
i AiD

−1/2
i is the normalized Laplacian matrix of each induced graph, where Ai =

Pr(Gi)Āi, correspondingly, Di is the degree matrix of Ai. Hence, the cut of each graph Ḡi
can be computed typically as the eigenvector vi of the Laplacian matrix Li corresponding
to the second small eigenvalue. We assume the single cut on all graphs is denoted as u.
Therefore, the total cost of the single cut on all induced graphs is the summation of all
costs Lc =

∑N
i=1 u

>Liu.
The second criterion is to make sure the single cut is similar to each individual cut on all

induced graphs. As each individual cut can be viewed as a eigenvector vi ∈ Rn. Essentially,
to evaluate the similarity between the single cut and the optimal cuts on all induced graphs,
a natural way is to measure the cosine similarity with separate cut on each individual graph

u>vi

||u||22||vi||22
. As each vector is normalized into an unit vector, besides, maximizing this is

equivalent to maximizing the square of the value. Hence, the overall similarity over all
graphs is Ls =

∑N
i=1(u

>vi)
2.

We combine the aforementioned motivations into the following problem:

min
u

N∑
i=1

u>Liu− δ
N∑
i=1

(u>vi)
2

s.t. u>u = 1

where δ is a weighting parameter, which controls the trade-off between these two objective
terms. Note that above problem is equivalent to minimization of the following problem:

min
u

u>
[ N∑
i=1

(Li − δviv>i )
]
u
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To solve above constrained optimization problem, Karush-Kuhn-Tucker (KKT) condi-
tions can be utilized, then, the Lagrangian is defined as:

L = u>
[ N∑
i=1

(Li − δviv>i )
]
u− θ(u>u− 1)

Taking the stationarity condition, we get:

∂L
∂u

= (

N∑
i=1

(Li − δviv>i ))u− θu = 0

From primal feasibility condition, we have:

∂L
∂θ

= u>u− 1 = 0

TakingM =
∑N

i=1(Li−δviv>i ), we note that the candidate solutions are the eigenvectors
of M , the eigenvector corresponding to the smallest eigenvalue is the optimal solution as
shown in Fig. 4.

C = AUG-U(G, N , k)

Input:
G : Attributed uncertain graph G = (V,E, F, P )
N : Number of sampled deterministic graphs
k : Number of clusters

Process:
1 Ee ← ∅;
2 for 1 ≤ i ≤ N do
3 Pr(Gi) =

∏
{u,v}∈ES

puv
∏
{u,v}∈E\ES

(1− puv);

4 Ḡi=AttInduce(Gi);

5 Aij ←

{
Pr(Gi)Ee[w(u, v)], (u, v) ∈ Ee

0, otherwise.

6 Dii ←
∑|V |

j=1 Aij ;

7 Li ← I −D−1/2
i AiD

−1/2
i ;

8 end for

9 M ←
∑N

i=1(Li − δviv>i ); // vi is the eigenvector of an individual cut
10 {C1, C2, . . . , Ck} ← Spectral(M , k);
11 return C;

Output:
C : Set of k clusters

Figure 4: The AUG-U method

4.5. Complexity analysis

Given an attributed uncertain graph G with n nodes and m edges, we generate N possible
deterministic attributed graphs. For each sampled graph, we infer the weights by optimizing
the objective function in Eq. 1, we aim for a diagonal solution, local-optima-free gradient
descent techniques will take O( d

ε2
) for an ε-approximate answer (Boyd and Vandenberghe,
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2004). Having get the weight vector β, to assign each edge a new weight with complexity
O(md). We assume only a small set of attributes are highly relevant to make nodes similar
to each other. Thus, β is sparse with only a few non-zero elements for these attributes.
In this case, the multiplicative factor becomes effectively constant yielding a complexity of
O(m). Next, we keep the top α|ES | edges with large weights to construct a new graph. To
do so, we adopt minwise hasing to sort the edges incident to each node by weights. This
can be done in linear time and require O(m).

For AUG-I, to integrate all possible deterministic graphs, this takes O(Nm) in the
worst case, where N is the total number of deterministic graphs, as a portion of edges are
filtered when constructing attribute induced graphs. For AUG-U and extracting clusters by
spectral clustering algorithm, the most expensive step is the computation of the eigenvectors
of Laplacian matrix. To speed up for large graph, we compute the first k′ eigenvectors by a
sampling technique to find an approximate solution with Nyström method, the complexity
is O(l3) +O(nlk′), where l� n is the number of sampled points (Chen et al., 2011). With
the obtained matrix built from eigenvectors, it requires O(nk′2) to partition with kmeans

algorithm. When we use parallel kmeans, it takes O(nk
′2

p ), where p is the number of local
machines. Besides, we notice that the operation on each sampled deterministic attributed
graph is independent, which allows for parallel processing for speed up.

5. Experiment

To examine the performance in attributed uncertain graph clustering, we conducted exten-
sive experiments on synthetic and real-world datasets. In this section, we introduced the
datasets we used and the experiments we performed respectively, then we presented the
experimental results as well as the analysis, we also discussed the parameter sensitivity.

5.1. Data Collection

We used two collections of datasets: synthetic networks and real-world networks.
Synthetic datasets: A synthetic network involves two information: edge uncertainty

and node attributes. To generate the topological structure, we use LFR benchmark networks
Lancichinetti et al. (2008), which possess some basic statistical properties found in many
real-world networks, such as power law distribution of the degree and community size.
Besides, it specifies a mixing parameter µ such that every node connects a fraction of µ
nodes outside its cluster. The smaller µ is, the clearer community structure is. In this
study, we generate three LFR benchmarks setting µ = [0.6, 0.7, 0.8], other parameters are:
network size is set to 50, average degree 〈dk〉 = 5, maximum degree kmax = 20, τ1 = 2,
τ2 = 1, cluster size is in a range of [10, 20].

We also associate attributes for each node in the network. We define that each node
is described as one binary vector indicating the presence (the value is 1) or absence (the
value is 0) of the corresponding attribute from a collection of fa attributes. For nodes
in the same cluster, they are characterized by the same fc attributes, which describe the
cluster profiles. To blur the feature description, we add a percentage (ρ) of randomly
chosen irrelative attributes to each node. Specifically, in this study, the parameters are set
as: fa = 100, fc = 30, and the noise rate is ρ = 0.4.
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Real-world datasets: To evaluate performances for attributed uncertain graph clus-
tering, we compared our methods against baselines on five real-world graphs. One is Cora
dataset, a citation graph containing 2708 research papers from seven subfields of machine
learning. There are overall 5429 links indicating the citation relationships among these
papers. In this graph, each node is characterized by a 0/1-valued word vector indicating
the absence/presence of the corresponding word from the dictionary, which consists of 1433
unique words. Another set of graphs contain WWW-pages collected from the computer
science departments of four universities: Cornell, Texas, Washington, and Wisconsin (Sen
et al., 2008). Each page network is manually classified into five classes: course, faculty,
student, project, and staff. These four universities have 195, 187, 230, and 265 nodes and
304, 328, 446, and 530 edges, respectively. The edge probability is randomly generated from
a uniform distribution in the interval [0, 1] as in (Liu et al., 2012).

Table 1: Summary of experimental datasets in studied. “Avg(p)” denotes the average edge
probability of each uncertain graph.

Dataset n # Edge d Avg(p)

Cornell 195 304 1703 0.4964
Texas 187 328 1703 0.5161
Washington 230 446 1703 0.4992
Wisconsin 265 530 1626 0.4878
Cora 2708 5429 1433 0.5035

5.2. Evaluation Metrics

To test the performances of different methods in clustering attributed uncertain graphs,
we adopt accuracy (ACC) (Strehl and Ghosh, 2003) and pairwise F-measure (PWF) (Yang
et al., 2009) to evaluate the clustering accuracy of different methods. We also use the
average clustering reliability (ACR) (Liu et al., 2012) to measure the reliability of each
cluster obtained by different methods. ACR quantifies the probability of nodes remaining
connected in each cluster. Supposing C = (C1, C2, . . . , Ck) is the k clusters in an attributed
uncertain graph with n nodes. ACR is defined as:

ACR(C) =

∑k
i=1 |Ci|R(Ci)

n
.

5.3. Comparing Methods

In order to examine the effectiveness of our approaches, we compare against the following
methods:
• Coded-kmeans (Liu et al., 2012): A presentative method that exploits edge uncertain in
graph clustering.
• Spectral clustering (Ng et al., 2002): In our proposed methods, we adopt Spectral clus-
tering to partition the graph in the last step, so we compare with the Spectral clustering
method. It transfers the uncertain graphs into deterministic graphs by taking the uncer-
tainty of each edge as edge weight.
• FocusCO (Perozzi et al., 2014): An attributed graph clustering method that considers
subset of attributes and ignores edge uncertainty.
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• AUG-I (this paper): It considers both edges uncertainty and node attributes. It extracts
clusters on an integrated weighted graphs by merging all attribute induced graphs.
• AUG-U (this paper): It exploits both information. It finds a unified single cut that is
similar to each individual cut on each attribute induced graph.

5.4. Performance on synthetic graphs

Table 2 demonstrates the empirical results of different methods on three synthetic datasets.
Based on the results, we can notice that our presented AUG-I method significantly out-
performs baseline on most metrics with different settings of µ, especially when µ = 0.6.
The results of our another method AUG-U comes the next. This indicates the effective-
ness of our methods to consider both edge uncertainty and node attributes. Besides, it
proves that by integrating all particular views of the original uncertain graph in clustering
task, compared with AUG-U, which finds a unified cut to balance the results on all pos-
sible worlds, AUG-I captures more embedding network and performs better. Of all these
methods, spectral method demonstrates the worst results, which may be caused by simply
transferring uncertainty into edge weights. Besides, coded kmeans and FocusCo have better
results and show similar performances on these datasets, however, their results are worse
than our methods. This may be due to exploiting only one of these two information, either
edge uncertainty or node attributes. It indicates that only considering one information is
not adequate to obtain desirable results.

Table 2: Comparison results of different methods on the synthetic dataset. “Avg.” denotes
the average rank of different methods with different measurements.

µ methods
evaluation

Avg.
ACC PWF ACR

0.6

AUG-I 0.520 (1) 0.501 (1) 0.090 (2) 1.3
AUG-U 0.440 (2) 0.500 (2) 0.097 (1) 1.6
spectral 0.360 (4) 0.325 (4) 0.001 (4) 4

coded kmeans 0.440 (2) 0.334 (3) 0.001 (4) 3
FocusCO 0.410 (3) 0.311 (5) 0.008 (3) 3.6

0.7

AUG-I 0.480 (2) 0.523 (1) 0.082 (1) 1.3
AUG-U 0.460 (3) 0.508 (2) 0.056 (2) 2.3
spectral 0.500 (1) 0.501 (3) 0.011 (5) 3

coded kmeans 0.460 (3) 0.333 (5) 0.012 (4) 4
FocusCO 0.400 (4) 0.404 (4) 0.047 (3) 3.6

0.8

AUG-I 0.380 (1) 0.356 (1) 0.119 (1) 1
AUG-U 0.340 (3) 0.345 (2) 0.107 (2) 2.3
spectral 0.300 (5) 0.262 (4) 0.096 (3) 4

coded kmeans 0.360 (2) 0.249 (5) 0.059 (4) 3.6
FocusCO 0.312 (4) 0.308 (3) 0.054 (5) 4

5.5. Performance on real-world graphs

Empirical results of different methods on real datasets are given in Table 3. Based on the
results, we have the similar conclusion with the synthetic datasets, namely, our proposed
AUG-I and AUG-U methods generally outperform the other baselines on almost all datasets
in terms of all metrics. This further proves the effective use of relevant attributes to refine
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the uncertain structure such that edge uncertainty is alleviated. Besides, we have made
following interesting observations:
• Coded kmeans finds many separated loosely-connected clusters with lower ACR values.

This may be caused by basing on disconnected “fragments” (components) in each possible
graphs. Another possible reason is that it ignores the abundant node attributes in helping
to refine node connections.
• Different from coded kmeans, FocusCO is inclined to discover more connected clusters,

resulting in a large ACR value, especially on Cornell dataset showing the best result. Never-
theless, it partitions the graph into many small cohesive components and has low clustering
accuracy. This may largely due to overlooking the edge uncertainty and not capture the
real topological structure.
• By considering both edge uncertainty and node attributes, the overall accuracy of

our proposed AUG-I and AUG-U methods have improved. What is more, AUG-U tends
to extract more connected clusters and AUG-I have better clustering accuracy. We can
conclude that integrating all attributed graphs can better capture the real graph structure.

Table 3: Results of different methods on the real-world datasets. “Avg.” denotes the
average rank of methods on datasets.

criteria methods
datasets

Avg.
cornell texas washington wisconsin cora

ACC ↑

AUG-I 0.482 (1) 0.593 (1) 0.509 (1) 0.468 (1) 0.313 (1) 1
AUG-U 0.426 (3) 0.551 (2) 0.474 (2) 0.449 (3) 0.290 (2) 2.4
spectral 0.441 (2) 0.395 (4) 0.413 (3) 0.460 (2) 0.289 (3) 2.8
coded kmeans 0.267 (5) 0.247 (5) 0.257 (5) 0.253 (5) 0.164 (4) 4.8
FocusCO 0.353 (4) 0.433 (3) 0.391 (4) 0.316 (4) 0.289 (3) 3.6

PWF ↑

AUG-I 0.442 (1) 0.543 (1) 0.470 (2) 0.457 (3) 0.292 (1) 1.6
AUG-U 0.420 (3) 0.540 (2) 0.484 (1) 0.462 (2) 0.290 (2) 2
spectral 0.433 (2) 0.357 (4) 0.395 (3) 0.474 (1) 0.289 (3) 2.8
coded kmeans 0.230 (5) 0.253 (5) 0.246 (5) 0.245 (5) 0.159 (5) 5
FocusCO 0.349 (4) 0.413 (3) 0.355 (4) 0.348 (4) 0.288 (4) 3.8

ACR ↑

AUG-I 0.019 (3) 0.009 (3) 0.017 (1) 0.008 (3) 0.001 (1) 2.2
AUG-U 0.021 (2) 0.032 (1) 0.017 (1) 0.016 (1) 0.000 (2) 1.4
spectral 0.011 (4) 0.000 (4) 0.000 (3) 0.000 (4) 0.000 (2) 3.4
coded kmeans 0.000 (5) 0.000 (5) 0.000 (4) 0.000 (4) 0.000 (2) 4
FocusCO 0.026 (1) 0.010 (2) 0.013 (2) 0.012 (2) 0.000 (2) 1.8

To further prove the effectiveness of our proposed methods, we compared against baseline
methods with different settings of the number of clusters K shown in Figs. 5(a) - 5(d).
From these figures, we can draw similar conclusion as the results in Table 3. We further
confirm that our presented AUG-I and AUG-U methods are effective in clustering attributed
uncertain graphs. If only taking one source of information into account, the edge uncertainty
or the node attributes, it is not enough to achieve optimal results.

5.6. Parameter studies

There exists two essential parameters in our proposed methods, sample size N and filter
threshold α. Fig. 6 shows the sensitivity of AUG-I upon different settings of N . Different
from coded kmeans, requiring the sample size at least to be 5600 suggested in that work,
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Figure 5: Results of different number of clusters k.
generally, AUG-I is not very sensitive to the value of N once chosen a relatively large
N . We have a similar observation for AUG-U and we do not report it here for length
limit. According to the figures, we find that a small sample size usually leads to a non-
optimal partition result. This is due to the sampled deterministic graphs are inadequate
to capture the true connections between nodes. Intuitively, the larger sample size N , the
more information can be captured by the sampled deterministic graphs. As shown in these
figures, the performances on all datasets are gradually improved with the increase of N .
When N achieves 1500, the clustering quality on these four data sets gets more stable
and optimal, as to Texas and Washington datasets, optimal results can be obtained when
N ≈ 500. The results show the robustness of AUG-I, where its performance remains quite
stable once the sample size reaches a certain not too large value.
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Figure 6: Results vs. sample number of possible graphs N .

Besides, we also study the performances of our proposed method upon different values
of α, which denotes the rate of edges selected to construct the attribute induced graph. A
larger α indicates a lower filtering threshold, thus, more edges are reserved to construct
the attribute induced graph. Fig. 7 shows the performances of our method with different
setting of α on these four datasets. Generally, according to these figures, the results are
not very sensitive to the parameter, and the optimal choice of α is about 0.4 to 0.6. In this
study, we set α = 0.45. Intuitively, too small α will lead to a sparse graph structure and
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result in a worse result, where some informative edges are filtered. In other extreme case,
too large α usually incorporates more noise edges, thus it will output non-optimal results.
Hence, a value around 0.5 is more tolerant and gets more robust results.
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Figure 7: Results vs. α in constructing attribute induced graph.

6. Conclusions

In this work, we introduce a new problem of extracting clusters in attributed uncertain
graphs involving edge uncertainty and nodes attributes. We aim to use focus attributes as
an assistance to refine the graph structure of the attributed uncertain graph by alleviating
edge uncertainty. We proposed two novel clustering methods, called AUG-I based on an
integrated weighted graph and AUG-U based upon a single unified partition, to extract re-
liable clusters, where nodes are unlikely to be disconnected and have semantic homogeneity.
Extensive studies on real-world datasets demonstrate the effectiveness of our methods in
clustering attributed uncertain graphs. Besides, we exhibit the robustness of our methods
by parameter analysis on the size of sampling the uncertain graph.
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