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Abstract

Many scenarios in our daily life require us to infer some ranking over items or people based
on limited information. In this paper, we consider two such scenarios, one for ranking
student papers in massive online open courses and one for identifying the best player (or
team) in sports tournaments. For the peer grading problem, we design a mechanism with a
new way of matching graders to papers. This allows us to aggregate partial rankings from
graders into a global one, with an accuracy rate matching the best in previous works, but
with a much simpler analysis. For the winner selection problem in sports tournaments, we
cast it as the well-known dueling bandit problem and identify a new measure to minimize:
the number of parallel rounds, as one normally would not like a large tournament to last
too long. We provide mechanisms which can determine the optimal or an almost optimal
player in a small number of parallel rounds and at the same time using a small number of
competitions.

Keywords: Ordinal peer-grading; dueling bandits; Borda count

1. Introduction

Massive online open courses (MOOC), such as Coursera, edX, Academic Room, etc., have
emerged as popular educational platforms which provide easy and free access to high qual-
ity education for students around the world. Yet a big issue in such courses, compared to
traditional ones, is that it now becomes extremely costly to grade the papers from home-
works or exams due to the enormous number of students. A compromise solution, known
as peer-grading, is to outsource the grading task to the students who participate in the
course (Aziz et al., 2016; Caragiannis et al., 2015, 2016a; de Alfaro and Shavlovsky, 2014;
Kulkarni et al., 2013; Kurokawa et al., 2015; Piech et al., 2013; Raman and Joachims,
2014; Shah et al., 2013; Walsh, 2014), and there have been several tools developed, such
as crowdgrader.org (de Alfaro and Shavlovsky, 2014), peergrading.org (Raman and
Joachims, 2014), co-rank (Caragiannis et al., 2016a), etc.

While grading by cardinal scores is common in traditional courses, it has some apparent
problems in the case of peer grading. First of all, students are not professional graders, and
the numerical scores they give may not be accurate. Moreover, they may have incentives
to give others low scores as this may make their own scores relatively higher. Therefore,
an alternative is for students to provide a ranking of the papers they are asked to grade.
This is known as ordinal peer-grading. By asking each grader to rank a small number of
papers (instead of giving scores to a large number of papers), it may mitigate the problem
of graders deliberately misreporting their rankings, as discussed in previous works such
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as (Caragiannis et al., 2015, 2016a,b). Ordinal peer-grading has recently drawn attention
in the areas of Al and machine learning (Caragiannis et al., 2015, 2016a; Raman and
Joachims, 2014; Shah et al., 2013).

Caragiannis et al. (2015) studied the following ordinal peer-grading framework. Suppose
there is a total of n students, each having submitted a paper for a homework or exam. All
these students are graders themselves, and each student is asked to grade a set, called
bundle, of k£ papers not including her (or his) own. Moreover, each paper is required to be
graded by exactly k students. The grading task of each student is to rank (order) the k
papers of her bundle. From these n partial rankings, each on k papers, the goal is to produce
a global ranking of the n papers which is as accurate as possible. Assuming that there exists
some unknown ground truth of a global ranking of the n papers and each student can rank
her bundle perfectly (consistent with the ground truth), Caragiannis et al. (2015) provided
a mechanism which can recover an expected fraction of at least 1 — O(1/k) of the pairwise
relations in the ground truth. Their mechanism is based on a fixed k-regular bipartite
graph, one part for bundles and the other for graders, and the assignment of bundles to
graders is randomized by randomly placing graders on nodes of the graph. However, this
random process does not seem “random” enough, as there are some dependency issues
which make their analysis rather complicated. In the following work, Caragiannis et al.
(2016Db) assumed an infinite number of students in order to avoid these dependency issues,
which helps them obtain a cleaner analysis. In addition, they consider the imperfect grading
scenario in which students can make mistakes when grading, and they conducted extensive
simulations to demonstrate the empirical performance of their mechanisms.

Motivated by the interesting works of Caragiannis et al. (2015, 2016b), we would like
to investigate further their ordinal peer-grading framework. In particular, we would like to
understand if it is possible to have a simple mechanism which has theoretical guarantees
with a simple analysis, but without the unrealistic assumption of an infinite number of
students. Our first result in this paper is to answer this question affirmatively. We achieve
this by modifying the mechanism of Caragiannis et al. (2015) to make the matching of
graders to papers done in a more random way, so that the dependency issues due to their
mechanism can be avoided. By designing a slightly different mechanism which breaks such
dependencies, we are able to have a similar theoretical guarantee of recovering 1 — O(1/k)
fraction of pairwise relations, but on the other hand using a much simpler analysis.

The peer grading problem can be seen as one type of ranking problem in which we need
to produce a total ordering of all participants. On the other hand, there are natural scenarios
in which we only need to select one winner. Consider for example a sports tournament in
which there are many players (or teams) competing to win the final gold medal. We would
like to have a good mechanism for competitions so that the gold medal is likely to be won
by the strongest player. This can be seen as the task of the best arm identification for the
multi-armed bandit problem, with each player corresponding to an arm and the strength of
a player corresponding to the reward of the arm. However, it is not clear how to measure
the strength of a player in an absolute scale, and the only way we can learn about a player’s
strength is through the competitions she (or he) participates in, which only reveals her
strength relative to the opponents. There are also many ranking applications with a similar
flavor. For example, it is usually much easier for a person to say which of two given movies
he or she likes better, compared to giving accurate scores to a list of movies. To model
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such a feedback setting, Yue et al. (2012) introduced the so-called dueling bandit problem,
in which the information one can obtain about an arm is by comparing it with another arm,
and the result is a one-bit value indicating which arm is better.

More formally, in the dueling bandit problem, there are n arms from which we can choose
to play, with each arm a having some hidden strength characterized by some unknown
parameter p,. The goal is to identify the optimal arm, which has the highest strength, or
an e-optimal arm, which has a strength within e of the optimal one. However, we initially
have no information at all about these hidden strengths. The only way we can obtain
information about the strength of an arm is when we select it to compete with another
arm, and the only information we have is which arm wins. We adopt the model that the
result of each competition between arms a and b is a random event, with arm a winning
this competition independently with probability exactly W This models the noisy
outcome inherent in many scenarios such as sports tournaments that a stronger player does
not always win but has a better chance of winning.

While the dueling bandit problem has been studied before, previous works seem to focus
on minimizing the total number of competitions (see for example Urvoy et al. (2013); Zoghi
et al. (2014)) or minimizing some notion of regret (see for example Ailon et al. (2014); Yue
et al. (2012); Zoghi et al. (2014)). However, in scenarios such as sports tournaments, there
are other measures which one may also want to minimize. One measure is the number of
parallel rounds. We care about this measure because when we have a large tournament with
many participants, we naturally would not want it to last too long. Therefore, if possible,
it is preferable to have competitions done in a parallel way. Note that a set of competitions
can be done in parallel in a round if no arm is involved in more than one competition.
Related to this measure is the measure on the number of competitions each arm has to
participate. We care about this because in scenarios such as sports competition, playing
many more competitions may not be fair for a player as it is likely to wear her down and
skew the outcomes. Note that this measure is upper-bounded by the number of rounds, so
it suffices to aim for minimizing the latter. As the total number of competitions is also a
natural and important measure, we would also like to minimize it in addition to the number
of rounds.

Our second contribution is a mechanism for this dueling bandit problem which is ef-
ficient in both measures. More precisely, let A; = p;+ — p; denote the gap of strengths
between an arm 4 and the optimal arm 7%, and let A = min;;» A; denote the minimum
gap. Then given any § > 0, our mechanism with probability 1 — § can identify the opti-
mal arm in O((1/A?)log(n/(A6))) rounds via a total of at most O(>_,(1/A2%)log(n/(A;9)))
competitions. Moreover, if we only want to identify an arm in the set of e-optimal arms,
denoted as OPT,, for some € > A, then our mechanism needs at most O((1/¢2)log(n/(€f)))
rounds and at most O(ZiiOPTe(l/A%) log(n/(Ai6)) + |OPT|(1/€2)1log(n/(e6))) competi-
tions. This will be described in Section 3.

Although the two problems we consider may appear unrelated and have usually been
considered separately, we place them in the same framework for study. That is, each can be
seen as some ranking problem: to determine a global ranking or a winner from a collection
of partial rankings. In fact, our algorithm for the dueling bandit problem is inspired by
our algorithm for the peer grading problem, and both algorithms share a similar structure.
Thus, we believe that the conceptual contribution of our paper is to provide a connection
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between these two seemingly unrelated topics, and we hope that this connection could
further enable transfer of ideas between these two topics. In our future work, we plan to
consider the more challenging case of imperfect graders. Although this has been considered
in (Caragiannis et al., 2015, 2016b), only empirical results were given. We hope to provide
theoretical guarantee for this case as well, and we will also conduct some experiments to
gain a deeper understanding.

Recall that in the dueling bandit setting discussed above, each arm is assumed to have
an underlying strength, and a stronger arm has a higher probability of winning a weaker
arm. This gives a natural order among the arms, according to their strengths, so that an
obvious winner one would like to identify is the arm with the highest strength. However,
this may not always be true. For example, in sports, it is possible that some player ¢ is
more likely to win some player 7 who in turn is more likely to win another player k, while
at the same time player k is more likely to win player 7. In this case, it is not obvious which
player should be considered “optimal” and which player should we try to identify.

Our final contribution is to provide such a mechanism to identify the Borda winner or
an e-optimal one. More precisely, now we measure the strength of an arm in terms of its
Borda score defined as the probability that it wins a randomly chosen opponent, and an
e-optimal Borda winner is an arm with its strength within ¢ of the optimal one. Then
given any €,0 > 0, our mechanism with probability 1 — § can identify an e-Borda winner
in O((1/€2)log(n/(€d))) rounds via O((n/e?)log(n/(ed))) competitions. This also gives us
bounds for identifying the Borda winner as it is just an e-optimal Borda winner with € equal
to the gap between the two highest strengths. Note that the number of rounds needed here
is of the same order as that in our second result, while the total number of competitions
now is slightly higher in general. This part of result will be shown in Section 4.

2. Peer Grading

In this section, we consider the ordinal peer-grading problem discussed in the introduc-
tion. Formally, there are n papers submitted by n students, respectively, for a homework
assignment, and we index these n students as well as their papers by 1,...,n. The goal is
to provide a good ranking (ordering) for these n papers, with better papers ranked before
(having smaller ranks than) worse papers. These n students are also graders themselves, and
the n papers will be graded by them under the following constraints, for some parameter k:

e Each paper is graded by exactly k graders,
e cach grader grades exactly k papers, and
e no grader grades her (or his) own paper.

To simplify our presentation, let us assume that k& divides n (it is easy to check that our
result can be easily extended to the case that k does not divide n). Following (Caragiannis
et al., 2015), we ask each grader to grade the k papers by providing a ranking of them. To
make the load of each grader light, we will only consider k < y/n. As in (Caragiannis et al.,
2015), we also make the assumption that there is a true ranking among the n papers, and
each grader is perfect in the sense that her ranking of the k papers is consistent with the
true ranking. For convenience, let us assume without loss of generality that the true rank
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of a paper corresponds exactly to the index of the paper, so that paper r is better than
(has a smaller rank) paper ¢ if and only if r < ¢g. Our task is to design a mechanism which
assigns papers to graders under the constraints above, and then takes the partial rankings
provided by the graders to produce a global ranking of the n papers, hopefully with a small
error. Following (Caragiannis et al., 2015), we measure the error by the expected fraction
of pairwise relations between papers incorrectly ranked according to our ranking.

Our mechanism works as follows. It proceeds in k rounds, with the following steps taken
in each round t:

1. Select an arbitrary set of n/k students who have not done the grading before as the
graders in this round.

2. Randomly partition the n papers into n/k disjoint sets, which we call bundles, each
having k papers.

3. Match each grader of this round to a bundle to grade such that each grader grades
one bundle which does not contain her (or his) own paper and each bundle is graded
by exactly one grader. Such a matching can be found efficiently, as guaranteed by
Lemma 1 in the following.

4. Each grader is asked to give a ranking of the papers in her bundle, by giving a different
score from 0 to kK — 1 to each paper in the bundle, with a higher score to a better

paper.

After these k rounds, we compute the total score of each paper by taking the sum of the
scores it receives in the k rounds, and we output the ranking of the n papers according to
their total scores, in the natural way that papers with higher scores are ranked before (have
smaller ranks than) those with lower scores.

The following lemma guarantees that the matching in Step 3 of our mechanism can be
found efficiently, which we prove in Subsection 2.1.

Lemma 1 There is an efficient algorithm for finding the matching in Step 8 of our mech-
anism when k? < n.

Note that the condition k? < n naturally holds in the peer-grading scenario as the
number n of students is usually very large while we would like to give each of them only a
small number k£ of papers to grade. The performance of our mechanism is guaranteed by
the following theorem.

Theorem 2 The expected fraction of pairwise relations incorrectly ranked by our mecha-
nism is at most O(1/k).

Note that this O(1/k) upper bound matches the best bound in (Caragiannis et al., 2015)
which is achieved when their mechanism is based on a k-regular bipartite graph of girth
(the length of a shortest cycle ) at least 6. On the other hand, our analysis is simpler as we
will see later.

Before proving the theorem, let us introduce some notations first. For a paper r and
a round ¢, we let S;(r) denote the score the paper receives in round ¢, which is a random
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variable depending on the random bundle it belongs to. As the random partitioning into
bundles in each round is done independently from other rounds, the k random variables
S1(r),...,Sk(r) are mutually independent from each other. In fact, all random variables
in a round are independent from random variables in all other rounds. This allows us to
avoid some dependency issues arising from the mechanism of Caragiannis et al. (2015) which
complicate their analysis.

To prove the theorem, let us first consider any two papers r and ¢, with r < ¢g. Let
Wi(r,q) = Si(r) — Si(q), which is their score difference in round ¢, and let W(r,q) =
Zle Wy(r, q), which is the difference between their total scores. Recall that we use the
convention that paper r is better than paper ¢, given r < ¢, and hence we would like paper
r to receive a higher score such that W(r,q) > 0. Our goal then is to show that this holds
with high probability, or equivalently, Pr[W(r,q) < 0] is small. Note that W (r,q) is the
summation of k i.i.d. random variables, so we would like to apply some tail bound for
such random variables. However, as each random variable Wi(r,q) may take a value in
a large range, from —(k — 1) to k — 1, Hoeffding’s inequality does not seem to give us a
good enough bound. Therefore, we turn to the following tail bound, known as Bernstein’s
inequality (Bernstein, 1946).

Lemma 3 Let X1,..., X be a sequence of k independent random variables such that each
variable X; has mean 0, variance o2, and |X;| < b almost surely. Then there exists some
constant co > 0 such that for any V > 0,

k 2
C()V

E X, >V < —_ .

e B —eXp< k:a?+bv>

Before being able to apply the lemma, we need to bound the expectation and the variance
of our random variable Wy(r, ¢). This is provided by the following lemma, which we will
prove in Subsection 2.2.

Pr

Lemma 4 Fiz any r < q and any t. The random variable Wy(r,q) has expected value
pw=(k—-1)(g—r)/(n—1)=0(k(q—7r)/n) and variance 0> < O(k + u?).

Then to apply Lemma 3 to upper-bound Pr[W(r,q) < 0], we let X; = pu — Wi(r,q),
with u = E[W;(r,q)], and V' = ku. Note that |X;| < k and the variance of X; is 0 =
El(p — Wi(r,q))?], which equals the variance of W;(r,q) and is at most O(k + u?). As a
result, for any r < g, we have

Pr[W(r,q) <0] = Pr
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using the fact that 4 < k and exp(—a/(8 + 7)) < max{exp(—£/(28)),exp(—a/(27))} for
positive a, 3,7. Since p = O(k(q — r)/n) by Lemma 4, the expected number of pairwise
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relations incorrectly ranked by our mechanism, which is > " ;| > Pr[W(r,q) < 0], can

be upper-bounded by

Zn: z”: (exp <_d€2((:l27’)2> + exp <—Ck(an)>> )

r=1 g=r+1

n
qg=r-+1

for some constant ¢ > 0, which is at most

n. Z (e—ck2(%)2+ e—ck(%)) <n?. /01(€Ck2x2+ efckm> d

d=1

with d = ¢ — r and « = d/n. Finally, using the well-known bound on the Gaussian integral
that % fooo e tdt < 1, we can upper-bound the righthand side above by

(e f-doee) <)o)

This shows that the expected fraction of incorrect pairwise relations ranked by our mecha-
nism is at most O(1/k), which proves Theorem 2.

2.1. Proof of Lemma 1

Let us consider the graders one by one and match each grader to a remaining bundle that
does not contain her own paper. The only possible grader that we may fail to find a matched
bundle this way is the last one because each grader is allowed to grade all but one bundle
and thus can find a matched bundle as long as there are at least two remaining. In case
the last grader, denoted as g, indeed cannot grade the remaining bundle, denoted as b, we
can simply choose a previous grader, denoted as h, who can grade b, take h’s bundle away
and have it rematched to g, and then rematch h to the bundle b. Note that such a grader h
can always be found, with n > k2, because the bundle b has size k while there are n/k > k
graders in each round.

2.2. Proof of Lemma 4

Fix any ¢ > r and any t. Recall that Wy(r,q) = S¢(r) — Si(q), where Si(r) and S;(q) are
the scores paper r and g receive respectively in round ¢.

Let us first bound E[W(r, ¢)] = E[S¢(r)] — E[St(q)]. For E[S;(r)], note that the random
process of forming the bundle containing r is equivalent to the random process of sampling
the other £ — 1 papers one by one without replacement. From this equivalent random
process, let us define the binary random variables Vi, ..., V;_1 such that V; = 1 if the ¢’th
sampled paper has its true rank worse (larger) than paper r’s and V; = 0 otherwise. Then

we have
k—1
DV
i=1

Similarly, one can also show that E[S;(q)] = (k — 1) - 7=, and as a result, we have

n—r

E[Si(r)] =E

k-1
=Y ElVil=(-1)
=1

n—1
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Next, let us bound the variance of Wy(r, ¢). To simplify our notation, let us write W for
Wi(r, q). From the definition, the variance of W is E [W?] — (E [W])? < E [W?]. To bound
E [WQ], we consider two cases, according to whether or not the following event happens:

e Event A: papers r and g belong to the same bundle.

For the first case that event A happens, let us consider the equivalent random process of
sequentially sampling the other k — 2 papers without replacement to form the bundle with r
and g. From this random process, let us define the binary random variables D;, ..., Dg_o,
with D; = 1 if the ¢’th sampled paper has its true rank fall between r and ¢ while D; =0

otherwise. Then we have
k-2 2
E[W?|A] =E ( Di) )
=1

2

which can be expanded into

k—2 k—2 k-2
Y E[DI]+2) > EID:D.
i=1 i=1 j=it+1

We simply upper-bound the first sum by & — 2 as D? < 1 for each 7. To bound the second
sum above, note that for any i # j,

2
g—r q—r—1 q—r
E[DiDj]:n—Q. n—3 SO(( n >>

As a result, we have
2 k(g—r) ?
E [W | A] <O|[|k+ - . (1)

For the second case that event A does not happen, there are two different bundles
involved for determining the random variable W, one for paper r and one for paper gq.
Thus, let us consider the following equivalent random process: sequentially sampling the
k — 1 papers without replacement to form the bundle with r and then sequentially sampling
other k — 1 papers without replacement to form the bundle with ¢q. From this, let us define
the binary random variables Y7, ..., Yi_1, with Y; = 1 if and only if the i’th sampled paper
in the bundle of r has a rank worse (higher) than 7’s, as well as the binary random variables
21, ..., Zp_1, with Z; = 1 if and only if the i’th sampled paper in the bundle with ¢ has a
rank worse than ¢’s. Then we have

k—1 2
B[W? | 4] — B (Z(Y;—zn) |

i=1
which can be expanded into

k—1 k—1 k—1

D E[Yi-Z)* 42> Y EIYi- Z)(Y; - Z).

i=1 i=1 j=i+1
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We simply upper-bound the first sum by & — 1 as (Y; — Z;)® < 1 for each i. To bound the
second sum above, note that for any ¢ # j, E[(Y; — Z;))(Y; — Z;)] = E[Y;Y;] + E|Z:Z;] —
E[YiZ;] — E[Y;Z;], which equals

n—r—1 nfer_i_nfq n—qg—1 n—q n—r—2
n—2 n—3 n—2 n—3 n—2 n—3

2,

and a simple calculation shows that it is at most O((%-")?). As a result, we have

E[W?|-A4] <O <k+ (Wf) 2)

Finally, since
E [W?] =Pr[A]-E [W? | A] + Pr[-~A]-E [W? | 4],

Lemma 4 follows from the bounds in (1) and (2).

3. Round-Efficient Dueling Bandits

In this section, we consider the task of determining the best player (team) in a large tour-
nament via pairwise competitions, discussed in the introduction.

We model this task as the following dueling bandit problem, with each arm correspond-
ing to a player. Formally, there are n arms, numbered from 1 to n, with each arm «
characterized by some unknown strength parameter p, € [0,1]. The goal is to identify the
optimal arm, denoted as ¢*, which has the highest strength parameter i* = arg max, pq, or a
relaxed e-optimal arm in the set OPT, = {a : g > pi» — €}. However, the only information
one can learn about these unknown strength parameters is through pairwise competitions
between arms. The information is limited in the way that each time when arms a and b
compete, we only know a binary outcome of which arm wins. Moreover, the information is
noisy in the sense that each time when arms a and b compete, arm a wins independently
with probability %2_’“’

While the dueling bandit problem has been studied before, previous works mostly fo-
cused on minimizing the total number of pairwise competitions (or on a different objective
of minimizing regret). As we are interested in scenarios such as sports tournaments, there
are additional objectives which we would like to optimize. First of all, for a large tour-
nament with many players, one naturally would not like the tournament to last too long.
Therefore, a measure we would like to minimize is the number of rounds, where a set of
pairwise competitions can be carried out concurrently in a round if each arm is involved
in at most one competition in the set. A related objective is to minimize the number of
competitions any arm has to participate, as each competition may induce some cost to (e.g.
take some energy from) a participant, or to make sure no arm competes in many more
competitions than others as it may be unfair to the exhausted arm (player or team). In the
following, we will focus on minimizing the number of rounds, in addition to minimizing the
total number of pairwise competitions.

Note that when not concerned about the number of rounds as in previous works, one
can reduce the dueling bandit problem to the traditional multi-armed bandit by letting each
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arm compete with a fixed benchmark arm b, and use the winning probability of an arm as
the mean reward in the multi-armed bandit setting. In this way, better arms in the dueling
bandit setting remain better in the multi-armed bandit setting, as the winning probability
of a stronger arm a, which is w, is higher than that of a weaker arm o', which is
w, with pq > pe . However, in doing so, that arm b has to participate in many more
competitions than others and this also makes the competitions highly sequential requiring
many rounds.

Our mechanism instead is based on our mechanism in the previous section, using bundles
of size two. Note that now there are no graders involved so that we no longer have those
grading constraints to satisfy. On the other hand, as now we also want to minimize the total
number of competitions, we would like to eliminate arms from future competitions when
we are confident that they are suboptimal, following previous works on (dueling) bandits.
However, this makes things complicated as in each round, the expected score of a remaining
arm now becomes dependent on the randomness of previous outcomes, and moreover, it
actually changes with rounds.

Our mechanism works as follows. Given a parameter 6 > 0, which is the allowed error
probability, it again proceeds in rounds, but now it keeps eliminating arms which are unlikely
to be the optimal one, until there is only one arm left. In each round ¢, it maintains and
updates a set A; of plausible arms, with n; = |A;|, and takes the following steps:

1. Randomly partition the arms in A; into disjoint pairs and let each pair of arms compete
with each other, except for one unpaired arm when n; is odd.

2. For any arm a € Ay, let S;(a) =1 if it is paired in a competition and wins it, and let
St(a) = 0 otherwise. From each S;(a), we compute the scaled score

=l if p, is even
X =Y - ith v, = & ’
t(@) = - Sila), with 5 { 2 otherwise,
as well as the average score X;(a) =13 L X, (a).

3. Let if = argmaxyea, X¢(a) be the empirically best arm so far, and use it to update
A as B )
At+1 = At \ {a S At : Xt(a) < Xt(ftk) — Ct(é)}

which excludes any implausible arm with an empirical average less than that of ¢f by
the amount

Cy(8) = +/(18/t) In(2nt2/5).
The performance of our mechanism is guaranteed by the following theorem, which
bounds the number of rounds and pairwise competitions in terms of the gaps of arms,

defined as A, = ji;+ — 14 for each arm a, and A = ming £+ A,.

Theorem 5 Given any d > 0, our mechanism with probability at least 1 — & can identify

the optimal arm in
1 n
 og —
© <A2 ©8 Aé)
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rounds, with the total number of competitions at most

1 n
O<ZA210gAa(5>'

To prove the theorem, we start by showing that the scaled score X;(a) in each round ¢
provides a meaningful measure for each arm a. Formally, we have the following.

Lemma 6 For any round t, any history before round t, and any two surviving arms a,b €
Ay, we have Ei[Xy(a) — X(b)] = pa — pp, where Ei[-] denotes the expectation conditioned on
the history.

This shows that better remaining arms indeed have higher expected scores. We will prove
the lemma in Subsection 3.1.

Next, we show that with high probability, the best arm ¢* is never eliminated. For
this, we would also like to apply some standard tail bound to show that for any round ¢,
it is unlikely to have X;(i*) significantly smaller than X;(i) of some arm i (as ij). How-
ever, although for any arm a and round ¢, X;(a) is the average of ¢+ random variables

Xi(a),...,Xi(a), these random variables are not mutually independent from each other.
In fact, for any 7 > 1, the random variable X, (a) depends on previous random variables
Xi(a),...,X;_1(a). Moreover, the conditional mean E;[X(a)] actually changes with round

7 and depends also on previous random variables.

To handles these issues, we introduce new random variables Y;(a) and Z;(a), for any
round ¢ and given a,i* € Ay, defined as Y;(a) = Xy(a)—X;(i*)+A, and Zi(a) = 34, Y (a).
Since for any 7 and a, |Y-(a)| <241 =3 and by Lemma 6, E[Y;(a)] = pg — pi= + Agq =0,
the sequence Zi(a),..., Zi(a) of random variables form a martingale, given i* € Ay, which
allow us to apply Azuma’s inequality. Formally, we have the following lemma, which we
will prove in Subsection 3.2.

Lemma 7 The probability that the optimal arm is ever eliminated by our mechanism is at
most 6/2.

Now we bound the number of rounds a suboptimal arm a # i* with gap A, can survive.
Note that for any t,

Pr [CL, o EAt+1] <Pr [)_(t(a) >Xt(lz<) — Ct((S) and ¢* GAt]
<Pr [X't(a) — Xt(l*) > —Ct(é) and * EAt] s

as X¢(if) > X;(i*) by the definition of if. The last probability above by definition equals

t
1 .
Pr n g (Yr(a) — Ay) > —Ci(0) and i* € Ay

T=

1
= Pr(Zi(a) >t - (Ay— C(d)) and i* € Ay

B 2
< (U250 ®
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by Azuma’s inequality. Thus, when ¢t > (72/A2)In(2nt?/d) so that Cy(8) < A,/2, we can

upper-bound (3) by
ex —tA?L < L < i
P\ ) = ane2 = 2

This implies that whenever t > ¢, for some t, = O((1/A2)1og(n/(A40)), the probability
above is at most §/(2n). Then by a union bound, we have

Pri3t:i* ¢ Ayor Ja#i*:a € Apa] < Pr[3t:i* ¢ AJ+ Y Pria,i* € Ay, ]
aFi*

which is at most g +n- % = ¢. This proves Theorem 5.

From the analysis above, it is easy to see that given any ¢ > A, if we only want to
identify an e-optimal arm a € OPT,, we can stop our mechanism earlier, in O(e%log =)
rounds and return any remaining arm. Thus, we have the following.

Corollary 8 Given any €,6 > 0, our mechanism with probability at least 1 — ¢ can identify

an e-optimal arm in
1 n
O | —=log—
(62 & 65>

rounds, and the total number of competitions is at most

1 n |OPT| n
— log —— log —
O X psloszst a2 loeg
a@OPTe
3.1. Proof of Lemma 6

Fix any ¢ and any previous history before round ¢. Recall that n; = |A;|. By definition, we
have

E[Xi(a) — Xi(b)] = e - (Ee[Se(a) — Se(D)]) (4)
L if n, is even and 4 = 2 if ny is odd. We claim that (4) equals n% - o with

a = Z 1+N;_Ni_ Z 1+M§—Mz’_

i€Ai\{a} i€ A \{b}

where y; = 27

t

To see this, note that when n; is even, (4) equals

=) L, 2,
¢ nt—l ¢ T b

and when ny is odd, (4) equals
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with the (1 — n%) factor is the probability that a given arm is paired with a component to
compete. As a result, we have E;[X;(a) — X;(b)] equal to

2 2 [ta — i [y — i
Tt a = ¢ Z 2 B Z 2
ieA\{a} i€ A\ {b}
1
- (- T )
t \iea, i€ A,
= HMa — Hb-

3.2. Proof of Lemma 7
Recall that for any round ¢ and given i*,a € A;, we have the random variables

Yi(a) = Xi(a) — Xi(i%) + Aq and Zy(a) = Y Yr(a),

=1

and observe that

Xt(a) — Xt(l*) =

| =

5 (Xe(a) ~ Xuli*)) = 5 Zila) — Ao

=1

Moreover, as discussed before, the sequence of random variables Zi(a),...,Z:(a) form a
martingale. Therefore, with the choice of Cy(§) = /(18/t)In(2nt2/§), we can bound the
probability that arm ¢* is ever eliminated by

Pr [3t3a € A; : Xu(i*) < Xi(a) — Ci(6) and i* € Ay
= Pr [EItEla € At : Xt(a) — Xt(l*) > Ct((S) and 7" € At]

1
= Pr [Htﬂa €A EZt(a) — Ay > Cy(6) and i € At]

< Y Y Pr(Zia) >t Ci(8) and i € A,

t (lEAt

which by Azuma’s inequality is at most

This proves the lemma.

4. Borda Winner Identification

Recall that in the previous section, we consider the setting in which each arm a has an un-
derlying strength p,. This means that the arms can be arranged in a total order, according
to their strengths, so that an arm with a higher strength has a higher probability of winning
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an arm with a lower strength. In this section, we consider a relaxed setting in which no
such total ordering exists.

Formally, there are again n arms, and they are associated with some n x n matrix P.
The (i,7)-entry of the matrix P, denoted as P(i,j), indicates the probability that arm
wins arm j each time they compete with each other. We do not place any assumption on
these n? entries of P, except that they take values from the interval [0,1]. Therefore, we
allow the possibility that arm ¢ is more likely to win arm j and arm j is more likely to
win arm k, while at the same time arm k is more likely to win arm ¢. In this case, it is
not obvious which arm should be considered “optimal” and which arm should we try to
identify. Nevertheless, a reasonable choice is the so-called Borda winner (Jamieson et al.,
2015), which is the arm with the highest probability of winning another randomly chosen
arm.

Formally, we define the Borda score of an arm a as

(a) = - i 1 ZP(a,i).

Then the Borda winner is the arm a* = arg max, B(a), which has the highest Borda score,
and we now consider gaps of arms according to the Borda scores, defined as

A, = B(a*) — B(a) for any arm a, and A = némA

As before, we are also interested in finding an e-optimal Borda winner in the set
OPT. = {a: B(a) > B(i*) — €} .

For the task of identifying the Borda winner or an e-optimal Borda winner, in the dueling
bandit setting, we can take our mechanism in the previous section, but make the change of
keeping all the arms for competition in every round and using the score

| Si(a) if n is even,
K= 5 g

otherwise.

Then we claim that for any ¢ and a, E [X;(a)] = B(a). To see this, note that when n is
even,

E [Xi(a)] = E[St(a — ZP (a,1) (a),
z#a
and when n is odd, E [X¢(a)] equals

B [Sy(a) = <1—;> niIZP(a,i):B(a).

i#a

Moreover, since we now do not eliminate arms, the random variables Xj(a), ..., X:(a)
become mutually independent. Now as each variable has | X (a)| < 1, we can simply apply
Hoeffding’s inequality, with Cy(8) = /(1/t) In(2nt2/4), and have

37 (X(0) ~ X (a)

T=1

Pr[|X(a) — B(a)| > Cy(8)] = [ > Cy(9)
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for any t and a. This implies that given any € > 0, there exists some t. < O(}2 log %) such
that when ¢ > ., we have C;(6) < § and

_ _ _ 0
Pr[Ja ¢ OPT, : X(a) > X,(i")] < Pr [aa | Xi(a) - B(a)| > ;} <n-—,
n
by a union bound. From this, we can conclude that
- - 1)
Pr [3t > t.,3a ¢ OPT, : X¢(a) > X4(i")] < 5 <0

This means that for any round ¢ > t., any arm a with the highest average score X;(a) must
be an e-optimal Borda winner. As a result, we have the following.

Theorem 9 Given parameters €,0 > 0, we can identify with probability at least 1 — § an
e-optimal Borda winner in O (}2 log 6"—6) rounds via at most O (E% log %) competitions.

Note that the theorem also applies to the task of identifying the Borda winner as it is just
an e-optimal Borda winner with e = A. Furthermore, let us remark that the total number
of competitions needed here is higher than that of Theorem 5 in the previous section. This
is because here we keep all the arms for competitions in every round, in order to estimate
the Borda score. In summary, here we consider a more general setting and solve the more
difficult task of identifying an e-optimal Borda winner using more competitions, while on
the other hand, the mechanism and its analysis are simpler.
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