
Proceedings of Machine Learning Research 95:454-469, 2018 ACML 2018

Stock Price Prediction Using Attention-based Multi-Input
LSTM

Hao Li applejack@sjtu.edu.cn

Yanyan Shen shenyy@sjtu.edu.cn

Yanmin Zhu yzhu@sjtu.edu.cn

Department of Computer Science and Engineering

Shanghai Jiao Tong University

Shanghai, China

Editors: Jun Zhu and Ichiro Takeuchi

Abstract

Stock price prediction has always been a hot but challenging task due to the complexity
and randomness in stock market. Investors and researchers usually derive a great number
of factors from original data such as historical stock price, company profit, or textual data
collected from social media. Normally these factors are then fed into models like linear
regression, SVM or neural networks to make a prediction. Even though the number of
factors are considerable, most of them have relatively weak correlations with future stock
price. During training process, these factors not only result in additional computation but
sometimes even be harmful to the performance of prediction. In this paper, we propose a
novel multi-input LSTM model which is capable of extracting valuable information from
low-correlated factors and discarding their harmful noise by employing extra input gates
controlled by the convincing factors called mainstream. We also introduce several new
factors including the prices of other related stocks to improve the prediction accuracy.
The experimental results on the stock data from China stock market demonstrate the
effectiveness of the proposed approach compared with the state-of-the-art methods.

1. Introduction

Using historical stock data to predict future stock price has been a hot topic for decades.
Since stock price is typically influenced by various factors, it is common to derive a large
number of factors from both historical stock price and other information such as financial
statement and textual data from social media, etc. In our empirical experiments, we found
an issue that including some of the factors by concatenation (dimensional expansion of
input vector) not only makes no contribution to future stock price prediction but can even
be harmful to the prediction accuracy. This usually happens when the correlation between
the factor and prediction target is relatively weak. If this problem remains unsettled, the
extra information from the additional factors can hardly offset the noise brought by them.

In general, we have two ways to solve this problem, either to identify and select useful
factors, or to adaptively weaken the effects of useless factors. There are many works that
tried to solve this problem by feature selection or feature extraction through various kinds of
algorithms such as PCA Singh and Srivastava (2017), Restricted Boltzmann Machine Chong
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Table 1: Correlation Coefficient between prediction target and other factors (10-day aver-
age).

Self Positive Negative Index Noise

Correlation 0.9877 0.3522 -0.0939 0.2322 0.0061

et al. (2017), Genetic Algorithm Tsai and Hsiao (2010). However, these approaches treated
every factor equally that they do not distinguish important factors from less important
ones during feature selection. In particular, none of these works consider to use mainstream
(i.e., important factors) to adaptively decide which other factors should be selected. In
fact, mainstream has decisive influence on the prediction result hence it can usually be
discriminated through a relatively simple process (e.g., by computing and comparing the
correlation coefficient). Table 1 briefly summarizes the correlation coefficient between our
prediction target (opening price of the target stock in the next day) and factors derived
from historical opening prices of various stocks (e.g., target stock itself, positive related
stocks, negative related stocks, stock index, etc.). These factors will be formally defined in
Section 3. We can see that historical opening price of the target stock itself is much more
related to the prediction target (0.9877) than opening price of other stocks. In this case,
we define it as mainstream. More formally, we could easily define a threshold of correlation
coefficient to separate mainstream with other factors. Using the mainstream to adaptively
select other factors is a way to make better use of the most convincing information, which we
believe would make the selection of secondary (or auxiliary) factors more comprehensively.
As a result, the noise of the auxiliary factors can be significantly depressed. This inspires
us to design additional structures (e.g., input gates) to let mainstream control auxiliary
factors. Besides, to the best of our knowledge, little attention has been paid to leveraging
information from other stocks in the same market for prediction. For example, from the
stocks belong to the same industry, which would more likely to share the same tendency
of fluctuation. As a prove we can see stock price of other stocks could be useful factors
(2-4 columns) since they are still much better than Gaussian noise (0.0061) in terms of the
correlation coefficient.

Stock price prediction is a special kind of time series prediction which is recently ad-
dressed by the recurrent neural networks (RNNs). However, the currently state-of-the-art
long short-term memory (LSTM) Hochreiter and Schmidhuber (1997) also suffers from the
aforementioned problem: it may be harmful when useless factors are simply concatenated
into the input vector of LSTM. In this paper, we propose a novel multi-input LSTM unit to
distinguish mainstream and auxiliary factors. Specifically, we design input gates which are
controlled by mainstream and previous hidden states for mainstream and auxiliary factors.
By filtering the data from both mainstream and auxiliary factors, these input gates gen-
erate memory cell inputs which will be merged before updating cell states. Regarding the
importance gap among these cell inputs, it is necessary to assign different weights on dif-
ferent cell inputs and merge them into one memory cell input via weighted sum. We apply
the attention mechanism Xu et al. (2015a) to assign different weights. For example, prior
work Choi et al. (2017) calculated the feature expression of medical codes using weighted
sum and the weights are assigned through the attention module. Therefore, we can employ
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the attention mechanism to compute weights for the combination of different cell inputs
based on cell inputs and previous cell states. The attention weights are learned adaptively
through the training process.

The major contributions of this paper are summarized as follows:

• We discover the potential usage of related stocks and employ the stock price of related
stocks to predict the future price of target stock.

• We propose a novel MI-LSTM model which enables mainstream to decide the usage of
other factors and employs a dual-stage attention mechanism on different memory cell
inputs and hidden states of different time steps to improve the prediction accuracy.

• We compare our proposed model with various state-of-the-art models to evaluate the
effectiveness of MI-LSTM on the stock data from Chinese stock market. MI-LSTM
achieves an improvement of 9.96% compared with LSTM in terms of mean square
error (MSE).

The rest of this paper is organized as follows. In Section 2, we introduce the related
works. Section 3 presents the definition of the problem, traditional LSTM and the factors
we use. Details of our attention-based MI-LSTM model are provided in Section 4. The
experimental results are presented in Section 5. Section 6 draws the conclusion of this
paper.

2. Related Work

2.1. Stock Price Prediction

Stock price prediction has always been a challenging task because of the volatility in stock-
market according to ADAM et al. (2016). Various attempts have been made using different
kinds of traditional machine learning algorithms. For example, Chen and Hao (2017); Luo
et al. (2017) applied WSVM, which is a kind of variant of the commonly used support vector
machine but is able to assign weights on different features or samples. In the meantime,
autoregressive (AR) model is another widely used method for time series prediction. Ade-
biyi et al. (2014); Xiao et al. (2014) used both autoregressive integrated moving average
(ARIMA) and NN model to predict stock market in order to compare the performance of
different models. In Chang and Lee (2017), Markov decision process and genetic algorithms
are implemented to design stock market strategies. The aforementioned works tend to focus
on deriving factors from original numerical data. In order to obtain extra information, Jin
et al. (2017); Nguyen et al. (2015); Bordino et al. (2014); Ming et al. (2014) turned textual
data collected from social media into vectors and use them as addition features. Apart from
the efforts on traditional machine learning methods, neural networks have played more and
more important roles in recent years.

2.2. Neural Networks

Neural networks, known by their complicated and non-linear nature, have achieved great
success in various domains. To tackle time series problems, recurrent neural networks

456



Stock Price Prediction Using Attention-based Multi-Input LSTM

(RNNs) which receive the output of hidden layer of the previous time step along with cur-
rent input have been widely used. Because of their recurrent structure, RNNs use a special
backpropagation through time (BPTT) algorithm Werbos (1990) to update cell weights.
In financial domain, Rather et al. (2015) used RNN and genetic algorithms to calculate
stock returns. However, Bengio et al. (1994) pointed out that traditional RNNs have great
difficulty to capture long-term dependency because of vanishing gradients. Thus the per-
formance of RNNs is restricted until Hochreiter and Schmidhuber (1997) first proposed
long short-term memory (LSTM) units which store long-term information in additional
cell states and use gates to control the information flow in or flow out. Since then, tra-
ditional RNNs are commonly replaced by LSTM or gated recurrent unit (GRU), which is
another approch to deal with long-term dependency. Based on LSTM, Zhang et al. (2017)
used discrete fourier transform (DFT) to decompose the output of hidden units to cap-
ture multi-frequency patterns. Besides RNNs, Ding et al. (2015) used convolutional neural
networks (CNNs) to model both short-term and long-term dependencies.

2.3. Attention Mechanism

Assigning attention weights on neural networks has achieved great success in various ma-
chine learning tasks. In machine translation, the goal is to translate a given sentence to
a new sentence in another language. It it a matter of course that different words in orig-
inal sentence should have different importance while generating different words in target
sentence. Since the great success that Bahdanau et al. (2014) used attention-based RNNs
to assign attention weights on different hidden outputs corresponding to different words,
employing attention weights has become epidemic. In electronic health records (EHRs) do-
main, Ma et al. (2017) introduced three kinds of temporal attention on different time steps.
As for recommendation systems, Wang et al. (2017) assigned attention among multiple neu-
ral nets and Chen et al. (2017a) used knowledge-based attention to utilize field knowledge.
Besides, attention mechanism has also made progress in QA systems Chen et al. (2017b)
and image caption generation Xu et al. (2015b). Finally, a recent work in stock price pre-
diction Qin et al. (2017) incorporated both encoder-decoder and attention mechanism to
propose a kind of dual-stage attention-based RNN namely DA-RNN. We would also employ
DA-RNN as one of our comparative methods.

3. Preliminaries

Problem Definition: The goal of this work is to predict the opening price of the next
day given historical data. We define the historical series of the target stock as Y =
(y1, y2, ..., yT )> ∈ RT where T represents time window size and yt the stock price at
time t. Similarly related stock series (auxiliary factors) would be represented by X =
(X1,X2, ...,XT )> ∈ RT×D where D specifies the number of related stocks. Xt ∈ RD is the
stock prices of all D related stocks at time t and Xd ∈ RT is the stock prices of the dth

stock in time window T . Thus the prediction target yT+1 could be defined as follows:

yT+1 = F (y1, y2, ..., yT ,X1,X2, ...,XT ) (1)

F (·) is the function we are aiming to learn.
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Figure 1: MI-LSTM. The intersection between ht−1 and Ỹt, P̃t, Ñt, Ĩt represents concate-
nate operation. Tokens like “·”, “σ”, “

∫
”, “+” represent element-wise operations

of multiplication, sigmoid, tanh, addition, respectively.

Long Short Term Memory (LSTM) model: The LSTM has been one of the most
popular models for time series prediction in recent years. Its output at time t depends on the
input at time t and its previous hidden states. Formally, given a time series (x1,x2, ...,xT )
with xt ∈ Rm, a LSTM unit updates as follows:

ft = σ(Wf [ht−1; xt] + bf ) (2)

it = σ(Wi[ht−1; xt] + bi) (3)

C̃t = tanh(Wc[ht−1; xt] + bc) (4)

ot = σ(Wo[ht−1; xt] + bo) (5)

Ct = Ct−1 ∗ ft + C̃t ∗ it (6)

ht = tanh(Ct) ∗ ot (7)

where ht,ht−1 ∈ Rq are the hidden states at time t and t−1, q is the dimension of the hidden
state. Wf ,Wi,Wc,Wo ∈ Rq×(q+m) are the weight matrices and bf ,bi,bc,bo ∈ Rq are bias
vectors. σ represents sigmoid function and operator ∗ is element-wise multiplication. For
convenience, we would like to use a single non-linear function f1 to represent a LSTM layer
described using Eqn. (2) - (7):

ht = f1(ht−1,xt) (8)

Given input A = (a1,a2, ...,aT ) ∈ RT×m where at ∈ Rm, we define an q-dimensional
LSTM layer:

A′ = LSTM(A) (9)

where A′ = (a′1,a
′
2, ...,a

′
T ) ∈ RT×q, a′t ∈ Rq is the output and:

a′t = f1(a
′
t−1,at) (10)
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Factors: Let S be the universe of all stocks in the same stock market. Our factors are
derived from both target stock price series Y ∈ RT and related stock series X ∈ RT×D as
mentioned. The matrix X contains three kinds of stock series: positive correlation series
Xp ∈ RT×P , negative correlation series Xn ∈ RT×N and index series Xi ∈ RT where
D = P +N + 1.

It is a common scene in the stock market that a group of stocks sometimes share an
identical pattern of tendency. If one of the stocks takes the lead, the rest in the group
are likely to follow. This inspires us to define the series Xp to capture those positive
related stocks. As for a target stock i ∈ S, we first trace back Tr time steps from Y
and generates an extended series Si = (y−Tr , y−Tr+1, ..., y−1, y1, y2, ..., yT )> ∈ RTr+T . For
any other stock s ∈ S and s 6= i, we also trace back Tr time steps and obtain Ss =
(xs−Tr

, xs−Tr+1, ..., x
s
−1, x

s
1, x

s
2, ..., x

s
T )> ∈ RTr+T by cutting out the series in the same time

period as Si. In this paper, we use Pearson correlation coefficient (PCC) to measure the
correlation between different stock price series. Given two variables A,B ∈ RT , PCC is
computed by:

r(A,B) =
Cov(A,B)√
V ar(A)V ar(B)

(11)

where Cov(·) and V ar(·) are the covariance and variance, respectively.
The correlation between target stock series and Ss, r(Si,Ss) can be calculated using

Eqn. (11). We consider the stocks with P -largest r(Si,Ss) as positive correlation stocks.
The last T time steps (xs1, x

s
2, ..., x

s
T )> of the P positive correlation stocks constitute Xp. On

the contrary, we generate negative correlation series Xn by selecting N -smallest r(Si,Ss).
And Xi would be the stock index series in time window T . Note that in our experiments,
the largest value of P or N is 20. And in our dataset, we always have enough number (more
than 20) of positive or negative stocks which have PCC larger or smaller than 0 with target
stock, respectively.

We use the first LSTM layer with hidden units sized q to extract useful factors from the
original series. Table 1 shows the 4 kinds of factors we use. We define “Self” and “Index”
as follows:

• Self (mainstream):
Ỹ = LSTM(Y) (12)

• Index:
Ĩ = LSTM(Xi) (13)

where Ỹ, Ĩ ∈ RT×q.
Each row Xp

p ∈ RT , Xn
n ∈ RT will go through the same LSTM layer:

X̃p
p = LSTM(Xp

p) (14)

X̃n
n = LSTM(Xn

n) (15)

where X̃p
p, X̃

n
n ∈ RT×q, p = 1, 2, ..., P and n = 1, 2, ..., N .

In order to decrease input dimension we implement average strategy on the extracted
features X̃p

p and X̃n
n. We define “Positive” and “Negative” as follows:
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• Positive:

P̃ =
1

P

P∑
p=1

X̃p
p (16)

• Negative:

Ñ =
1

N

N∑
n=1

X̃n
n (17)

where P̃, Ñ ∈ RT×q.

4. Proposed Model

4.1. Multi-Input LSTM Model

In our model, we employ “Self” factor as mainstream and 3 auxiliary factors namely “Posi-
tive”, “Negative” and “Index”. We believe that although these factors play secondary roles
compared with mainstream, they are still useful for predicting future stock price.

The original LSTM receives only one input vector at each time step but we can always
concatenate these 4 factors into a single input through dimensional expansion. However
unlike most other prediction problems, stock price prediction can be an extreme challenge
since the correlation coefficient between the 3 auxiliary factors and the prediction target
are rather small. As we mentioned in Section 1, if we simply expand the input dimension
by concatenation, the extended dimensions might become a serious distraction rather than
supplementary. Therefore, we propose the multi-input LSTM to adapt multiple input series
and emphasize the mainstream. We employ Ỹ, P̃, Ñ, Ĩ ∈ RT×q as the input of the 4 kinds
of factors and Ỹt, P̃t, Ñt, Ĩt ∈ Rq as their corresponding input vector at time t where
t = 1, 2, ..., T .

Figure 1 shows the structure of our proposed MI-LSTM. We can see the cell input of
auxiliary factors are generated by both auxiliary factors and previous hidden states ht−1.
However, they have no impact on their corresponding input gates.

The forget gate and output gate of LSTM remain the same compared with the original
LSTM:

ft = σ(Wf [ht−1; Ỹt] + bf ) (18)

ot = σ(Wo[ht−1; Ỹt] + bo) (19)

where ht−1 ∈ Rp is the hidden states of the previous time step and p is the number of the
MI-LSTM hidden units. Wf ,Wo ∈ Rp×(p+q) are the weight matrices of forget gate and
output gate respectively. Their corresponding biases are bf ,bo ∈ Rp. The forget gate and
output gate are ft,ot ∈ Rp respectively.

460



Stock Price Prediction Using Attention-based Multi-Input LSTM

Since there are 4 input factors, the cell state inputs should match the same number:

C̃t = tanh(Wc[ht−1; Ỹt] + bc) (20)

C̃pt = tanh(Wcp[ht−1; P̃t] + bcp) (21)

C̃nt = tanh(Wcn[ht−1; Ñt] + bcn) (22)

C̃it = tanh(Wci[ht−1; Ĩt] + bci) (23)

where C̃t, C̃pt, C̃nt, C̃it ∈ Rp are the cell state inputs of mainstream, “Positive”, “Nega-
tive” and “Index” factors. Wc,Wcp,Wcn,Wci ∈ Rp×(p+q) are the weight matrices and
bc,bcp,bcn,bci ∈ Rp are the biases.

To control auxiliary factors all input gates are decided by mainstream and previous
hidden states.

it = σ(Wi[ht−1; Ỹt] + bi) (24)

ipt = σ(Wip[ht−1; Ỹt] + bip) (25)

int = σ(Win[ht−1; Ỹt] + bin) (26)

iit = σ(Wii[ht−1; Ỹt] + bii) (27)

where it, ipt, int, iit ∈ Rp are the input gates of the 4 kinds of factors. Notice that they are
not related to auxiliary factors. Wi,Wip,Win,Wii ∈ Rp×(p+q) are the weight matrices and
bi, bip,bin,bii ∈ Rp are their corresponding biases.

In LSTM, the element-wise multiply product of C̃t and it is the final cell state input at
time t. However when there are 4 cell inputs C̃t, C̃pt, C̃nt, C̃it, we have to combine them
first. Here we assign attention weights to different cell inputs. First we use the input gates
to filter the cell inputs by element-wise multiplication:

lt = C̃t ∗ it (28)

lpt = C̃pt ∗ ipt (29)

lnt = C̃nt ∗ int (30)

lit = C̃it ∗ iit (31)

where lt, lpt, lnt, lit ∈ Rp are the cell inputs of different factors. Then, weighted sum is
performed on these cell inputs:

Lt = αtlt + αptlpt + αntlnt + αitlit (32)

where αt, αpt, αnt, αit ∈ R are the attention weights and Lt ∈ Rp is the final cell state input
at time t. The attention weights are decided by the cell inputs themselves and the cell state
at previous time step:

ut = tanh(lt
>WaCt−1 + ba) (33)

upt = tanh(lpt
>WaCt−1 + bap) (34)

unt = tanh(lnt
>WaCt−1 + ban) (35)

uit = tanh(lit
>WaCt−1 + bai) (36)

[αt, αpt, αnt,αit]
> = Softmax([ut, upt, unt, uit]

>) (37)
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Figure 2: Illustration of our entire model.

where ut, upt, unt, uit ∈ R are the intermediate products of attention weights. Wa ∈ Rp×p,
ba ∈ R are the parameters to be learned. Ct−1 ∈ Rp is the cell state at time t − 1. The
intermediate products are fed through a softmax layer as a vector to generate the attention
weights. Note that the attention vector is able to change at every time step. When the
update vector of cell state Lt is settled, the rest of our MI-LSTM unit work the same way
compare with original LSTM:

Ct = Ct−1 ∗ ft + Lt (38)

ht = tanh(Ct) ∗ ot (39)

where Ct,ht ∈ Rp are the cell state and output at time t. The whole process of MI-LSTM
are Eqn. (18) - (39) which we use function f2 to summarize:

ht = f2(ht−1, Ỹt, P̃t, Ñt, Ĩt) (40)

Similar to Eqn. (9), let Ỹ′ = (Ỹ′1, Ỹ
′
2, ..., Ỹ

′
T ) ∈ RT×p be the output we can also use a

non-linear function to represent a MI-LSTM layer:

Ỹ′ = MILSTM(Ỹ, P̃, Ñ, Ĩ) (41)

where
Ỹ′t = f2(Ỹ

′
t−1, Ỹt, P̃t, Ñt, Ĩt) (42)

As aforementioned, we hope that even if the additional factors are useless, they should
never make things worse. Thus matrix Wcp,Wcn,Wci and biases bcp,bcn,bci are all ini-
tialized to 0 which means that the auxiliary factors are ignored in the very beginning.
Hopefully the information from auxiliary factors will gradually flow in with the training
process under the control of mainstream.

Based on the MI-LSTM units, we construct our prediction model as shown in Figure
2. The factors are generated by the first LSTM layer, then they are fed into MI-LSTM.

Using Eqn. (41) we obtain a the hidden states at each time step Ỹ′ = (Ỹ′1, Ỹ
′
2, ..., Ỹ

′
T ) ∈

RT×p. In our model, we further employ temporal self-attention on Ỹ′ which can be calcu-
lated as follows:

462



Stock Price Prediction Using Attention-based Multi-Input LSTM

jt = vb
>tanh(Wb(Ỹ

′
t)
> + bb) (43)

β = Softmax([j1, j2, ..., jT ]>) (44)

where matrix Wb ∈ Rp×p, bias bb ∈ Rp and vector vb ∈ Rp are the parameters to
learn. The vector consists of the intermediate product jt ∈ R is fed into a softmax layer to
generate the temporal attention vector β ∈ RT .

The attention output will be:
ỹ = β>Ỹ′ (45)

where ỹ ∈ Rp. Vector ỹ is finally fed through several fully connected NN layers to make
the prediction:

ŷT+1 = Activation(Wỹ + b) (46)

where W ∈ R1×p, b ∈ R are NN parameters to learn. Note that for simplicity, Eqn. (46) only
describes a one-layer fully connected NN since it directly outputs the prediction. Additional
NN layers can be easily added between ỹ and ŷT+1 through similar equation. The activation
can be various non-linear functions such as sigmoid, ReLU, etc. In our experiments we select
ReLU as our activation.

4.2. Training

We use RMSProp Hinton et al. (2012) as our training optimizer with a learning rate of
0.001. In terms of the data size, the minibatch size is 512. The samples are shuffled at the
end of each iteration. The model is learned by minimizing the mean square error over all
train samples:

L =
1

K

K∑
k=1

(ykT+1 − ŷkT+1)
2 (47)

where K is the number of training samples.

5. Experiments

5.1. Data

We choose the major stocks under CSI-300 index as our dataset. Among the 300 stocks we
remove 40 stocks whose historical record is less than 4 years. We also treat CSI-300 index as
an individual stock thus our dataset contains 261 stocks’ opening price from April 25, 2013
to May 15, 2017. Validation set is derived from the latest 300-101 days and testing set is
derived from the latest 100 days, while the rest is used for training. With fixed time window
size T = 10 and stride 1 we generate 249,516 samples from 261 stocks (including index)
totally, including 171,216 train samples, 52,200 validate samples and 26,100 test samples.

5.2. Experimental Settings

The parameters in our model include LSTM dimension q, MI-LSTM dimension p, time
window size T related timesteps Tr, positive stock number P and negative stock number N .
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Table 2: Model performance.
Models Min. MSE (×10−3) Avg. MSE (×10−3)

LSTM 1.017 1.042

LSTM-C 1.050 1.124

DA-RNN 1.511 1.706

MI-LSTM 0.996 1.012

LSTM-CN 1.072 1.105

MI-LSTM-N 1.018 1.045

For convenience the following parameters is settled: q = p = 64, T = 10, Tr = 20. P and
N are equal and chosen from {4, 6, 8, 10, 15, 20}. As for DA-RNN, the LSTM dimension of
encoder and decoder are both 64 (m = p = 64 as defined in original paper). When one
stock is treated as the target series, the rest 260 stocks would be the driving series (defined
in original paper). Time window are also set to 10.

We choose the mean square error MSE of all samples as our metric. It can be calculated
through Eqn. (47) using test set. Notice that the MSE we calculated are derived from
normalized data. That’s because there exists huge value gap among different stocks. If we
use original stock price to evaluate error, the error of high price stocks would probably be
much more larger than low price ones, which implies models perform better on high price
stocks would very likely to have better overall performance. Thus the performance on low
price stocks would become dispensable. To avoid the bias caused by the aforementioned
problem we evaluate the error with normalized stock price ranged from -1 to 1.

5.3. Comparison Results

In Table 2, we compare our model with LSTM and DA-RNN. The first row is original LSTM
which does not consider auxiliary series. LSTM-C is also original LSTM but concatenates
both mainstream and auxiliary series at each time step. The fourth row is the results of
our proposed MI-LSTM, which considers both series while emphasizing the mainstream.
Compare the results of LSTM with LSTM-C, we could see that the average MSE increases
from 1.042 to 1.124 while minimum MSE deteriorates from 1.017 to 1.050. That means
when the auxiliary factors are added through expanded dimensions, the extra factors are
actually harmful to the prediction. However, it does not mean that these factors are use-
less. As we can see, our proposed model achieves 0.996 in minimum MSE and 1.012 in
average MSE. This result proves our proposed MI-LSTM is able to capture some valuable
information which might be ignored by original LSTM. Besides, the DA-RNN model does
not perform well in our experiments. This might be caused by 2 reasons:

• DA-RNN is used to predict only the NASDAQ100 index value given historical value
and 81 stock series under NASDAQ100 as driving series. Besides, the time stamp of
the prediction target is the same as the latest time stamp of driving series unlike the
data we use which has a one-step gap. Hence DA-RNN would face a much more noisy
situation while using our data set.
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Table 3: Related Stock Number selection.
P 4 6 8 10 15 20

Min. MSE (×10−3) 1.036 1.026 1.024 0.996 1.035 1.012

Avg. MSE (×10−3) 1.066 1.050 1.048 1.012 1.056 1.054

• DA-RNN implements attention among 81 stocks, but there are 260 stocks in our data
set, which makes the learning of attention weights more difficult.

As for the last 2 rows of Table 2, we want to know what will happen when the auxiliary
seires are totally useless. The model and data shape of LSTM-CN and MI-LSTM-N are
completely the same as LSTM-C and MI-LSTM respectively. But we replace the auxiliary
series with Gaussian noise. As we expected, MI-LSTM achieves better performance since the
noise inputs are filtered by mainstream. Notice that MI-LSTM-N (1.045) is just very slightly
worse than LSTM (1.042) which indicates that the Gaussian noise inputs can hardly effect
the result while using MI-LSTM. Another interesting thing is that if we compare LSTM-
CN with LSTM-C, it turns out the average MSE of LSTM-C (1.124) is even larger than
LSTM-CN (1.105). This phenomenon not only reveals the shortage of original LSTM but
also further explains the potential consequence of improper factor selection.

5.4. Effect of Related Stock Number

Since we employ the stock price of related stocks to generate factors, we want to know how
many related stocks should be considered. Table 3 shows how related stock number P = N
influence the performance of our model. From the results we can see that the performance
increases along with P when the number of related stocks is rather small. At P = 10 the
mean square error performance come to a peak which is 1.012 × 10−3 in average and the
minimum reaches 0.996× 10−3. But it does not mean that larger P gets better result. We
can see the performance deteriorates when P = 15 and P = 20.

5.5. Effect of Attention Module

Figure 3 shows the trend of attention weights inside MI-LSTM during training. The weights
are calculated by Eqn. (37), consider only the last time step T and perform average among
all samples. We can see the mainstream is gradually assigned the largest attention weights
while the attention weights of “Positive” and “Negative” factors drop rather quickly. But
the “Index” weights become larger. The average attention weights of mainstream and
CSI-300 index converge to about 0.32 and 0.29 when the model parameters are stable. In
economics we know stock market index is an important and comprehensive symbol which
can largely reflect recent market environment. Thus our result is another evidence to prove
its significance. On the other hand, the attention weights of “Positive” or “Negative” factors
are generally less than 0.2. These kind of factors might be harmful if they are not treated
properly.
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Figure 3: The visualization of attention weights of all cell input candidates in MI-LSTM.
It illustrates how attention weights change during train process.

Table 4: Profit Comparison of Different Models.
Date 20161214 20170116 20170215 20170315 20170414 20170515

MI-LSTM 100 97.88 102.89 106.18 113.19 104.69

LSTM-C 100 96.69 99.76 102.24 108.67 97.93

CSI-300 100 97.27 100.27 101.50 102.17 99.61

5.6. Profit of Portfolio

We empirically show which stocks should be invested everyday. Specifically, we predict
the stock price of the next day and calculates the return. Given a portfolio sized 20, we
select the 20 stocks with largest return into the portfolio. Portfolio changes everyday and
the transaction cost is ignored. Originally we have 100 units of property, the property is
allocated equally to each stock in the portfolio. We use CSI-300 as benchmark. From Table
4 we can see that MI-LSTM outperforms LSTM significantly.

5.7. Discussion

For convenience we only use 3 additional factors. But that does not mean our model can
only cope with limited factors. In fact, the first LSTM layer is used for feature extraction on
arbitrary dimension inputs. Thus the input data will be handled into a fixed shape before
they are fed into MI-LSTM.
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6. Conclusion

In this paper, we propose an improved MI-LSTM based on LSTM and attention mechanism,
which achieves better performance in extracting potential information and filtering noise.
MI-LSTM units assign different weights to different input series to keep the dominant status
of mainstream, while absorbing information from leaky input gates. The output of MI-
LSTM is further processed using temporal self-attention. Based on these stage attentions,
our model can not only focus on the most important factors but also adaptively capture
the most relevant time steps. By employing 3 additional factors and Gaussian noise, we
design experiments to prove our improvements over both original LSTM and DA-RNN.
Additionally, we successfully enable positive related stocks and negative related stocks to
facilitate the prediction task and discover that an appropriate number of related stocks help
achieve better prediction performance.
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