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Abstract

It remains very challenging for a single deep model to detect pedestrians of different sizes
appears in an image. One typical remedy for the small pedestrian detection is to up-
sample the input and pass it to the network multiple times. Unfortunately this strategy
not only exponentially increases the computational cost but also probably impairs the model
effectiveness. In this work, we present a deep architecture, refereed to as ZoomNet, which
performs small pedestrian detection by deep aggregation learning without up-sampling the
input. ZoomNet learns and aggregates deep feature representations at multiple levels and
retains the spatial information of the pedestrian from different scales. ZoomNet also learns
to cultivate the feature representations from the classification task to the detection task and
obtains further performance improvements. Extensive experimental results demonstrate
the state-of-the-art performance of ZoomNet. The source code of this work will be made
public available to facilitate further studies on this problem.

Keywords: pedestrian detection, small object detection, deep learning

1. Introduction

Pedestrian detection is a longstanding topic in computer vision, which acts as an important
component in many practical systems, e.g., video surveillance, autonomous driving, and
robotics. Due to the fast development of deep convolutional neural networks (CNNs), the
performance of pedestrian detection in real-world scenarios has been significantly improved
in the past decades (Viola and Jones, 2001; Wu and Nevatia, 2007; Dalal and Triggs, 2005;
Felzenszwalb et al., 2008; Duan et al., 2012; Xing et al., 2010; Marin et al., 2013; Yan et al.,
2013; Dollar et al., 2014; Zhang et al., 2015; Li et al., 2015; Cai et al., 2016; Wang et al.,
2017; Zhang et al., 2018a; Bhattacharyya et al., 2018). However, there still remains notable
gaps in both detection accuracy and speed for state-of-the-art pedestrian detection models
when deployed into practical applications, such as autonomous driving, video surveillance
and traffic monitoring, in which the model needs to detect pedestrians of varying sizes.
Recently, Convolutional Neural Networks (CNNs) have shown great potential for han-
dling changes in illumination, backgrounds and deformation in many visual tasks. Several
works, such as Girshick et al. (2014); Ren et al. (2015); Redmon et al. (2016); Liu et al.
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(2016); Kong et al. (2016); Dai et al. (2016), presented CNN detectors, which followed
the same pipeline that transfer ImageNet pre-trained classification models into detection.
However, these models might loss spatial information due to a sequence of down-sampling
operations, and detecting pedestrians of various sizes thus posed great challenges to these
models. In many practical applications, such as autonomous driving, the system has to
simultaneously detect very small targets, e.g. 50 or even fewer pixels in height. The rea-
sons that small object detection is difficult include: (1) little visual evidence where small
objects with few pixels lack of many distinctive details in their appearances; (2) greater
stride in existing detectors (Ren et al., 2015; Liu et al., 2016; Redmon et al., 2016), which
down-sample the feature maps to a great extent to obtain stable representations, and may
lose even more details for small objects; and (3) unmatched backbones of existing detectors
that are usually pre-trained on large objects, e.g. 224 x 224 for ImageNet, making them
inherently biased to objects with larger scales and may leave out small ones.

A straightforward way to handle this problem is to up-sample the input so that small
objects become larger in appearance (Yan et al., 2013; Li et al., 2017; Zhang et al., 2017).
However, it exponentially increases the computational cost thus cannot be adopted in real-
time systems. Another more efficient way to retain more information for small objects is
to adopt a finer stride of features by ether removing the last down-sample layer in a CNN
(Dai et al., 2016) or constructing a pyramid of features/images (Liu et al., 2016; Lin et al.,
2016; Fu et al., 2017; He et al., 2017; Liu et al., 2018; Singh and Davis, 2017; Cao et al.,
2018). Some other efforts (Zhang et al., 2018b) attempted to adopt reinforcement learning
to search for the activated neurons to handle small pedestrian, which required a sequence
of explorations before finding the suitable neurons, making it very time-consuming.

In this work, we focus on the problem of small pedestrian detection. We first study the
advantages and limitations of feature pyramid networks (FPN) (Lin et al., 2016), which
adopted multi-level feature maps to enhance its capacity for objects of varying sizes. Un-
fortunately, we find it is still inadequate for smaller objects due to the fact that much
information is already lost at the beginning layers. Besides, FPN adopts a large object
oriented backbone network, which is pre-trained on ImageNet, and overlooks the object s-
cale differences between classification and detection tasks. To make it worse, the beginning
layers are usually fixed during training which may lead to a sub-optimal result for small
objects.

To alleviate these shortcomings, we propose a novel deep architecture which aggregate
the coarse pyramid features with finer stride ones. The original pyramid contains much
high level information but fewer details while the finer features retain more details with an
additional path. Then the final features are enhanced by aggregating them. In particular,
the finer stride features are obtained via an independent complementary path from the
input to the feature pyramid. The down-sampling layer in this path is removed in order
to maximize the spatial information flow. More importantly, separating this branch from
the backbone allows the network to explore new representations and ease the optimization,
thus leads to a better result.

We summarize the main contributions of this work as follows.

e We study the limitations of widely-used CNN detectors, and point out the unmatched
domain transferring between general object classification and detection tasks. For
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the latter task, one need to handle more scale variant, especially very small objects,
resulting the CNN detectors unsuitable for handling small targets.

e We propose an aggregation learning architecture which improves the information flow
by aggregating an additional path with the backbone network for small pedestrian
detection. The extra path compensates small objects for spatial information loss.

e We propose a light-weighted CNN detector, referred as ZoomNet, to achieve the state-
of-the-art result on several challenging pedestrian detection benchmarks with a little
extra computational cost.

e We study alternative architectures with the potential of improving small pedestri-
an representations and provide some discussions on dealing with the drawbacks of
pedestrian detectors.

2. Related Work

A large number of developments for object detection using different learning models has
been published in the last decades. Here we only discuss some of the most related works to
ours in this work.

General CNN detectors. CNNs extract higher abstractions by stacking multiple trans-
formation matrices, resulting high level semantic representations. Regular CNN detectors
(Girshick et al., 2014; Ren et al., 2015; Redmon et al., 2016; Liu et al., 2016) started with
pre-trained models on ImageNet, attempted to decode the classes and location for each
object from high level features. Following works (Dai et al., 2016; Kong et al., 2017; Lin
et al., 2016; He et al., 2017; Liu et al., 2018) further improved detection task with introduc-
ing finer stride features. Feature pyramid networks (FPN) (Lin et al., 2016) constructed
a pyramid architecture with top-down connections, enriched the spatial information using
shallow features. The SNIP training strategy (Singh and Davis, 2017) addressed the fact
that CNN detectors were scale specific, thus could not handle extreme scale changes. Their
work inspire us to further study how to empower the network to handle extreme small ob-
jects. The DetNet (Li et al., 2018) pointed out inherent drawbacks of ImageNet pre-trained
models for fine-tuning detectors, and proposed a network with finer feature stride to remedy
spatial information loss. However, they ignored the difference of scale distribution between
these two tasks and failed to realize the fact that information loss for small objects had
already happened at the shallow layers of CNNs.

Pedestrian detection. Pedestrian detection is one of most important applications that are
applied to real-world problems. Before deep neural networks, features including Haar (Viola
and Jones, 2001), Edgelets (Wu and Nevatia, 2007), ACF (Dollér et al., 2014), CheckBoard
(Zhang et al., 2015); models including DPM (Felzenszwalb et al., 2008), boosting (Viola
and Jones, 2001) and decision trees (Marin et al., 2013) were exploited. Recently, CNN
detectors have shown great potential in solving illumination changes, difficult backgrounds,
pose variations and scale variations in many general object detection tasks. As for pedestrian
detection, existing works, such as Li et al. (2015); Cai et al. (2016) attempted to handle
multi-scale problems with different level of features. Zhang et al. (2017) adapted a Faster
RCNN detector to achieve a notable performance, inspiring us to further inspect basic
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Figure 1: Our proposed network architecture. The red arrows indicate the complementary
path, from the input to the pyramid features, which compensates small objects
for information loss.

problems in this task. A repulsion loss (Wang et al., 2017) was proposed to guide the
network to distinguish occluded persons. More recently, Zhang et al. (2018a) adopted
attention mechanics to detect persons which were partially visible.

Small Object Detection. One possible and straightforward way for small object detection
is to up-sample the input (Yan et al., 2013; Zhang et al., 2017; Wang et al., 2017). However,
it exponentially increases the computational cost, restricting its applications in real-time
systems. A reinforcement learning strategy (Zhang et al., 2018b) was adopted to search for
the activated neurons to handle small pedestrian, which required a sequence of explorations
before finding the suitable neurons, making it time-consuming. The FoveaNet (Li et al.,
2017) attempted to only up-sample a local region instead of the whole image. It required
a strong assumption that the sub-region that needed to up-sample was already known. In
parallel with our work, the Multi-Branch and High-Level Semantic network (Cao et al.,

489



SHANG Al ZHUANG CHEN XING

2018) explored to use different branches in order to construct a feature pyramid with the
same high-level semantics. To distinguish with theirs, our model shares top-level features
across different scales and utilizes only a shallow path to compensate detail loss, resulting
a computational efficiency detector.

3. The ZoomNet Model

The proposed ZoomNet model is illustrated in Figure 1. ZoomNet relieves shortcomings
of FPN with aggregation learning for detecting small object. In particular, we introduce
a complementary path from the input to the pyramid features to retain more spatial in-
formation. Then it is aggregated with the backbone using a top-down connection, making
it compatible with the original detector. In contrast to FPN of which the shallow layers
are fixed during training, the complementary path is optimized with the entire network at
the same time, which allows the model to cultivate feature representations for transferring
large-object oriented networks for objects of varying sizes.

3.1. A complementary path

We take ResNet50 (He et al., 2016) as the backbone and denote feature stages using {C1,
C2, C3, C4, C5} with a stride of {2, 4, 8, 16, 32}. Our model is built on FPNs, which
introduce a top-down connection to join different stages (C2 — C5) to construct a pyramid
of deep features (P2 — P5). Then the classes and positions of objects are generated by these
pyramid features proportionate to the scales of objects. To enhance small object detection
one method is to adopt finer strides of pyramid features. A straightforward way to expand
the FPN is to joining a lower layer (e.g., C'1) in the pyramid. However, in our controlled
experiments, we find out it provides little improvement for both small and large objects, of
which one possible explanation is that the details for small objects are already lost in the
beginning stage.

Based on this consideration, we propose a novel deep aggregation learning architecture
that bridge the gap on small object detection, referred as ZoomNet. As illustrated in Figure
1, ZoomNet contains two paths from the input to pyramid features. The first path is FPN
which already forms a strong representation for larger objects. The second path, colored in
red, serves as a complementary role on handling small objects. It operates at the shallow
layers and outputs a finer and deeper stage of feature C2,,¢,,, which then is enhanced with a
top-down connection to form the new pyramid feature P2,.,. More specifically, we design
the proposed complementary path to share similar structure as the backbone (Input—C?2)
and allows it to inherit structural benefits of ResNet. To distinguish with the backbone, we
remove the max-pooling layer after C'1 and replace the following convolutional layer with a
dilated convolutional layer to fill the holes as Yu and Koltun (2015). The resulting feature
of the complementary path (C2,,.,) has a stride of 2. As for the dilation rate, we set it to 0
and 1, find it has little impact on the final performance. Following FPN, we up-sample P2
by a factor of 2, then add it with C'2,,,,, resulting an enhanced feature level P2,.,. Then
we add a region proposal network (RPN) after { P2e., P3, P4, P5}. Different from existing
works, which keep the parameters of shallow layers (C'1,C2) fixed during training, we allow
the complementary path to update. Note that allowing the shallow layers in the original
FPN (baseline) to update at the beginning stage will sabotage the performance by a large

490



ZOOMNET

g """"""" g P5 g"""""»g—w samplin ps’ CSQ """""" P5
Cisg """""" o cisg """"""" P; = > it WAL/ %

I peing

! i

(a) FPN-C1 (b) FPN-Zoom (c) FPN-x2 (d) FPN-PA

Figure 2: Alternative network architectures that expand pyramid features, (a)—(c), or ag-
gregate an extra path (d). We use red color to indicate adjustments on the FPN
detector.

margin. And updating them in the middle of training also generates little performance
gain. One explanation is that object of different scales compete with each other, leading to
saturation of network capacity. And separating the network into different paths can ease
the optimization.

3.2. Alternative models

One key factor in this work is to adopt finer stride features. However, not all architecture
designs will lead to performance gain. We find that the feature maps not only need to be
finer but also need to be deeper. For comparison, we also investigate alternative models
that adopt finer features: 1) FPN-C1: we join C1 in FPN so that the finest pyramid
feature is P1 with a stride of 2; 2) FPN-Zoom: we only up-sample the pyramid features
without introducing any paths to validate whether the performance gain is obtained only
by adding more anchors; and 3) FPN-x2: another architecture is to remove the max-
pooling layer after C'1 so that the spatial dimensions of all pyramid features P2 — P5 are
doubled. This model leads an improvement for all scales over the baseline with a large
margin. However, the computational cost is almost 4 times larger than the baseline, which
limits its applications in real-world system. We list the above architectures in Figure 2
(a—c).

Another key factor is to adopt an additional path so that it can be optimized during
training time. For comparison, we also perform experiments with the following models to
validate the importance of adjusting shallow features for small objects: 1) FPN-CP-FIX
in which we fix the complementary path in the ZoomNet during training so that it will
not be adjusted for detecting small objects; 2) FPN-AllTrain in which we also allow the
shallow layers to update in the baseline model, which turns out to harm the performance
by a large margin; and 3) FPN-PA in which we also aggregate a path from middle levels
to top levels following Liu et al. (2018), shown in Figure 2 (d). The motivation behind
FPN-PA is to shorten the forward propagation path.
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Figure 3: Ilustration of the adaptive kernel shrinking trick. Since the network is pre-trained
on large objects, the kernels in the first convolutional layer is down-sampled to
detect small objects.

3.3. Adaptive kernel shrinking

Another insight we provide in this work is to shrink the convolutional kernels adaptively
in the first layer. Figure 3 illustrates the intuition of kernel shrinking. The first convolu-
tional layer can be viewed as template matching, which detects specific patterns. Since the
original kernels are pre-trained for objects with larger scales (e.g., 224 x 224 in ImageNet),
transferring them to small objects may need adjustments. A common trick is to shrink
the size of kernels in the first layer, which is an equivalence of scaling the input (Benenson
et al., 2012; Dollar et al., 2014). We define the first convolutional layer with smaller kernel
size (e.g., 5 x 5), which is initialized by down-sampling the original 7 x 7 kernels into 5 x 5
shape with bilinear interpolation.

3.4. The networks architecture

Given an Rol (Region of Interest) generated by the RPN, in contrary to FPN we first use all
the pyramid levels { P2, P3, P4, P5} to crop features into the same spatial dimension.
Then they are concatenated along the channel axis followed by a 1 x 1 convolution to
reduce the channel dimension to the original number. This pooling operations allow an
Rol to directly access all feature levels, leading to a stable representation. The pooled
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region features are propagated through two 1024 x 1024 fully connected layers followed by
a classification layer and a box regression layer.

4. Experiments

In our experiments we use CityPersons (Zhang et al., 2017) and Caltech (Dollar et al., 2012)
to demonstrate the effectiveness of our proposed method on small pedestrian detection.
First, we introduce these datasets, evaluation metrics, and implementation details. Then
we perform ablation studies on Citypersons to validate the contributing factors that are
proposed in this work. Finally, we compare our ZoomNet with the state-of-the-art methods.

4.1. Datasets, experimental settings and implementation details
4.1.1. DATASETS

Among public datasets, CityPersons is a relatively large benchmark, re-labeled on C-
ityscapes (Cordts et al., 2016), and consists of 5,000 images and ~ 35,000 persons, more
that 30% heavy occlusion cases (visibility < 65%). Besides, it covers a large range of scales,
thus making it particularly suitable for studying how CNN detectors react to extreme scale
variant.

Caltech pedestrian detection dataset (Dollar et al., 2012) is another widely-used dataset
for pedestrian detection, has witnessed the development in this area for decades. It contains
2.5 hours video captured from a moving vehicle. An aligned annotation was provided by
Zhang et al. (2016b), consisted of 42,782 frames and 4,024 frames for training and testing
respectively. Following this standard setting, we perform experiments with both the new
and the original annotations, and report results on the Reasonable subset. In contrast to
Citypersons, Caltech is dominated by small scale persons, and suffers less from large scale
variation problems. The median height of persons is 48. See more statistics in Dollar et al.
(2012).

4.1.2. EXPERIMENTAL SETTINGS

All of our experiments in this paper are performed on the reasonable train/val splits for
training/testing. For fair comparison, the MR (log-average miss rate) between [1072,10°]
FPPI (false positive per image) is used as evaluation metrics following Dollar et al. (2012);
Zhang et al. (2017). We report MRs on different subsets, including the small subset (75 >
height > 50, 0.65 > visibility > 0.20) and the reasonable subset (height > 50, visibility
> 0.65).

4.1.3. IMPLEMENTATION DETAILS

We adopt ResNet50 pre-trained on ImageNet as the backbone of our detector. For the
RPN, we define anchors of scales {32, 64, 128, 256} that correspond P2 to P5 respectively,
then add more scales of {20, 21/3, 22/3}. For aspect-ratios, we simply adopt {1, 2.5}
(height /width), which is suitable for sitting persons and pedestrians. The resulting heights
of anchors span from 32 to 642. Note that our method increase the number of anchors
in the lowest pyramid level, thus we adapt our sampling strategy so that anchors in each
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Table 1: Comparison with alternative architectures. The performance is measured by Miss
Rate (MR, in %). The input size is set to 896 x 1792.

Method ‘ Reasonable Small Time (sec. per img)
FPN (baseline) | 15.9 26.3 0.21
FPN-Zoom 171 28.6 0.25
FPN-C1 16.0 26.2 0.24
FPN-x2 14.8 235 0.52
FPN-PA | 15.6 26.4 0.23
FPN-AllTrain 18.4 29.1 0.21
FPN-CP-FIX 15.7 25.8 0.32
ZoomNet (proposed) | 14.9 23.1 0.32

level can be equally sampled when training the RPN. For the rest configurations, we simple
follow He et al. (2017). As for the complementary path Input — C2ye,, since it share the
same structure with Input — C2, we also initialize it using the ImageNet pre-trained model.
In contrast, their parameters are allowed to update during training. For experiments on
Citypersons, we adopt a initial learning rate of 0.005, then decrease it with a factor of 0.1
at the 8 and 12 epoch. We train the detector for 14 epochs. The resulting detector is stable
to the parameter choices. For the complementary path, we initialize it with corresponding
backbone parameters, and allow it to update during training time. In the ablation study,
the input size is set to 896 x 1792 for both training and testing. And for experiments on
Caltech, we set the initial learning rate to 0.002, then decrease it by a factor of 0.1 at the 4th
and the 6th epochs. The input size is set to 960 x 720, which is 1.5 times of the original size.
We train models for totally 8 epochs and report the final MRs. The rest configurations are
set as the ones in Citypersons unless specified. For data augmentation, we only randomly
horizontally flip the image and do not adopt any other kinds of augmentation, such as
multiple scale training, in order to reduce the influence of other factors.

4.2. Ablation studies
4.2.1. WHY AN EXTRA PATH IS NECESSARY"

One key insight for object detection is to retain spatial dimension, i.e., using finer stride
features. To validate the contributions of adopting finer stride features, we compare the
proposed ZoomNet with FPN-C1, FPN-Zoom and FPN-x2. As shown in Table 1, FPN-C1
involves a finer pyramid features. However, it provides little improvement over the baseline.
One possible explanation is that C1 is too shallow and contains little useful information.
FPN-Zoom directly up-samples pyramid features without introducing any additional paths,
resulting a doubled spatial dimension. However, it harms the results. The reason might be
up-sampling the features does not make the pyramid deeper and provides little additional
spatial information. FPN-z2 removes the maxpooling layer after C'1 stage, resulting a
pyramid twice larger than the baseline. It provides 2.8 MR improvement on the small
subset. However, it is time-consuming due to expansion in spatial dimension, which makes
it difficult to apply in a real-world system. Compared to FPN-x2, the finest feature of
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Figure 4: Performance over different scales, in term of miss rate, the lower the better.
(Better viewed in color).

ZoomNet not only has the same spatial dimension but also has the same depth. However,
FPN-x2 is outperformed by ZoomNet on the small subset with a notable margin.

To further validate the contribution of the complementary path, we compare ZoomNet
with FPN-CP-FIX, which shares the same architecture. But the complementary path is
fixed during training. FPN-CP-FIX provides only a small improvement over the baseline
model, and is outperformed by ZoomNet with a notable margin. It demonstrates that
the performance gain is obtained not only by removing the max-pooling layer but also by
cultivating the complementary path for small objects. However, allowing the corresponding
layers to update in the baseline model, as FPN-AllTrain, harms the results instead of
improving them. One possible explanation might be that objects of different scales compete
with each other in the baseline model while our aggregation learning framework separates
the backbone into two branches, leading the network to obtain a stronger representation.
We also perform experiments in which we first fix the shallow layers of FPN in the beginning
epochs and then allow them to update in the rest epochs. However, we find that it provides
little performance gain, which can support our argument that an extra path is necessary
for handling extreme scale variant.

In Figure 4, we show the MRs over different scales. The MR of the baseline model
increases dramatically once the heights of objects are lower than 75. FPN-x2 improves the
results via retaining more spatial information after C1 stage. However, the improvement of
FPN-x2 is at the cost of 4 times computational complexity increasing. Among these models,
ZoomNet achieves the best MR on the small subset (height € (50, 75)) with relatively little
computational complexity increasing. Besides, MRs for larger objects are also reduced.
That is because the separated branches may also ease the optimization for varying scales of

495



SHANG Al ZHUANG CHEN XING

Table 2: Comparison on adaptive kernel shrinking across different kernels in the first con-
volutional layer (in %). The input size is set to 896 x 1792.

Method ‘ Kernel ‘ Reasonable Small
FPN (bascline) | — | 16.1 26.8
77 15.2 23.3
ZoomNet 5X5 15.1 23.5
3x3 14.9 23.1

Table 3: Comparative results with other methods. Addt. is short for additional supervision.
Scale denotes the up-sampling factor with respect to the original image size (1024 x

2048).
Method ‘ Addt. ‘ Scale ‘ Reasonable Small
— 1 15.4 25.6
Zhang et al. (2017) Segment. 1 14.8 22.6
— 1.3 12.8 —
o - 1 14.6 -
Wang et al. (2017) Repulsion 1 13.2 _
. 1 14.8 22.1
FPN (baseline) 13 133 16.7
0.875 14.9 23.1
ZoomNet 1 13.1 19.1
1.3 11.6 15.1

objects. We can also observe that the improvements are not as obvious as those of FPN-x2
when object heights are greater than 125. The reason is that FPN-x2 increases the spatial
dimensions of all pyramid levels while ZoomNet only increases the lowest level.

4.2.2. ADAPTIVE KERNEL SHRINKING FOR SMALL OBJECTS

We propose to adjust the first convolutional layer for small objects via adapting the learned
kernel size. We compare models with kernel size 7 x 7, 5 x 5 and 3 x 3 in Table 2. Kenerls of
shape 5 x5 and 3 x 3 are obtained by down-sampling the original 7 x 7 kernels using bilinear
interpolation. All ZoomNet models outperform the baseline FPN, which demonstrates that
shrinking the learned convolutional kenerls will not undermine the network. Among these
models ZoomNet-3x3 achieves a slight better result, and also enjoys the benefit of less
computational complexity due to smaller kernels.

4.3. Comparisons with other methods
4.3.1. RESULTS ON CITYPERSONS

We compare our results on Citypersons with the state-of-the-art models in Table 3. Zhang
et al. (2017) adopted Faster RCNN detector, and make several adaptations, including re-
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Table 4: Comparative results with other methods on Caltech pedestrian detection dataset
using new annotations. Scale denotes the up-sampling factor with respect to the
original image size (640 x 480). The performance is measured by Miss Rate (MR,

in %).
Method ‘ Scale ‘ Reasonable
CompACT-Deep (Cai et al., 2015) - 9.2
MS-CNN (Cai et al., 2016) 1.5 8.1
RPN-BF (Zhang et al., 2016a) 1.5 7.3
HyperLearner (Mao et al., 2017) - 5.5
AdaptedFstrRCNN (Zhang et al., 2017) 2 5.8
RepLoss (Wang et al., 2017) 2 5.0
FPN (baseline) | 1.5 4.9
1.5 4.5
ZoomNet 9 4.3

moving last two max pooling layers, using a larger set of anchors and adopting Adam
optimizer during training. The baseline model (FPN) already outperforms theirs with less
tailored designs. Further our ZoomNet outperforms theirs by a 2.2 on the reasonable subset
and a large margin of 6.3 on the small subset. Moreover, the proposed model is even com-
parable with theirs using a down-sized input (0.875 scale factor) while they achieved the
comparable MR with the aid of segmentation result. Wang et al. (2017) also adopted Faster
RCNN detector with the ResNet50 backbone, and made some adaptations for pedestrian.
And they used a mini-batch of 4 images, four times larger than ours, which might probably
bring extra advantages in term of training setups. Besides, instead of improving detection
for small objects they focused on handling occlusion with another learning objective. Again,
our ZoomNet already achieves an approximate MR of 14.9 with a down-sized input (0.875
scale factor) on the reasonable subset. They did not show MR of the small subset. On the
reasonable subset our ZoomNet outperforms theirs with the same input size. Since their
goal is to handle occlusion instead of small objects, we can conclude that our ZoomNet also
achieves a better result on the small subset without any additional supervisions.

4.3.2. RESULTS ON CALTECH

In Table 4 and 5, we compare our ZoomNet with the state-of-the-art models on Caltech
dataset. Our proposed ZoomNet outperforms the state-of-the-art models by a notable mar-
gin. Since the scale distribution of Caltech is more concentrated than that of Citypersons,
existing models, such as HyperLearner (Mao et al., 2017), AdaptedFstrRCNN (Zhang et al.,
2017), and RepLoss (Wang et al., 2017) suffered less from large scale variation; and our base-
line model, FPN, already achieves a lower MR. However, the proposed ZoomNet still yields
a notable improvement over our strong baseline with 0.4 drop in MR, which demonstrates
the effectiveness of the proposed model. Moreover, Zhang et al. (2017) achieved 5.8 MR
with an up-sampling factor of 2 while our ZoomNet achieves a 1.1 lower MR with an even
smaller input size.
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Table 5: Comparative results with other methods on Caltech pedestrian detection dataset
using original annotations. The performance is measured by Miss Rate (MR, in

%).
Method ‘ Reasonable
CompACT-Deep (Cai et al., 2015) 11.7
UDN+SS (Ouyang et al., 2018) 11.5
MS-CNN (Cai et al., 2016) 9.9
RPN-BF (Zhang et al., 2016a) 9.7
ADM (Zhang et al., 2018b) 8.6
FstrRCNN-ATT (Zhang et al., 2018a) 10.3
FPN (baseline) | 9.4
ZoomNet ‘ 8.5

5. Conclusion

In this work, we focus on small pedestrian detection, which is critical to many real-world
applications. We provide an intriguing finding that information loss for small objects already
happens in the beginning stages of a CNN. And the widely-used detector was faced with
the dilemma of the dependence of ImageNet pre-trained models. To handle this problem we
aggregate a complementary path from the input to pyramid features; the resulting model,
ZoomNet, achieves a notable improvement on small objects. Extensive experimental results
on two challenging datasets demonstrate the effectiveness of the proposed model. Moreover,
our work reveals the gap between classification and detection tasks, and sheds light on
handling limitations of regular CNN detectors, which are biased to some specific scales and
can not handle extreme scale invariant. And further work may include exploring how to
build the extra complementary path so that it can be more efficient, and bridge the gap
within classification and detection tasks.
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