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Abstract

Counting of mitotic figures in hematoxylin and eosin(H&E) stained histological slide is the
main indicator of tumor proliferation speed which is an important biomarker indicative of
breast cancer patients’ prognosis. It is difficult to detect mitotic cells due to the diversity
of the cells and the problem of class imbalance. We propose a new network called CHS-
NET which is a cascaded neural network with hard example mining and semi-focal loss to
detect mitotic cells in breast cancer. First, we propose a screening network to identify the
candidates of mitotic cells preliminary and a refined network to identify mitotic cells from
these candidates more accurately. We propose a new feature fusion module in each network
to explore complex nonlinear predictors and improve accuracy. Then, we propose a novel
loss named semi-focal loss and we use off-line hard example mining to solve the problem
of class imbalance and error labeling. Finally, we propose a new training skill of cutting
patches in the whole slide image, considering the size and distribution of mitotic cells. Our
method achieves 0.68 F1 score which outperforms the best result in Tumor Proliferation
Assessment Challenge 2016 held by MICCAI.

Keywords: Mitosis detection, Cascaded neural network, Hard example mining, Semi-focal
loss

1. Introduction

Breast Cancer is the most common diagnosed cancer among women, and the second leading
cause of death worldwide. Tumor proliferation rate is an important biomarker for breast
cancer (Diest et al., 2004). To evaluate the growth rate of tumor, the pathologists count
the number of mitotic cells in an area of 2 mm2, which corresponds to 8-10 microscope
high power fields (HPFs) (Veta et al., 2015). The mitosis count is part of the modified
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Bloom-Richardson grading system (Elston and Ellis, 1991) and it is also considered as an
independent prognostic factor (Baak et al., 2005).

Mitotic cell detection is a very challenging task for the following reasons. First, the WSI
is examined under a microscope by a pathologist traditionally, hence mitosis count is a sub-
jective procedure which is prone to discrepancies between observers. Second, WSI generally
have thousands of single cells and mitotic cells also have different shape characteristics. In
particular, two unformed daughter cells are produced at the telophase stage of mitosis, but
we still consider them as one mitotic cell. This increases the difficulty of mitosis detection
task. Third, mitotic cells can be very similar to other objects in the tissue, such as apoptotic
cells and lymphocytes, leading to a lot of false positives in the detection process.

Thanks to the recent advances in deep learning, automated methods have been success-
fully adopted to the medical diagnostic imaging field. Generally, researchers use a deep
neural network(DNN) to detect mitotic cells (Cireşan et al., 2013). However, the imbalance
between positive and negative samples is a common problem in the medical imaging field and
only one DNN is hard to solve it. Chen et al. (2016) figures out cascaded networks to allevi-
ate class imbalance. From this, we add a novel feature fusion module in the similar structure
like Resnet (He et al., 2015) in cascaded networks to detect mitotic cells, which can further
improve the result. Other methods, such as online hard example mining(OHEM) (Shrivas-
tava et al., 2016) and focal loss (Lin et al., 2017) are performed to maintain a manageable
balance between the positive and negative samples. However, OHEM completely discards
easy examples and focal loss cannot deal with the problem of error labeling in the datasat.
In order to solve similar problems in face recognition, Facenet (Schroff et al., 2015) selected
semi-hard negative samples since the hardest negatives can lead to bad local minima early
on in training. Inspired by this, we propose semi-focal loss to ensure that excessive losses
can be reduced to a certain threshold. We propose the offline hard example mining and
add simple samples into the refined network in addition to the false positives to make up
for the deficiency of OHEM. It is difficult to train the entire image directly as an HPF has
2000×2000 pixels and researchers generally cut patches of positive and negative samples
by calculating IoU((Intersection-over-Union). Considering the location and size of mitotic
cells, We propose a new method for obtaining patches which can consider both background
and contextual information in the mitosis detection task.

TUPAC16 is a tumor proliferation assessment challenge and the third task is mitosis
detection. We use the dataset provided by this competition to deal with mitosis detection
problem.

The major contributions of this paper are as follows:

• We propose a new mitosis detection network called CHS-NET and a novel feature
fusion module to improve the accuracy of detection.

• We design an effective method to alleviate the problem of class imbalance and error
labeling. We use offline hard example mining to re-sampling the hard negative samples
and improve the proportion of the false negatives in the dataset. Semi-focal loss is
proposed to solve the problem of error labeling.

• We come up with a novel method for obtaining patches by calculating IoA(Intersection-
over-Area).
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2. Related Work

2.1. Machine Learning Methods

Machine learning has been successfully applied to mitosis detection. Vink et al. (2013)
proposes two nucleus detectors with the basis of AdaBoost to extract different features
and uses colour deconvolution. This method can detect the boundary of the nucleus more
effectively and the detection rate was 95%. Irshad (2013) proposes an automated mitosis
detection framework based on different multi-channel statistical features with morphological
features by using decision tree classifier.

2.2. Deep Learning Methods

In order to solve the problem that the number of negative samples is too large, Cireşan et al.
(2013) uses the probability that a negative sample is wrongly considered as a positive sample
as the sampling probability of the negative samples, thereby increasing the proportion of
negative samples that are easily considered as positive samples in training data. Chen et al.
(2016) proposes the use of two neural networks for cell classification. The first network
can filter out a large number of negative samples that can be easily distinguished in the
data. This network has fewer parameters to prevent overfitting. The second neural network
categorizes the preliminary screening data and further screens out negative samples that
are difficult to distinguish. This paper also uses Imagenet’s pretrained model to have better
result through migration learning. The first place in the TUPAC 2016 competition (Paeng
et al., 2017) uses the ResNet32 network to increase accuracy by increasing the number of
false positives. To solve the problem of class imbalance, this article uses two step training.
The first network picks out 100,000 examples that are mistakenly considered as positive
samples. They add these false positives to data sets and then obtain a second neural
network. Zerhouni et al. (2017) uses the online hard-to-negative sample mining method to
update false positive samples in a timely manner so as to increase the proportion of false
positive samples in training data in a timely manner. First, a neural network is used to
select false positive samples to form a new sample set. Then, equal amounts of data are
randomly selected in this set, positive sample set and true negative set as the current round
of training data. Each iteration is updated according to this method until the network
converges.

In the biomedical field, it is difficult to obtain a large amount of training data. Bayra-
moglu and Heikkilä (2016) compare four different CNN models and demonstrates that trans-
fer learning can alleviate this problem. The results show that the pre-trained initialization
network parameters can improve the classification performance of any model, and it is easy
to converge. Many new network structures have also been proposed. Sirinukunwattana
et al. (2016) proposes a Spatially Constrained Convolutional Neural Network (SC-CNN) to
perform nucleus detection. SC-CNN calculates the probability of a pixel being the center
of the nucleus, where the high probability value is constrained in space to locate near the
core center. Albarqouni et al. (2016) introduces a novel concept for learning from crowds.
He proposes a new multi-scale CNN AggNet which is designed to directly handle data ag-
gregation through additional crowdsourcing and generates a basic fact tag from the notes
of non-experts.
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3. Our Method

3.1. Network

In this section, we will describe the mitotic cell detection neural network named CHS-NET
that we propose based on the characteristics of mitotic cell detection tasks in detail.

By analyzing the high power fields(HPFs), we easily find that the proportion of mitotic
cells in the entire WSI is extremely small and the characteristics are relatively single. Non-
mitotic cells, including apoptotic cells, take up a very large portion of WSI and vary in
shape. So class imbalance is a serious problem. The non-mitotic cells and the non-cellular
fractions in the WSI have obvious differences in appearance characteristics. Some of these
cells can be identified as non-mitotic cells clearly, while others are very similar to mitotic
cells, as shown in Fig. 2. Therefore, how to train and obtain a network that can distinguish
mitotic cells and non-mitotic cells effectively, especially identify non-mitotic cells that are
very similar to mitosis is the focus of this article.

Based on the above analysis, this paper proposes CHS-NET which is a multi-task cascad-
ed neural network to detect mitotic cells. Our multi-tasking cascaded mitotic cell detection
network mainly consists of two parts as shown in Fig. reffig:frame.eps

Figure 1: An overview of the CHS-NET.

3.1.1. Screening Network

The goal of the screening network is to screen out the simple negative samples and ensure
that the recall rate of mitotic cells is nearly 100%. We can see that the negative samples
in the first row of Fig. 2 are very different from the positive samples and are very easy
to distinguish by a simple neural network, but some hard examples are very troublesome
to the neural network. Therefore, the challenge in the detection of mitotic cells is how
to make the neural network focus on distinguishing between difficult samples and mitotic
cells. A large number of simple examples are easy to acquire the attention of the neural
network inevitably. We also need the neural network to be able to identify simple examples.
Therefore, our screening network can identify mitotic cells, simple negative samples, and
negative samples that are easily misclassified roughly. It consists of a feature extractor
(Table. 1) and a perceptron with multi feature fusion layers(Fig. 3).
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Figure 2: The patches of mitotic cells, non-mitotic cells and some hard samples. The patch-
es of first row are easily distinguishable non-mitotic cells and the patches of second
row are mitotic cells. The patches of third row are some non-mitotic cells that
are not easily distinguished. The size of patch is 128×128.

Figure 3: The structure of feature fusion in perceptron.

The screening network classifies each of the patches that are input into the neural
network to distinguish between mitotic cells and non-mitotic cells. We set the label of
mitoses to 0 and the others to 1. Each patch in the screening network will get the probability
of mitosis. In general, the patch will be considered as a mitosis if the probability is greater
than 0.5. However, we need to ensure that the positive samples’ recall rate is nearly 100%
and we have to screen out simple negative samples simultaneously. In our experiment, we
set the threshold to 0.2 and select negative samples with the probability greater than the
threshold as false positives. After this method, the screening network will identify a large
number of simple samples, and almost no mitotic positive samples will be missed. The
specific process and experimental results will be detailed in Section 4.
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Table 1: The structure of feature extractor. The conv2 x to conv6 x are the basic residual
blocks.

Name Layer setting Output Size

input H×W

conv1 7×7, 128, stride 1 H×W

conv2 x

 1×1, 32
3×3, 32
1×1, 128

×3, stride 1 H×W

conv3 x

 1×1, 64
3×3, 64
1×1, 256

×3, stride 2 1
2H×1

2W

conv4 x

1×1, 128
3×3, 128
1×1, 512

×5, stride 2 1
4H×1

4W

conv5 x

 1×1, 256
3×3, 256
1×1, 1024

×3, stride 2 1
8H×1

8W

conv6 x

 1×1, 512
3×3, 512
1×1, 2048

×3, stride 2 1
16H× 1

16W

bn+relu+average pool 1×1

3.1.2. Refined Network

The main role of refined network is to complete the second task, which will classify the patch
accurately after the preliminary screening network. Its structure is the same as screening
network’s. However, it needs more train to distinguish mitotic cells and other things.

For ordinary cascaded network, we use the sample with the probability greater than the
threshold in the screening network as the input for the refined network. A large number of
negative samples can be filtered by the screening network. The refined network can make
the neural network focus more on negative samples which are not easily identifiable. Each
patch in the refined network will also get the probability of mitosis and we set the threshold
to 0.85. Each patch will get two probability by the screening network and the refined
network in the test. Only when the two probability of the patch can reach the threshold
of screening network and the threshold of refined network respectively, this patch will be
considered as a positive sample. As a large number of negative samples are filtered by the
screening network, the cascaded network can alleviate the problem of class imbalance. We
introduce the hard example mining in Section 3.2 to improve the result.

3.1.3. Feature Fusion

In this paper, we will convert the mitotic cell detection task into binary classification task
for patches. Deep learning classification networks are generally divided into two parts: one
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is feature extractor and the other is the classification layer. A similar approach is used in
our CHS-NET.

In the feature extraction layer, we use a structure similar to ResNet (He et al., 2015).
The structure of ResNet can prevent network overfitting and the phenomena of gradient
dispersion. Inspired by the work of GoogLeNet (Szegedy et al., 2015), ResNet and others,
we have a global pooling average operation on the feature maps out of the feature extraction
layer to further reduce over-fitting and improve accuracy. We introduce two fully connection
layers in the feature fusion part. The fully connected layer acts as a classifier throughout
the convolutional neural network.

Inspired by PixelNet (Bansal et al., 2017) and DenseNet (Huang et al., 2016), we do not
use single-line full-connectivity to extract network features. As shown in Fig. 3, we fuse the
feature vectors of each layer and then we do the final classification. Multi-level feature fusion
has several advantages. First, the multi-level feature fusion can make the feature vector of
each layer connect to the loss function layer directly, avoiding the situation that the gradient
dispersion causes the network not easy to converge. It is necessary to introduce multi-level
vector fusion, because there are a large number of parameters in the fully connected layer
and gradient diffusion is likely to occur. Second, feature vectors in different dimensions
contain different information. The introduction of multi-level feature fusion is conducive to
explore more nonlinear predictors that improve overall accuracy.

3.2. Hard Example Mining

Hard example mining is a method of re-sampling the hard negative samples so that the neu-
ral network pays attention to the false positive feature, thereby improving the classification
effect. From the foregoing, it can be found that there are great class imbalance problems
in mitosis detection task. Then the precision of the positive samples is:

precision =
tp

tp+ fp
(1)

For positive samples, the number of true positives is tp, the number of false positives is
fp, and the number of false negatives is fn. The recall rate of the positive samples is:

recall =
tp

tp+ fn
(2)

Our final assessment method is to calculate the F1 score:

F1 score =
2× precision× recall
precision+ recall

(3)

In order to get a higher F1 score, we need to reduce the number of false positives.
Therefore, it is necessary to reduce the number of false positives by hard example mining.
Hard example mining, a bootstrapping method, trains a model with an initial subset of
negative examples, and then collects negative examples that are classified by this initial
model incorrectly to form a set of hard negatives. We use this method to filter out false
positives as a new set in the cascaded network. Through experiment, we have found that
in the refined network, if the proportion of positive samples, negative samples, and false
positives is 1:1:3, the network will make the neural network more focused on false positives
and more accurately distinguish mitotic cells.
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3.3. Semi-Focal Loss

There are widespread class imbalance problems in medical data sets. Firstly, since most
of them are simple and easily distinguishable negative samples, the training process can-
not fully learn information of positive samples. Secondly, these simple negative samples
still produce a certain amount of loss, and the large quantity will play a major role in
loss. Therefore, they will dominate the gradient update direction and obscure important
information.

To solve the problem of class imbalance, Kaiming He’s team propose focal loss (Lin
et al., 2017) to improve the loss function. We define pt for binary classification, p is the
model estimated probability for mitotic cells with label y = 0:

pt =

{
p if y = 0

1− p otherwise
(4)

The focal loss(FL) is:
FL(pt) = −α(1− pt)γlog(pt) (5)

α is a weighting factor to address class imbalance. −log(pt) is the cross entropy (CE)
loss for binary classification. (1− pt)γ is a modulating factor to the cross entropy loss. The
purpose is to make the model more focus on difficult-to-classify samples during training by
reducing the weight of easy-to-classify samples. We set tunable focusing parameter γ ≥ 0.
In our model, α is 5 and γ is 2.

We analyze the result of a cascaded network with hard example mining, and find that
some negative samples that are mislabeled as positive samples are indeed very similar to
positive samples. Moreover, identifying all mitotic cells in a WSI is very difficult for a
pathologist. Therefore, there may be negative samples with incorrect label in the dataset.

We propose the semi-focal loss to solve the problem of error labeling. The loss of
mislabeled mitotic cells can be very large, and this will affect the convergence of the network.
So, if (1− pt)γ > threshlod, we replace (1− pt)γ with threshold. The formula is:

FL(pt) = −αlog(pt)min((1− pt)γ , threshold) (6)

By using smi-focal loss, we alleviate the problem of sample labeling errors.

3.4. Data Process

3.4.1. Patch Selected and Labeled

The input of screening and refined network is patch-level images. The corresponding output
is the label of each patch. In the test, we hope one to four patches can be mapped to each
mitotic cell through a refined network. The final result can be obtained by non-maximum
suppression(NMS). Therefore, we need to divide the original images into several mitotic
patches and other patches based on the location of the mitotic cells in training. By observing
the mitotic cell image, we can find that the size of mitotic cells is fixed basically. So, mitosis
detection task can use the same size box. A patch with the size of 64×64 can cover almost
a entire mitotic cell. But the information surrounding the mitotic cells is helpful to the
neural network to determine if this is a mitotic cell. So the patch size we finally selected
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is 128×128. The general target detection task calculates the IoU between positive sample
and the newly selected patch in the selection of negative samples. If the IoU is less than a
threshold, it is treated as a negative sample. Because mitotic cells are located in the center
of the patch generally, we use a new method to select negative samples. Our input is the
patch resized to 64×64 and its center part with same size.

As shown in Fig. 4, the blue box is a positive sample with the size of 128×128. The
green box is smaller than the blue box with the size of 64×64. It can contain the whole
mitotic cell. The yellow box is a newly selected patch and its size is 128×128. Now we want
to determine if this box is positive or negative. The general method is to calculate the IoU
of the yellow box and the blue box.

IoU =
area(blue box) ∩ area(yellow box)

area(blue box) ∪ area(yellow box)
(7)

Considering the position of mitotic cells in the patch, we have defined a new parameter
named IoA. If the IoA is less than a threshold, the yellow box is a negative sample. In this
paper, the threshold is 0.0625.

IoA =
area(green box) ∩ area(yellow box)

area(yellow box)
(8)

Figure 4: The IOA calculation. The blue box is a positive sample with the size of 128×128.
The green box is smaller than the blue box with the size of 64×64. It can contain
the whole mitotic cell. The yellow box is a newly selected patch and its size is
128×128. we consider the yellow box and the green box when calculating IOA.

Specifically, we take the coordinate of the mitotic cell as the center point and obtain
a patch with the size of 128×128 from the original images. We can get a positive sample
set marked as S1 after processing all mitotic cells. For each patch in S1, we keep the same
center point and extract patches with the size of 64×64. These patches constitute set S2.
A box with the size of 128×128 traverses the full image from the upper left corner with a
stride of 64 in each images. We will get a lot of patches and they form a set S3. A mitotic
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cell may be contained by multiple patches. So , we use the NMS to remove duplicated boxes
at the time of the test. For a patch in S3, if the IoA between it and each patch in S2 is less
than 0.0625, it will be considered as a negative sample. However, if the IoA between it and
one of the patches in S2 is more than 0.0625, it will be ignored.

3.4.2. Data augmented

We augment the data in order to improve the robustness of the algorithm and solve the
problem that mitosis detection is insensitive to information such as position and angle.
Moreover, we can improve the generalization ability of the model by increasing the amount
of data without changing the image category.

Our positive samples are extracted from a large map with some mitotic cells. We do
not rotate or translate each patch simply in data augmentation of positive samples. There
will be blank areas that will lose information in the process of data augmentation and there
is no white space for the patch of the test set. So, the general data augmentation method
will affect the final result adversely. To solve this problem, we perform data augmentation
operations in the original map and each patch contains complete background information.
In this article, the maximum offset of translation is 16. We select five translation lengths
less than 16 randomly. The offset should not be too large to ensure that the mitotic cells
are in the middle of the patch. Since there are various angles of mitotic cells in the HPFs,
we can augment positive samples by rotation. We rotate all patches six times randomly to
further increase the amount of data after translation, .

4. Experiments

4.1. Dataset

We use MICCAI TUPAC Challenge dataset to evaluate our method. This dataset consists
of 73 breast cancer cases from 3 different pathology centers. The first 23 cases are the
dataset that was previously released as part of the AMIDA13 challenge, collected from the
Department of Pathology at the University Medical Center in Utrecht. The remaining 50
cases are from two different pathology centers in The Netherlands (cases 24-48 are from one
center and cases 48-73 are from another center). Each case is represented with some image
regions with area of 2 mm2. We have 656 2000×2000 pixel images in total. These images
are extracted from whole slide images, which has been produced with the Leica SCN400 at
a 40x magnification leading to a spatial resolution of 0.25µm and a 5657×5657 RGB image.
The annotated mitotic figures are the consensus of at least two pathologists.

4.2. Training

4.2.1. Data Preprocessing

In the first step, the MITCAI TUPAC Challenge dataset provided a total of 656 2000×2000
pixel images as previously mentioned. Because the dataset contains cases from different lab-
oratories, the staining results are different. The pictures under different staining conditions
will bring additional interference to the network. For example, many false positives can
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arise when the histopathology slide is overstained. Therefore, we will first use the method
in Macenko et al. (2009) for staining unmixing and normalization.

In the second step, we cut the patches with the size of 128×128 in 2000×2000 pixel
images based on the coordinates of the center point of the mitotic cell as described in Data
Process in Our Method. We can get 1522 positive samples. To increase the robustness of the
training model and the number of positive samples, the data is augmented with translation
and rotation operation in the original image. There are 65082 positive samples after the
data augmented.

In the third step, we cut the patches with the size of 128×128 according to the results
of the second step and Eqs. 8. A box with the size of 128×128 traverses the full image from
the upper left corner with a stride of 64 in each image. If the IoA of the patch is smaller
than 0.0625, we set it as a negative sample. We obtain a total of 914579 negative samples
after this operation.

In the fourth step, to improve the credibility of the experimental results and verify the
robustness of the model, we use the 5-fold cross-validation method. The same patient’s
patches will be placed in the same set to ensure the validity of cross-validation.

4.2.2. Screening Network Setting

We train by Adam optimizer. The initial learning rate is set to 0.1, 0.01 after epoch 2, 0.001
after epoch 4, then 0.0001 after epoch 6 and 0.00003 after epoch 8. We use the Xvarier
method to initialize all variables and we train for total 10 epochs. Our batch size is 192. We
use moving average decay of 0.9, batch normalization moving decay of 0.99 and regularize
decay of 2e-07. In the loss function as shown in Eqs. 6, α is 5 and γ is 2. By experiments,
we set the threshold to 0.6 finally. Because of the large amount of parameters in the feature
fusion part, we use the dropout layer in this part to avoid the over-fitting of the model
and improve the generalization ability of the model. The dropout layer retains 50% of the
parameters during training. Because the focal loss ignores many easy negative samples, the
loss of the negative sample is reduced. The ratio of positive samples to negative samples
fed to the refined network is 1:3 to ensure the accuracy of model prediction. To ensure
the recall rate of positive samples is nearly 100% and screen out simple negative samples
simultaneously, we set the threshold to 0.2. The result of the use of screening network on
training dataset is in Table. 2.

4.2.3. Refined Network Setting

The input data for refined network consists of three parts: the negative samples set, the
positive samples set and the false positive samples set. According to the previous description
of hard example mining, the sampling ratio of the three sets is 1:1:3. We use the same
parameters to initialize the network in the refined network part. Differently, the initial
learning rate is set to 0.1, 0.01 after epoch 2.5, 0.001 after epoch 6, then 0.0001 after epoch
9.5 and 0.00003 after epoch 13. We train 15 epochs.

4.3. Testing

We perform a 5-fold cross-validation. First, we feed each patch of the validation dataset
into the screening network and the refined network. If the probability of positive sample is
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Table 2: The result of the use of screening network processing training dataset. FP, TP, FN
represent the number of false positive samples, the number of true positive samples
and the number of negative samples respectively. Recall(P/N) is the recall rate of
positive samples/the recall rate of negative samples.

Fold FP TP FN Recall(P/N) Precision F1 score

1 83719 55056 377 0.9932/0.8792 0.3967 0.5669

2 98568 54254 210 0.9961/0.8724 0.3550 0.5234

3 84929 47227 325 0.9932/0.8758 0.3574 0.5256

4 86317 52542 376 0.9929/0.8649 0.3784 0.5479

5 104490 49532 213 0.9957/0.8659 0.3216 0.4862

AVE. - - - 0.9942/0.8716

greater than 0.80 in the screening network, and greater than 0.85 in the refined network,
we will consider this patch as a positive sample. Finally, we use non-maximum suppres-
sion(NMS) to reduce the appearance of false positive. The suppressed result is our final
result, as shown in Table. 3.

Table 3: The final result of 5-fold cross-validation. The AVE. means the average result of
5 folds. FP, TP, FN represent the number of false positive samples, the number
of true positive samples and the number of negative samples respectively.

Fold FP TP FN Recall(P/N) Precision F1 score

1 23 153 76 0.6681/0.9999 0.8693 0.7556

2 10 102 150 0.4048/0.9999 0.9107 0.5604

3 21 209 208 0.5012/1.0000 0.9087 0.6461

4 4 140 149 0.4844/1.0000 0.9700 0.6467

5 79 273 92 0.7479/0.9994 0.7756 0.7615

Total 137 877 675 -/- - -

AVE. - - - 0.5651/0.9999 0.8649 0.6836

4.4. Results analysis

4.4.1. Experimental result

As shown in Table. 2, our network has successfully conducted the preliminary screening of
data. The recall rate of the positive sample is greater than 99%, which indicates that the
screening network almost selects all the positive samples and screens out a large number
of negative samples. Refined network has a good ability to identify positive and negative
samples. The result on the validation set is shown in Table. 3. Compared with the first
place in TUPAC16 (Paeng et al., 2017), our experimental result reaches the most advanced
level.
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4.4.2. Experimental Contrast

In order to verify the effectiveness of semi-focal loss, hard example mining and cascaded
network, our comparison experiments are shown in Table. 4. We experiment with the same
data set and validation set of one fold.

Table 4: The result of comparison experiments with the same data set and validation set of
one flod. CN means cascaded network. HEM means hard example mining. SFL
means semi-focal loss while FL means ordinary focal loss. SM means softmax.

Method Recall(P/N) Precision F1 score

CHS-NET(CN+HEM+SFL) 0.6681/0.9999 0.8693 0.7556

CN+HEM+FL 0.6419/0.9998 0.8258 0.7224

CN+HEM+SM 0.7579/0.9989 0.5585 0.6431

HEM+SFL 0.7816/0.9997 0.7217 0.7505

SFL 0.8471/0.9930 0.3012 0.4444

Through the above results, we can find out that cascaded network is able to screen out
more negative samples and improve accuracy. Using hard example mining can obviously
improve the F1 score compared with common classification network(SFL). Using the semi-
focal loss is better than using focal loss alone, and the F1 score increase 3%. We can
conclude that the cascaded network, the hard example mining and the semi-focal loss all
improve the feature extraction ability and the classification ability of the model effectively.

The first place in TUPAC16 only uses the method of hard example mining, they obtain
0.652 F1-score on the test. It shows that our method can achieve state-of-the-art result by
solving the problem of class imbalance. It also proves that the use of cascade network, hard
example mining and semi-focal loss are effective.

5. Conclusion

The automatic mitosis detection of breast cancer histological images can help improve the
efficiency and reliability of breast cancer screening and evaluation. The mitosis detection
task is mainly faced with the problem of class imbalance. In this paper, we propose a new
network called CHS-NET for mitosis detection. The screening network can detect 87% of
negative samples and select false positives to increase the proportion of false positives in
the dataset. We achieve 0.68 F1-score through a five-fold cross validation. This score is
state-of-the-art compared with the best model in TUPAC16. It is proved by experiment
that multi-level feature fusion can improve the accuracy of the model. Semi-focal loss
can improve accuracy by 3%. It indicates that there are some inaccurate labels in the
mitosis detection dataset of TUPAC16. From our work, researchers should pay attention
to introduce some methods to solve the problem of inaccurate labels in the field of medical
artificial intelligence.
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