Proceedings of Machine Learning Research 95:129-144, 2018 ACML 2018

Clustering Induced Kernel Learning

Khanh Nguyen NKHANH@DEAKIN.EDU.AU
Deakin University, Australia

Nhan Dam NHAN.DAM@MONASH.EDU
Trung Le TRUNGLM@MONASH.EDU
Tu Dinh Nguyen TU.DINH.NGUYEN@MONASH.EDU
Dinh Phung DINH.PHUNG@MONASH.EDU

Monash University, Australia

Editors: Jun Zhu and Ichiro Takeuchi

Abstract

Learning rich and expressive kernel functions is a challenging task in kernel-based su-
pervised learning. Multiple kernel learning (MKL) approach addresses this problem by
combining a mixed variety of kernels and letting the optimization solver choose the most
appropriate combination. However, most of existing methods are parametric in the sense
that they require a predefined list of kernels. Hence, there appears a substantial trade-off
between computation and the modeling risk of not being able to explore more expressive
and suitable kernel functions. Moreover, current existing approaches to combine kernels
cannot exploit clustering structure carried in data, especially when data are heterogeneous.
In this work, we present a new framework that leverages Bayesian nonparametric models
(i.e, automatically grow kernel functions) with multiple kernel learning to develop a new
framework that enjoys the nonparametric flavor in the context of multiple kernel learning.
In particular, we propose Clustering Induced Kernel Learning (CIK) method that can au-
tomatically discover clustering structure from the data and train a single kernel machine
to fit data in each discovered cluster simultaneously. The outcome of our proposed method
includes both clustering analysis and multiple kernel classifier for a given dataset. We con-
duct extensive experiments on several benchmark datasets. The experimental results show
that our method can improve classification and clustering performance when datasets have
complex clustering structure with different preferred kernels.

1. Introduction

A crucial question in machine learning is how to choose a suitable representation for input
data. Under the umbrella of kernel methods, this question is translated to the task of
selecting appropriate kernel functions, which are adequate and rich enough for the tasks
at hand. In particular, to perform satisfactorily on real-world datasets, kernel methods
require to choose a proper kernel function and its relevant kernel parameters. To address
the problem of choosing a suitable kernel, a typical, classical approach is to do grid search
on a set of single kernels (Hsu et al., 2003). Although this approach is simple, efficient and
can be distributed to work on multiple machines, it requires to scan over an exponential

. Acknowledgement: This work is partially supported by the Australian Research Council under the
Discovery Project DP160109394

© 2018 K. Nguyen, N. Dam, T. Le, T.D. Nguyen & D. Phung.

NGUYEN DAM LE NGUYEN PHUNG

Figure 1: With the help of clustering struc- pumms
ture, the classification problem becomes sim-
pler. The region in color (yellow, cyan, and e |
magenta) denotes cluster boundary. The red
line represents the decision boundary for clas- '
sification. On the left, without clustering, the
decision boundary should be nonlinear to ac- o
curately classify data. On the right, after R g N Pt
clustering into 3 groups, data in each group | % :
are clearly separated, thus a linear decision

boundary for each cluster is good enough. (a) (b)

Seee

amount of parameters and more importantly, determining the ranges of kernel parameters
in this approach is known to be challenging. Another notable approach is to utilize multiple
kernel learning (MKL), in which a wide spectrum of kernels is combined instead of a single
kernel and an optimizer chooses the most appropriate combination. In literature, there have
been many methods proposed to combine multiple kernels or to infer mixing proportions
of individual kernels (Bach et al., 2004; Girolami and Zhong, 2007; Bach, 2009; Génen and
Alpaydin, 2011; Gonen, 2012; Orabona and Jie, 2011; Oliva et al., 2016). Nevertheless, most
of these aforementioned methods require predefining a specific list of kernels. To increase
the representation ability of the mixture kernel function and avoid missing any promising
candidate, one usually tries to aggregate as many kernels as possible. This strategy, in
return, demands a huge amount of computational resources and might lead to overfitting
in many cases.

Data have their own intrinsic clustering structure where each cluster contains similar
data instances. Since data instances in a cluster are highly similar and correlated, it is often
more convenient and advantageous to learn a single model that fits data in this individual
cluster than data in the entire dataset. Therefore, it is desirable to exploit cluster-based
information carried in data by devising a mixture-model learning method which can be
aware of cluster structure inside data and train its individual models to fit data in the
discovered clusters. Under the context of multiple kernel learning, this principle translates
into the task of simultaneous discovering the cluster structure inside data and training single
kernel machines to fit data in the discovered clusters. For instance, we illustrate a toy setting
in Fig. 1 to show that learning involving the whole dataset is more complicated and requires
more complex kernel functions than learning in each cluster separately. Specifically, it can
be observed that if we can recognize the cluster structure inside data, a linear kernel function
is sufficiently good to classify data in each cluster.

It is certain that to utilize the cluster-based information carried in the data, a simple
and naive approach is to first run clustering method and then separately train single kernel
machines according to the discovered clusters. This approach, however, suffers from two key
limitations. Firstly, the clustering method cannot take advantage of the classifiers (i.e., the
current label assignments) which are subsequently trained. Secondly, since the classifiers
cannot interact with the clustering method, an unqualified clustering solution can severely
affect the performance of these classifiers. We thus prefer a strategy that enables the
interaction of the clustering method and the classifier. Particularly, the current cluster-
assignment information from the clustering method would enhance the classifiers and the

130

CLUSTERING INDUCED KERNEL LEARNING

current label-assignment information from the classifiers would boost the clustering method
to converge faster and be more accurate.

To encourage cluster-based multiple kernel learning in a nonparametric setting wherein
the cluster structure is automatically detected and the single kernel machines that fit data
in the clusters are trained accordingly, we are in need of the clustering methods that have
nonparametric flavor, that is, the number of clusters is automatically adapted along with
the data growth. To this end, Dirichlet Process Mixture (DPM) model (Antoniak, 1974)
and its variants (Neal, 2000; Kurihara et al., 2006), which are based on the sound foun-
dations of random processes (e.g., Dirichlet process (Ferguson, 1973), Pitman-Yor process
(Pitman and Yor, 1997)) and Bayesian inference paradigm, allow us to have the flexibility
to learn the cluster structure and density information inside the data in a nonparametric
manner. However, these aforementioned methods belong to be the unsupervised learning
and hence cannot utilize the label information inside data. To utilize the strong nonpara-
metric capability of Bayesian inference paradigm in supervised learning context, (Shahbaba
and Neal, 2009) proposed using DPM to generate linear models and distribution param-
eters. In particular, the linear multinomial logit models and distribution parameters are
shared accross the collected data instances due to the nature of DPM. The MCMC using
Hamiltonian dynamics and slice sampling were then used to infer both linear models and
density parameters. Since a mixture of linear models can sufficiently represent a nonlinear
model, this method can capture non-linear corellations between data and lables. However
the very high computational cost due to a slow convergence of its sampling scheme makes
this method applicable to only small-scale datasets.

Putting it all together, we propose in this paper the Clustering Induced Kernel Learning
(CIK) algorithm which simultaneously discovers the cluster structure inside data and trains
single kernel machines to fit the data in the discovered clusters. Our proposed CIK leverages
the well-known DPM model with multiple kernel learning paradigm and take advantage of
the nonparametric ability of DPM to infer the number of single kernels that fits to the cluster
structure of data. Not only the classifiers take advantage of the clustering method, but also
the clustering method gets benefit from the current label assignments to converge faster.
To enable kernel learning in each cluster, we employ the random feature technique (Rahimi
and Recht, 2008) and further use the reparameterization technique to shift the source of
randomness to a fixed distribution and expose the kernel parameters as learnable variables.
It is worth noting that in our CIK the kernel parameters are automatically inferred without
any prior specification (e.g., the list of kernels to inspect). In summary, our contributions
include the following points:

e We formulate classification problem with learning multiple kernels and exploiting
clustering structure simultaneously under a generative process which is encoded in
a graphical model. Unlike most existing work, our approach is readily amendable to

deal with different banks of kernels.
e Our method is fully nonparametric in the sense that the number of kernels is adapted

automatically with the growth of data.

e We validate our proposed method on 6 benchmark datasets. The experimental results
demonstrate that our proposed method has the ability of classification and clustering
simultaneously. For classification, our method gains comparable to better accuracy
than other state-of-the-art baselines. For clustering, our method can improve Dunn
index and Davies—Bouldin index compared with the original DPM.

131

NGUYEN DAM LE NGUYEN PHUNG

2. Related Background

This section presents important related background for our framework. For discussion of
other related work to us, see Section Further Related Work.

2.1. Fourier Random Feature Representation

From Mercer’s theorem (Mercer, 1909), if a kernel function is a positive definite ker-
nel, then there exists a function ¢ mapping x € R? to R* where dy, is the dimension
of the Hilbert space H induced by that kernel function. However, in many cases, H is an
infinite-dimensional space and is only evaluated through the inner product (¢ (x), ¢ (x')) =
k (x,x"). To construct an explicit representation of ¢ (x), (Rahimi and Recht, 2008) pro-
posed a random finite-dimensional feature map @ : R* — R2P. For the case of Gaussian
kernel iy, (x,x') = exp{—3 (x — x')" diag (o) (x — x')}, it is of the form:

@ (x) =D [COS (w;rx) ,sin (w;rx)} X (1)

=1

Consequently, the induced kernel & (x, x') = ¢ (x) | ¢ (x') that can accurately and efficiently
approximate the original kernel: ¥ (x,x’) ~ x (x,x/).

2.2. Random Feature Reparameterization

Using random feature transformation, the feature map function ¢ (x) can be accurately
approximated by a mapping function ¢ (x) as described in Eq. (1). However, it is still not
a deterministic function of kernel parameter o since {w;},_, are independent and identically
distributed drawn from the distribution parameterized by the kernel parameter o. Thus, it
is infeasible to learn these kernel parameters. To this end, (Nguyen et al., 2017) proposed a
principle to learn kernel via a reparameterization trick. The main idea is to shift the source
of randomness to an auxiliary space of noise variable € € R? using the reparameterization
trick as w; = o ©® €; where ¢; AN (e]0,1I,) and ® is element-wise multiplication operator.
As a result, the gradient of the kernel parameters can analytically be derived, then we can
incrementally learn these parameters via a proper optimizer.

2.3. Dirichlet Process Mixture Model

A notable approach to cluster data is to solve the problem of mixture model density esti-
mation wherein we assume that data are generated from a mixture model and each data
instance x is generated from a mixture component indexed by a hidden variable z.

To enable nonparametric formality, i.e. discovering the number of mixtures or clusters
automatically, infinite mixture model is formed by using a Dirichlet Process (Ferguson,
1973; Rasmussen, 1999). With the Stick-breaking construction (Sethuraman, 1994), the
generative process for the infinite mixture model can be represented as follows:

7w ~ GEM () and 0~ H (0 |)
zn ~ Cat (7)) and x,~ p(x,0.,)

where GEM (o) (Ewens, 1990) stands for the Griffiths- Engen-McCloskey distribution. To
infer the latent variables, we apply inference techniques, for example Gibbs sampling (Neal,
2000) or variational approximation (Kurihara et al., 2006).

132

CLUSTERING INDUCED KERNEL LEARNING

3. Clustering Induced Kernel Learning

In this section, we present our proposed framework. We depart with the notions of feature
map and space, then describe the generative process and graphical model, followed by the
details of the model and kernel parameters inference.

3.1. The Joint Feature Map and Space

We begin with the description of the notions of feature map and space using in our ap-
proach. Let ¢y, @s,... where ¢, : X — Hi,k = 1,2,... be a sequence of feature maps
whose incurred kernel functions are ky (x,x') = (¢, (X), ¢, (X')), where Hy(s) are the Re-
producing Kernel Hilbert Spaces (RKHS). Define H = stack ([Hj],) as the joint feature
space constituted by stacking the individual feature spaces Hy, k= 1,2,

Given a feature vector ¢y (x), we now define its extended vector @ (x) in the joint
feature space H by first mapping x to H;, using ¢, and then padding ¢, (x) with zeros as:

3] (x) = [0,...,¢Z(X),...,O

Given a data sample x € X, we assume that there exists a latent variable z € N*
indexing the individual feature space that the observation x should be mapped to. We
further define: ® (x;z) = ®, (x). It then follows that:

E. [®(x;2)] = ZP(Z = k)@, (%) = [hf (x),.]7
k

where ¢, = p (2 = k).

It turns out that the expectation of a joint feature vector ®,(x) is in the form of
multiple kernel representation involving the individual feature vectors ¢, (x). Referring to
the definition of the latent variable z, the task of multiple kernel learning now translates
into inferring the latent variable z for each data instance x. Driven by the motive idea that
data instances in the same cluster are homogeneous, thus should be projected onto the same
individual feature space. Consequently, we overload the latent variable z with the role of
an indicator that specifies the cluster of the instance x. This idea will be further explained
in the next section.

To make computation efficient, we employ the Fourier random feature technique.
Given a Gaussian kernel ry (x,x) = exp{—3 (x —x)" diag (o}) (x — x)}, we can ef-
ficiently approximate the feature vector ¢, (x) by a random feature vector @y (x) =
D,;l/Q [cos (w;crx) ,sin (wa)] € R2Prx where wp = Wk1,...,wkp,] and wp; ~
N (w] 0,diag (o)) € R% In particular, we can approximate @, (x) by a vector ®.(x)
in RV where U = >k 2Dy, as follows

3T (x) ~ . (x) = [o,...,aj(x),...,o}

In other words, U is an approximate space of the projection from x onto the joint feature
space H.

133

NGUYEN DAM LE NGUYEN PHUNG

Extended Random Feature Space

oO
oO
o

Input space

Figure 2: Tllustration of our framework where clustering structure is discovered from the data in
the input space and mapped into corresponding random subspace via Fourier random feature map
¢;,. Each random subspace is sufficiently rich to perform classification.

3.2. Graphical Model and Generative Process

Given the training set D = {(xn,yn)}gzl, where x, € X C R? is the data instance and

yn € ¥ = {1,...,M} is the corresponding label. Each data instance x, is associated
with the latent variable z;, that indexes the component model that generates x,. We then
project x, into the joint random feature space RY via @, (x,) (i.e., projecting into the

random subspace R?P=n of]Rﬁ). We then aim to learn M hyperplanes wy, ..., wys in the
approrimate joint feature space where W,Tn = [W;,p .. ,W;rn’k, NS RY such that each

W, m = 1,..., M can well separate the data instances projected onto the subspace H,,.
Visually, we describe our idea in Fig. 2. The motive intuition behind this process is that
the data instances generated by the same component model (or cluster) are homogeneous
and can be conveniently characterized by a single kernel machine (i.e., a hyperplane in
a component feature space). Besides, the information from the single kernel machines
supports the clustering process and makes it converge faster. Hence, there is a symbiotic
relationship between the single kernel machines and the clustering method (i.e., a DPM
model in our case).

1 N 7 ~ GEM («)
a—»@— @ A zn, ~ Cat (1)
0y~ H(0|v)
Xn ~p(x]0s,)
W @ (o —>(n) @ Wi ~ N (0, \Iop,)
L N Yn ~ Eq.(X)

Figure 3: A graphical model representation for our CIK framework.

134

CLUSTERING INDUCED KERNEL LEARNING

For convenience, we stack these hyperplanes into a matrix as W = [wy,..., w M]T. We
further denote W, ;, as a M x 2Dj, submatrix of W such that W, = [Wy g, ... ,wM’k]T.
The generative process of our model can be interpreted as follows:

The latent variable z,, specifies the feature space to which the input vector x,, should
map. Then, the label variable y,, is defined based on the weight matrix W and the
extended random feature vector ®,, (xy).

Data instances with the same preferable feature map, i.e. the same z, = k, are gener-
ated from a component model with the parameter ;. We endow the parameter 8;, by
a prior distribution H with a parameter 1. In particular, we define p (x,, | 2z, = k, 0%)
as a Gaussian distribution N (uy, Xx) and H (0 | ©) as a Gaussian invert Wishart
distribution GIW (py,, Xk | mg, 70, 0, So)-

The latent variable z, is an indicator, hence it should be generated from a categorical
distribution with a parameters . The parameter @ = [m,..., 7Tk, ...] is an infinite
vector which is drawn from a GEM distribution with a concentration parameter a.

The hyperplane w, ;. is drawn from a multivariate Gaussian distribution. By choos-
ing this distribution, the maximum a posteriori (MAP) estimation for the posterior
distribution of W, j, is reduced exactly to the optimization problem in MKL.

For each data point x,, (n = 1,...,N), the corresponding output label y, is drawn
from pseudo likelihood described as follows

p(yn ‘ W, x,, zn) X €xp (_l (vanu Yn, Zn))

and [(W;x,y, z) is the loss function for classification. The loss function in multiclass
case is defined as

[(W;x,y,z) = max {O, 14+ gy (W,x) — W;‘i’z (x)}

where g, . (W, x) = max;,cy\, (W,IL<AI;Z (x))

Our generative process is summarized in a graphical model illustrated in Fig. 3. Based
on this generative process and the graphical model, we further show how to make inference
and learn parameters in the following section.

3.3. Model learning and parameters estimation

In this section, we present our solution to learn model and infer parameters via a MAP
step with sampling. Our state space includes W and z. We note that we will integrate
out the parameter 7 because it is an infinite vector. We also integrate out parameters 0y
to achieve the fast convergence for Gibbs sampling scheme. For convenience, we stack all
data instances x,, into a matrix X. We denote X_,, as a submatrix of X excluding the data
instance x,. Similarly, z_,, is a vector of all z excluding z,. The notation X (k) specifies the
submatrix of X constituted by concatenating all data instances that share the same latent
variable z = k.

135

NGUYEN DAM LE NGUYEN PHUNG

3.3.1. SAMPLE z

We sample every z, via the posterior distribution of z, given as follows:
p (zn =k ‘ reSt) :p(zn =k ’ W, X(k)a Yn>Z—n, P, Oé)
k
o Py | WX, 20)% (20 2,)% ploca | XE), 40) (2)

The first term p (yn, | W, Xy, 2,) is introduced already in Section 3.2. The second term
relates to the Chinese restaurant process (CRP) (Blackwell and MacQueen, 1973), thus
being derived as follows:

p(zn = ko | Z—pn,) = "k/atN—-1

P (zn = knew | Z—n, @) = ¢/a+N-1
where nj is the number of data instances excluding x, that have the same latent
variable z = k. Using the conjugacy of the likelihood N (u;,X;) and the prior
GIW (py,, X | mo, 10, 10, Sp) for p;, and X, the third term can be derived as a multivariate
Student’s t-distribution

We note that the formulation to sample z, differs from that in Dirichlet Process Mixture
model in the first term. It shows that the assignment of a data instance to a cluster depends
on not only the current number of data instances in that cluster (the second term), and how
likely it is drawn by the generator of that cluster (the third term), but also how accurate it
is classified by using the current kernel of that cluster.

3.3.2. SAMPLE W AND LEARN KERNEL PARAMETERS
We sample each W, ;, from the posterior distribution of W, ;, given as follows:
p(W.’k | rest) = p(W.,k] X(k),y(k),z(k),)\)
xp(y® | We s, X 20 x p(Wep | \)

To sample W directly, we can utilize variable augmentation technique (Polson et al., 2011)
to make posterior tractable. However, it requires to sample from a high dimensional space
which is hard and takes long time to converge to an invariant distribution. Thus, to balance
the predictive performance and training time, we used MAP to estimate model parameter
W, i, as follows:
W, . = argmax {logp (W, s, | rest)}
w.,k:
We then arrive at the following optimization problem:
. (A
min (5 IWarl3s+ > l(W.,k;xn,yn,zn))

Wo,k 2 —k
n=

It is similar to the formulation of the original SVM which is appealing to be solved ef-
ficiently in the primal form. However, our aim is to further learn kernel parameters
automatically for each cluster without any predefined list of kernels. To this end, us-
ing the advantage of the reparameterization Fourier random feature (cf. Section 2.2),
we can turn the kernel parameters o into a variable of the optimization problem, and
hence being able to efficiently solve this optimization by alternately updating W, ; and
0. Recall that ¢ (x) = [cos (w{x) ,sin (w-,gx)] where wjp = [wka,...,wkp,] and
wiy ~ N (w | 0,diag (o)) € RY We note that o is a parameter in the normal distri-
bution N (w | 0, diag (o)), thus it is infeasible to find the optimal value via optimizing the

136

CLUSTERING INDUCED KERNEL LEARNING

function w.r.t o;. To resolve this problem, we use the reparameterization trick to shift this
source of randomness to an auxiliary space of noise variable € € R? as Wil = 0 O €y
where €, i (e]0,1;)and ©® is element-wise multiplication operator. The mapping wy,;
becomes a differentiable function w.r.t o, and hence allows us to find the optimal value of
o}, via the optimization. We have the objective function w.r.t W, ; and o}, as follows

A :
T W 7) = 5 1Werllay & O 1Wekins o, 2n)

The update rules for W and o, for k =1,2,..., K are as:
Wik = Wik — NVw,, o Jt (Wek, Ok)

0, =0k —NVe, Tt (Wer, 0F)
where 7 is a learning rate. J; (o) is the instantaneous objective function of 7 (e) as follows
A
Tt (W%kv Uk) = 5 "W'7k||§72 +1 (W'Jﬂ; Xngr Ynes Znt)
where n; is uniformly sampled from {n € 1,... N | z,, = k} . For the sake of simplicity, we

denote the representation of xj, in the random Fourier feature space parameterized by o,
as ¢,, = ¢,, (xn,). The derivatives of the objective function J; (8) w.r.t wp, ; and oy, are
as follows:
Vo Tt (We s 01) = AWt + L) A(1e50) P — Lim—yn)A(1e50) P
ol 9, dw
53, 0w o

va'kg7t (Wo,ka Uk) = Vakl (W.,k; Xngs Yngs znt) =

where we have
ol (T T)
—_— = ~ ~ (w — W
Py 0<1+w;';1t72nt ¢nt7W;—nt,Znt bn, Mty Zny Yng Zng
nt
aq&m awk
awk aak

T
=D/ [—xnt sin (w;grxnt> , Xp, COS (ngnt)} or3l

T e . _
my = max (Wm,znt¢nt) and Iy =1 (We s Xn,, Uny» 2n,) and €5 = (€1, .., €L D)
mEy\ynt

To summarize, we present the pseudocode of our proposed method in Algorithm 1.

3.4. Predictive distribution

A new data instance x* can be predicted by marginalizing out the posterior distributions
of y* and z* as follows:

p(y* | X*7W7XaY7Zaa,¢)
= Zp(y*>Z* =k ‘ X*,W,X(k),y(k),z,a,’lﬂ)

k
o Y o p(yt | W, x5, 2%) x p(x* | X 4p) x p(2* | z,0)
k
The classification decision of a new data instance depends on three terms. The first term

is governed by the result of prediction given z* and the two remaining terms present how
well it belongs to that cluster.

137

NGUYEN DAM LE NGUYEN PHUNG

Algorithm 1 Clustering Induced Kernel Learning

Input: D = {(xp, yn)}g:1 ,, A\, 1, Mg, 7o, Vo, So, T
Output: W,z

1: 1+ 1and W =0

2: repeat

3: Sample z by Eq. 2

4 fort=1to T do

5 Update Wi,k = Wmk — nvwmykj (Wo,k7 Uk)
6: Update o = 0 — Vo, J (Waek, 0k)

7 end for

8: until enough [epochs

4. Experiments

In this section, we present a comprehensive evaluation on the performance of our proposed
method CIK compared against other state-of-the-art baselines.

4.1. Synthetic Data

In the first experiment, we validate and investigate the behaviors of our approach on syn-
thetic dataset. To generate dataset, we assume each class contains multiple clusters. The
generative process is as follows. We first sample p,.5 from a mixture of K’ different Gaus-
sian distributions with the proportion #w’. We then randomly select 3. corresponding
with p.5. Next, we generate cluster assignments z;.ny from categorical distribution with
the proportion 7. For each assignment z,, we sample x,, from the corresponding Gaussian
distribution A/ (;LZH, Ezn). Finally, we label data instances based on which Gaussian dis-
tribution they are samples from, i.e. two data instances sampled from the same Gaussian
distribution have the same class.

More specifically, we choose K’ = 3, 7" = (1/3,1/3,1/3) and K = 10,7 = (1/10,...,1/10).
For clustering task, our method utilizes the intermediate clustering result with the classifi-
cation decision boundary, thus it can discover the intrinsic clustering structure in dataset.
To examine the clustering capability, which distinguishes our proposed model from tradi-
tional MKL methods, we compare our method with DPM - Dirichlet Process Mixture and
MKC - multiple kernel clustering approach (Goénen and Margolin, 2014). We use three pop-
ular measures: normalized mutual information (NMI), Rand index (RI) and purity (PU) to
evaluate clustering results. As shown in Table 1, our method outperforms other baselines
in all measures. It indicates that the classification and kernel learning information improve
the performance on clustering, hence CIK exploits a better clustering structure in data.

CIK DPM MKC

NMI | 0.84+0.05 | 0.57£0.05 | 0.55
RI | 0.93£0.02 | 0.62+0.09 | 0.60
PU | 0.56£0.12 | 0.2840.06 | 0.20

Table 1: Clustering results comparison on synthetic dataset

138

CLUSTERING INDUCED KERNEL LEARNING

4.2. Real datasets

We now examine the classification and clustering performance of our proposed method on
real-world datasets. We use 6 datasets from a variety of domains. All datasets and their
statistics are available at the LIBSVM Repository. We denote the highest value per dataset
is in bold and methods in bold text with an asterisk are not statistically different from the
highest one using a paired t-test with p-value < 0.05.

4.2.1. CLASSIFICATION TASK

We employ 3 state-of-the-art baselines as follows:

e UFO-MKL (Orabona and Jie, 2011): a scalable MKL method in which the optimiza-
tion problem is efficiently solved using the SGD framework. However, it requires a
hyperparameter tuning procedure.

e BEMKL (Gonen, 2012): a MKL approach under probabilistic perspective which was
proven more efficient and faster than previous works, but its computational complexity
still grows cubically with the training size and the number of kernels.

e BaNK (Oliva et al., 2016): Unlike UFO-MKL and BEMKL, it does not require a
predefined list of kernels. The idea starts from the random feature space approach
(Rahimi and Recht, 2008). This random feature vector is constructed by random
frequencies drawn from a certain distribution. Instead of keeping this distribution
fixed, BaNK considers it as a mixture of Gaussian distribution following a Dirichlet
Process prior distribution. This enables BaNK to have a list of kernels that can grow
freely to be adapted from the data. However, BaNK lacks the clustering capability
since the model fails to capture the geometry information of the data.

Their implementations are obtained from the corresponding authors. All implementations,
including ours, are in Matlab. Here we would like to note that BaNK does not support
multiclass classification. For BEMKL, we set hyperparameter (o, Sy, ty, By, (),) =
(1,1,1,1,1,1) as suggested in the original paper (Gonen, 2012). We perform grid search and
5-fold cross-validation to select the best value for regularization parameter A (UFO-MKL,
BaNK, and CIK) and the sparsity tuning parameter ;1 (UFO-MKL). The considered range
for A is {2*15, 23, 25}. The parameter p is selected in {0.001,...,0.02} as suggested in
(Orabona and Jie, 2011). For both BaNK and CIK, we set the same dimension in random
feature space D = 384. We also repeat 5 times and record the corresponding mean value.

The classification results and training time are reported in Table 2 and 3 respectively.
UFO-MKL runs faster than others but it will be slowed down quickly when the training
size grows as seen in the susy dataset. It is because the computation cost is O(dN?). For
BEMKL, it takes O(N?+ F3 + N2F?) running time for matrix inversion where N is the size
of training set and F' is the number of kernels. In addition, BEMKL requires a large amount
of memory for loading kernel matrix, rendering it inapplicable for large-scale datasets such
as cod-rna and susy as denoted N/A. For BaNK, the computation cost is O(dN D?) where
d is the dimension of the input space and D is the dimension of the random feature space
which usually larger than d. In the meantime, the complexity of our method is O(dN K D)
which is faster than BaNK and BEMKL.

139

NGUYEN DAM LE NGUYEN PHUNG

In terms of predictive performance, UFO-MKL is quite worse than others, especially
on pendigits, phishing, and susy datasets. The accuracy of BaNK is slightly better than
BEMKL and UFO-MKL. It shows the limitation of using a predefined list of kernels in
BEMKL and UFO-MKL as we mentioned in Section 1. However, BaNK’s approach does
not support multiclass datasets which limits its application in the real world. In contrast,
our method can deal with multiclass problem. Furthermore, CIK outperforms others on
pendigits and phishing datasets and obtains comparable accuracy on the remaining datasets.
It is because our method is capable of exploiting the clustering structure and learning kernels
for individual clusters. This approach makes our method more robust than the others,
especially when different clusters in the dataset prefer different kernels.

4.2.2. CLUSTERING COMPARISON

In the last experiment, we examine the clustering capability, which distinguishes our
proposed model from traditional MKL methods. For evaluation, we use two measures:
Davies—Bouldin index (DBI) (Davies and Bouldin, 1979) and Dunn index (DI) (Dunn, 1974).
DBI is a ratio between low intra-cluster distances and inter-cluster distances. Intuitively,
a clustering method is better than others when it produces clusters with low intra-cluster
distances and high inter-cluster distances. Thus, the smaller DBI value indicates better
performance. In contrast, Dunn index is desired to be high. The essential idea is is to give
high score for clustering structure that have small variance between members in a cluster
and different clusters are sufficiently far apart.

We compare our method with Dirichlet Process Mixture Model (DPM) and Multiple
Kernel Clustering approach (MKC) (Gonen and Margolin, 2014). In MKC, multiple kernel
is used to obtain multiple view of data which utilizes the clustering performance. Although
MKC is a promising method for clustering, MKC has high demand on memory to deal
with multiple kernel matrix computation, thus it is suitable only for small datasets. In our
experiments, it cannot run cod-rna and susy datasets as we denoted O/M (out of memory).
For datasets in which results in one cluster (such as sumguide! in MKC; cod-rna and susy
datasets in CIK and DPM), we denote N/A in the table since DBI and DI are unspecified
when evaluated on a single cluster.

As shown in Table 4, our CIK outperforms DPM in terms of DI score in most of datasets,
except for mushrooms dataset where the results are comparable. In terms of DBI, our CIK
achieves better results than DPM in svmguide! and pendigits datasets. Comparing with
MKC, our methods obtains better results on pendigits dataset in both of DBI and DI
measures while MKC is a suitable choice for mushroom dataset. In phishing dataset, DBI

Datasets CIK BaNK BEMKL UFO-MKL
svmguidel | 96.1440.64* | 96.85+:0.09 95.66+0.01 96.7240.04*
mushrooms | 99.944-0.06* 100 100 100
pendigits 97.54+0.26 N/A 97.14+0.02%* 96.37+0.40
phishing 99.97+0.02 96.67+0.41 96.52+0.01 94.71£0.25
cod-rna 94.284+0.27 96.544+0.03 O/M 95.92+0.32
susy 78.96+£0.54 80.17+0.05 O/M 74.41+0.13

Table 2: Accuracy (in %) comparison

140

CLUSTERING INDUCED KERNEL LEARNING

Datasets CIK BaNK | BEMKL | UFO-MKL
svmguidel 291+15 | 377£152 1284002 2.3+01
mushrooms 61109 | 8564027 | 7561008 38+01

pendigits 1,5676+31 N/A | 3,615+242 1601

phishing 650£18 | 832+045 | 2,001£114 94404
cod-rna 2,908+75 | 5,965+731 O/M 902+21
susy 4,379 +£91 | 7,7194+846 O/M 4,089+91

Table 3: Training time (in seconds) comparison

Datasets Davies—Bouldin index Dunn index (x0.1)

CIK DPM | MKC CIK DPM MKC

svinguidel | 1.1940.01 | 1.57+0.04 | N/A | 0.03+0.009 | 0.02+0.003 N/A
mushrooms | 3.67+0.65 | 3.00£0.50 | 2.29 | 2.38+0.032 | 2.43+0.001 | 2.43
pendigits | 2.27+0.66 | 2.56+0.34 | 14.71 | 0.36+0.080 | 0.33+0.078* | 0.19
phishing 4.09£0.93 | 3.13+£0.29 | 2.83 | 1.93+0.017 | 1.93+0.024 | 0.95
cod-rna N/A N/A O/M N/A N/A O/M
susy N/A N/A O/M N/A N/A O/M

Table 4: Clustering Index comparison on real datasets

indicates MKC is the best one, but, in terms of DI, our methods and DPM have better
clustering result than MKC. In general, our method exploits a better clustering structure
in data and improve the performance in clustering comparing with DPM and MKC in most
of datasets.

5. Further Related Work

Multiple kernel learning (MKL) has been studied intensively due to its advantages over
single kernel learning (Gonen and Alpaydin, 2011). (Cristianini et al., 2001) and (Crammer
et al., 2002) have placed the first building block for MKL. There are two main approaches
to view MKL: as an optimization problem and under Bayesian setting.

In the first approach, many types of optimization problems are formulated and different
solutions are proposed to solve such optimization problems (Bach et al., 2004; Xu et al.,
2009). A common strategy in these methods is to base on an alternating optimization view
consisting of two steps: i) updating the combination of kernels given a current learner-based
solution and ii) finding the best learner-based solution for a fixed combination. However,
there is no guarantee of the convergence of this method since the number of iterations
cannot be bounded. Later, (Sun et al., 2010) proposed a method based on the sequential
minimal optimization whose solution is obtained directly without solving intermediate sup-
port vector machines (SVMs). Recently, the so-called UFO-MKL method (Orabona and
Jie, 2011) efficiently solved the optimization problem directly in the primal form by utilizing
the primal-dual framework to minimize the regularized loss functions (Shalev-Shwartz and
Kakade, 2009).

The second approach is to view MKL under probabilistic perspective. Parameters of
models in this approach are learned by inferring latent variables via Bayesian inference.

141

NGUYEN DAM LE NGUYEN PHUNG

Some probabilistic techniques, such as hierarchical probabilistic model (Damoulas and Giro-
lami, 2009), Gaussian Process (Girolami and Zhong, 2007), Markov chain Monte Carlo
(Zhang et al., 2011), Data Augmentation (Nguyen et al., 2016), have been integrated into
MKL. Among these methods, BEMKL (Gonen, 2012) was proven more efficient and faster
than previous work, but its computational complexity still grows cubically with the training
size and the number of kernels. It is worthy of noting that Bayesian models proposed in
these methods are parametric. These models, however, require a list of kernels that must be
predefined, leading to the lack of promising kernel candidates and the demand of high com-
putational complexity. To the best of our knowledge, BaNK (Oliva et al., 2016) is the only
nonparametric method in this line. The idea starts from the random feature space approach
(Rahimi and Recht, 2008), where the feature vector ¢ (x) is approximated by a random fea-
ture vector ¢ (x). This random feature vector is constructed by random frequencies drawn
from a certain distribution. Instead of keeping this distribution fixed, BaNK considers it
as a mixture of Gaussian distribution following a Dirichlet Process prior distribution. This
enables BaNK to have a list of kernels that can grow freely to be adapted from the data.
However, this method requires applying Metropolis-Hastings sampling scheme whose con-
vergence rate is slower than Gibbs sampling because it does not always accept the current
sample value. Another disadvantage of BaNK is the lack of clustering capability since the
model fails to capture the geometry information of the data.

To summarize, combining multiple kernels in the aforementioned ways allows MKL
to cover almost all types of mapping functions for data. However, real-world data are
heterogeneous and complicated since they are collected from multiple sources. They have
their own clustering structure and different clusters do not always share a common preferable
kernel. Therefore, a universal mapping function cannot be a good option for all clusters.
This motivates us to exploit a specific clustering structure for kernel learning in which data
instances having the same preferable kernel are grouped into the same cluster.

6. Conclusion

In this paper, we translate multiple kernel learning into the task of exploring clustering
structure in data and learning a single kernel machine for each discovered cluster. This
approach has two advantages. First, it makes kernel simpler, hence it is easier to learn
kernel. Second, both classification and clustering performance are improved because they
can make use of the intermediate information of each other during the training process.
We evaluate our method on both synthetic and benchmark datasets. For classification,
our method gains comparable to better accuracy than other state-of-the-art baselines. For
clustering, our method improves clustering quality compared with the original DPM.

References

Charles E Antoniak. Mixtures of Dirichlet processes with applications to Bayesian non-
parametric problems. The annals of statistics, pages 1152-1174, 1974.

Francis R Bach. Exploring large feature spaces with hierarchical multiple kernel learning.
In Advances in neural information processing systems, pages 105-112, 2009.

142

CLUSTERING INDUCED KERNEL LEARNING

Francis R Bach, Gert RG Lanckriet, and Michael I Jordan. Multiple kernel learning, conic
duality, and the smo algorithm. In Proceedings of the twenty-first international conference
on Machine learning, page 6. ACM, 2004.

David Blackwell and James B MacQueen. Ferguson distributions via podlya urn schemes.
The annals of statistics, pages 353-355, 1973.

Koby Crammer, Joseph Keshet, and Yoram Singer. Kernel design using boosting. In
Advances in neural information processing systems, pages 537-544, 2002.

Nello Cristianini, Andre Elisseeff, John Shawe-Taylor, and Jaz Kandola. On kernel-target
alignment. 2001.

Theodoros Damoulas and Mark A Girolami. Pattern recognition with a Bayesian kernel
combination machine. Pattern Recognition Letters, 30(1):46-54, 2009.

David L Davies and Donald W Bouldin. A cluster separation measure. IEEE transactions
on pattern analysis and machine intelligence, (2):224-227, 1979.

Joseph C Dunn. Well-separated clusters and optimal fuzzy partitions. Journal of cybernet-
ics, 4(1):95-104, 1974.

Warren John Ewens. Population genetics theory-the past and the future. In Mathematical
and statistical developments of evolutionary theory, pages 177-227. Springer, 1990.

Thomas S Ferguson. A Bayesian analysis of some nonparametric problems. The annals of
statistics, pages 209-230, 1973.

Mark Girolami and Mingjun Zhong. Data integration for classification problems employ-
ing gaussian process priors. In Advances in Neural Information Processing Systems 19:
Proceedings of the 2006 Conference, volume 19, page 465. MIT Press, 2007.

Mehmet Gonen. Bayesian efficient multiple kernel learning. arXiv preprint arXiv:1206.6465,
2012.

Mehmet Gonen and Ethem Alpaydin. Multiple kernel learning algorithms. The Journal of
Machine Learning Research, 12:2211-2268, 2011.

Mehmet Génen and Adam A Margolin. Localized data fusion for kernel k-means cluster-
ing with application to cancer biology. In Adwvances in Neural Information Processing
Systems, pages 1305-1313, 2014.

Chih-Wei Hsu, Chih-Chung Chang, and Chih-Jen Lin. A practical guide to support vector
classification. 2003.

Kenichi Kurihara, Max Welling, Nikos Vlassis, et al. Accelerated variational Dirichlet
process mixtures. In NIPS, volume 6, pages 761-768, 2006.

James Mercer. Functions of positive and negative type, and their connection with the theory
of integral equations. Philosophical transactions of the royal society of London. Series A,
containing papers of a mathematical or physical character, 209:415-446, 1909.

143

NGUYEN DAM LE NGUYEN PHUNG

Radford M Neal. Markov chain sampling methods for Dirichlet process mixture models.
Journal of computational and graphical statistics, 9(2):249-265, 2000.

Khanh Nguyen, Trung Le, Vu Nguyen, Tu Nguyen, and Dinh Phung. Multiple kernel
learning with data augmentation. In Asian Conference on Machine Learning, pages 49—
64, 2016.

Tu Dinh Nguyen, Trung Le, Hung Bui, and Dinh Phung. Large-scale online kernel learning
with random feature reparameterization. In Proceedings of the 26th International Joint
Conference on Artificial Intelligence (IJCAI), IJCAT’16, 2017.

Junier B Oliva, Avinava Dubey, Barnabas Poczos, Jeff Schneider, and Eric P Xing. Bayesian
nonparametric kernel-learning. In Proceedings of the 19th International Conference on
Artificial Intelligence and Statistics, pages 10781086, 2016.

Francesco Orabona and Luo Jie. Ultra-fast optimization algorithm for sparse multi ker-
nel learning. In Proceedings of the 28th International Conference on Machine Learning
(ICML-11), pages 249-256, 2011.

Jim Pitman and Marc Yor. The two-parameter Poisson-Dirichlet distribution derived from
a stable subordinator. The Annals of Probability, pages 855-900, 1997.

Nicholas G Polson, Steven L Scott, et al. Data augmentation for support vector machines.
Bayesian Analysis, 6(1):1-23, 2011.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In
Advances in neural information processing systems, pages 1177-1184, 2008.

Carl Edward Rasmussen. The infinite gaussian mixture model. In NIPS, volume 12, pages
554-560, 1999.

Jayaram Sethuraman. A constructive definition of Dirichlet priors. Statistica sinica, pages
639-650, 1994.

Babak Shahbaba and Radford Neal. Nonlinear models using Dirichlet process mixtures.
Journal of Machine Learning Research, 10(Aug):1829-1850, 2009.

S. Shalev-Shwartz and S. M Kakade. Mind the duality gap: Logarithmic regret algorithms
for online optimization. In Advances in Neural Information Processing Systems, pages
1457-1464, 2009.

Zhaonan Sun, Nawanol Ampornpunt, Manik Varma, and Svn Vishwanathan. Multiple

kernel learning and the smo algorithm. In Advances in neural information processing
systems, pages 2361-2369, 2010.

Zenglin Xu, Rong Jin, Irwin King, and Michael Lyu. An extended level method for efficient
multiple kernel learning. In Advances in neural information processing systems, pages
1825-1832, 2009.

Zhihua Zhang, Guang Dai, and Michael I Jordan. Bayesian generalized kernel mixed models.
The Journal of Machine Learning Research, 12:111-139, 2011.

144

	Introduction-1mm
	Related Background-1mm
	Fourier Random Feature Representation
	Random Feature Reparameterization
	Dirichlet Process Mixture Model

	Clustering Induced Kernel Learning
	The Joint Feature Map and Space
	Graphical Model and Generative Process
	Model learning and parameters estimation
	Sample z
	Sample W and learn kernel parameters

	Predictive distribution

	Experiments
	Synthetic Data
	Real datasets
	Classification task
	Clustering Comparison

	Further Related Work0mm
	Conclusion

