
Proceedings of Machine Learning Research 80:17–30, 2018 ACML 2018

Supplementary Materials for “ASVRG: Accelerated Proximal SVRG”

Fanhua Shang FHSHANG@XIDIAN.EDU.CN
Licheng Jiao LCHJIAO@MAIL.XIDIAN.EDU.CN
Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, School of Arti-
ficial Intelligence, Xidian University, China

Kaiwen Zhou KWZHOU@CSE.CUHK.EDU.HK
James Cheng JCHENG@CSE.CUHK.EDU.HK
Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong

Yan Ren CRANE ROCK@OUTLOOK.COM

Yufei Jin JESTY@JESTYF.CN

School of Computer Science and Technology, Xidian University, China

Editors: Jun Zhu and Ichiro Takeuchi

In this supplementary material, we give the detailed proofs for some lemmas, theorems and
properties.

Appendix A.

Appendix A1: Proof of Proposition 1

Proof Using Theorem 1, we have

ρ(ω) = 1− ω +
ω2

µmη
.

Obviously, it is desirable to have a small convergence factor ρ(ω). So, we minimize ρ(ω) with given
η. Then we have

ω⋆ = mµη/2 ≤ 1− L̃η

1− L̃η
,

and
ρ(ω⋆) = 1− mµη

4
> 0.

The above two inequalities imply that

η ≤ 1 + 4c1 −
√

1 + 16c21

2L̃
=

1 + 4c1 −
√
1 + 16c21

2c1mµ
and η <

4

mµ
,

where c1 = L̃/(mµ) > 0. This completes the proof.

c⃝ 2018 F. Shang, L. Jiao, K. Zhou, J. Cheng, Y. Ren & Y. Jin.
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Appendix A2: ASVRG Pseudo-Codes

We first give the details on Algorithm 1 with ω=1 for optimizing smooth objective functions such
as ℓ2-norm regularized logistic regression, as shown in Algorithm 3, which is almost identical to
the regularized SVRG in (Babanezhad et al., 2015) and the original SVRG in (Johnson and Zhang,
2013). The main differences between Algorithm 3 and the latter two are the initialization of xs0
and the choice of the snapshot point x̃s. Moreover, we can use the doubling-epoch technique
in (Mahdavi et al., 2013; Allen-Zhu and Yuan, 2016) to further speed up our ASVRG method for
both SC and non-SC cases. Besides, all the proposed algorithms can be extended to the mini-
batch setting as in (Nitanda, 2014; Konečný et al., 2016). In particular, our ASVRG method can
be extended to an accelerated incremental aggregated gradient method with the SAGA estimator in
(Defazio et al., 2014).

Algorithm 3 ASVRG with ω = 1

Input: The number of epochs S, the number of iterations m per epoch, and the step size η.
Initialize: x10 = x̃0, m1 = n/4, ρ > 1, and the probability P = [p1, . . . , pn].

1: for s = 1, 2, . . . , S do
2: ∇̃ = 1

n

∑n
i=1∇fi(x̃s−1);

3: for t = 1, 2, . . . ,ms do
4: Pick it from {1, . . . , n} randomly based on P ;
5: ∇̃fit(xst−1) =

[
∇fit(xst−1)−∇fit(x̃s−1)

]
/(npit) + ∇̃;

6: xst = xst−1 − η
[
∇̃fit(xst−1) +∇g(xst−1)

]
;

7: end for
8: x̃s = 1

ms

∑ms
t=1x

s
t , xs+1

0 = xsms
, ms+1 = min(⌊ρms⌋,m);

9: end for
Output: x̃S .

Appendix A3: Elastic-Net Regularized Logistic Regression

In this paper, we mainly focus on the following elastic-net regularized logistic regression problem
for binary classification,

min
x∈Rd

1

n

n∑
i=1

log(1 + exp(−bia
T
i x)) +

λ1

2
∥x∥2 + λ2∥x∥1,

where {(ai, bi)} is a set of training examples, and λ1, λ2≥0 are the regularization parameters. Note
that fi(x)=log(1+exp(−bia

T
i x))+(λ1/2)∥x∥2.

In this paper, we used the two publicly available data sets in the experiments: Covtype and
RCV1, as listed in Table 1. For fair comparison, we implemented the state-of-the-art stochas-
tic methods such as SAGA (Defazio et al., 2014), SVRG (Johnson and Zhang, 2013), Acc-Prox-
SVRG (Nitanda, 2014), Catalyst (Lin et al., 2015), and Katyusha (Allen-Zhu, 2018), and our ASVRG
method in C++ with a Matlab interface, and conducted all the experiments on a PC with an Intel
i5-4570 CPU and 16GB RAM.
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Table 1: Summary of data sets used for our experiments.

Data sets Covtype RCV1

Number of training samples, n 581,012 20,242

Number of dimensions, d 54 47,236

Sparsity 22.12% 0.16%

Size 50M 13M

Appendix B. Proof of Lemma 2

Before proving the key Lemma 2, we first give the following lemma and properties, which are useful
for the convergence analysis of our ASVRG method.

Lemma 1 Suppose Assumption 1 holds. Then the following inequality holds

E
[∥∥∥∇̃fit(xst−1)−∇f(xst−1)

∥∥∥2] ≤ 2L̃
(
f(x̃s−1)− f(xst−1) +

⟨
∇f(xst−1), x

s
t−1 − x̃s−1

⟩)
, (10)

where ⟨·, ·⟩ denotes the inner product (i.e., ⟨x, y⟩=xT y for all x, y∈Rd), and L̃=maxj Lj/(pjn).
When pi=1/n (i.e., uniform random sampling), L̃=Lmax :=maxj Lj , while L̃=Lavg :=

1
n

∑n
j=1Lj

when pi = Li/
∑n

j=1Lj (i.e., the sampling probabilities pi for i ∈ {1, . . . , n} are proportional to
their Lipschitz constants Li of ∇fi(·)).

The proof of Lemma 1 is similar to that of Lemma 3.4 in (Allen-Zhu, 2018). For the sake of
completeness, we give the detailed proof of Lemma 1 as follows. Their main difference is that
Lemma 1 provides the upper bound on the expected variance of the modified stochastic gradient
estimator, i.e.,

∇̃fit(xst−1) =
[
∇fit(xst−1)−∇fit(x̃s−1)

]
/(npit) + ∇̃,

while the upper bound in Lemma 3.4 in (Allen-Zhu, 2018) is for the standard stochastic gradient es-
timator in (Johnson and Zhang, 2013; Zhang et al., 2013). Obviously, the upper bound in Lemma 1
is much tighter than that in (Johnson and Zhang, 2013; Xiao and Zhang, 2014; Allen-Zhu and Yuan,
2016), e.g., Corollary 3.5 in (Xiao and Zhang, 2014) and Lemma A.2 in (Allen-Zhu and Yuan,
2016).
Proof Now we take expectations with respect to the random choice of it, to obtain

E
[

1

npit

[
∇fit(xst−1)−∇fit(x̃s−1)

]]
=

n∑
i=1

pi
npi

[
∇fi(xst−1)−∇fi(x̃s−1)

]
=

n∑
i=1

1

n

[
∇fi(xst−1)−∇fi(x̃s−1)

]
= ∇f(xst−1)−∇f(x̃s−1).

(11)
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Theorem 2.1.5 in (Nesterov, 2004) immediately implies the following result.∥∥∇fi(xst−1)−∇fi(x̃s−1)
∥∥2 ≤ 2Li

[
fi(x̃

s−1)− fi(x
s
t−1) + ⟨∇fi(xst−1), x

s
t−1 − x̃s−1⟩

]
.

Dividing both sides of the above inequality by 1/(n2pi), and summing it over i=1, . . . , n, we
obtain

1

n

n∑
i=1

1

npi

∥∥∇fi(xst−1)−∇fi(x̃s−1)
∥∥2

≤ 2L̃
[
f(x̃s−1)− f(xst−1) + ⟨∇f(xst−1), x

s
t−1 − x̃s−1⟩

]
.

(12)

Using the definition of ∇̃fit(xst−1) = [∇fit(xst−1)−∇fit(x̃s−1)]/(npit) +∇f(x̃s−1), (11), and
(12), we have

E
[∥∥∥∇̃fit(xst−1)−∇f(xst−1)

∥∥∥2]
= E

[∥∥∥∥∇f(x̃s−1)−∇f(xst−1)−
∇fit(x̃s−1)−∇fit(xst−1)

npit

∥∥∥∥2
]

≤ E

[
1

n2p2it

∥∥∇fit(xst−1)−∇fit(x̃s−1)
∥∥2]

=
1

n

n∑
i=1

1

npi

∥∥∇fi(xst−1)−∇fi(x̃s−1)
∥∥2

≤ 2L̃
[
f(x̃s−1)− f(xst−1) + ⟨∇f(xst−1), x

s
t−1 − x̃s−1⟩

]
,

where the first inequality follows from the fact that E[∥E[x]−x∥2] = E[∥x∥2]−∥E[x]∥2 ≤ E[∥x∥2],
and the second inequality holds due to (12).

Property 2 (Lan (2012)) Assume that z∗ is an optimal solution of the following problem,

min
z

ν

2
∥z − z0∥2 + h(z),

where h(z) is a convex function (but possibly non-differentiable). Then for any z∈Rd,

h(z∗) +
ν

2
∥z∗ − z0∥2 +

ν

2
∥z − z∗∥2 ≤ h(z) +

ν

2
∥z − z0∥2.

Property 3 Assume that the stochastic momentum weight ωs in Algorithm 2 satisfies the following
conditions:

ω0 ≤ 1− 1

α− 1
and

1− ωs

ω2
s

=
1

ω2
s−1

, (13)

where α = 1/(L̃η). Then the following properties hold:

ωs =

√
ω4
s−1 + 4ω2

s−1 − ω2
s−1

2
, ωs ≤

2

s+ 2
.
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Proof Using the equality in (13), it is easy to show that

ωs =

√
ω4
s−1 + 4ω2

s−1 − ω2
s−1

2
≥ 0.

In the following, we will prove by induction that ωs ≤ 2
s+2 . Firstly, we have

ω0 ≤ 1− 1

α− 1
≤ 1 =

2

0 + 2
.

Assume that ωs−1 ≤ 2
s+1 , then we have

ωs =

√
ω4
s−1 + 4ω2

s−1 − ω2
s−1

2
=

2

1 +
√

1 + 4
ω2
s−1

≤ 2

1 +
√

1 + (s+ 1)2

≤ 2

s+ 2
.

This completes the proof.

Proof of Lemma 2:

Proof Let ∇̃t :=
[
∇fit(x

s
t−1)−∇fit(x̃

s−1)
]
/(npit) +∇f(x̃s−1). Suppose each component func-

tion fi(·) is Li-smooth, which implies that the gradient of the average function f(x) is convex and
also Lipschitz-continuous, i.e., there exists a Lipschitz constant Lf > 0 such that for all x, y∈Rd,

∥∇f(x)−∇f(y)∥ ≤ Lf∥x− y∥,

whose equivalent form is

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+
Lf

2
∥y − x∥2.

Moreover, it is easy to verify that Lf ≤ Lavg = 1
n

∑n
j=1 Lj ≤ L̃. Let η = 1/(L̃α) and α > 2

be a suitable constant, then we have

f(xst ) ≤ f(xst−1) +
⟨
∇f(xst−1), x

s
t − xst−1

⟩
+

Lf

2

∥∥xst − xst−1

∥∥2
≤ f(xst−1) +

⟨
∇f(xst−1), x

s
t − xst−1

⟩
+

L̃

2

∥∥xst − xst−1

∥∥2
= f(xst−1) +

⟨
∇f(xst−1), x

s
t − xst−1

⟩
+

L̃α

2

∥∥xst − xst−1

∥∥2 − L̃(α−1)

2

∥∥xst − xst−1

∥∥2
= f(xst−1) +

⟨
∇̃t, x

s
t − xst−1

⟩
+

L̃α

2
∥xst − xst−1∥2 −

L̃(α−1)

2
∥xst − xst−1∥2

+
⟨
∇f(xst−1)− ∇̃t, x

s
t − xst−1

⟩
.

(14)
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E
[⟨

∇f(xst−1)− ∇̃t, x
s
t − xst−1

⟩]
≤E

[
1

2L̃(α−1)

∥∥∥∇f(xst−1)− ∇̃t

∥∥∥2 + L̃(α−1)

2

∥∥xst−xst−1

∥∥2]

≤ 1

α−1

[
f(x̃s−1)− f(xst−1) +

⟨
∇f(xst−1), x

s
t−1 − x̃s−1

⟩]
+

L̃(α−1)

2
E
[∥∥xst−xst−1

∥∥2] ,
(15)

where the first inequality holds due to the Young’s inequality, i.e., aT b≤∥a∥2/(2θ)+θ∥b∥2/2 for
all θ>0, and the second inequality follows from Lemma 1.

Taking the expectation over the random choice of it, and substituting the inequality (15) into
the inequality (14), then we have

E[F (xst )] ≤ f(xst−1) + E

[⟨
∇̃t, x

s
t − xst−1

⟩
+

L̃α

2
∥xst − xst−1∥2 + g(xst )

]
+

1

α−1

[
f(x̃s−1)− f(xst−1) +

⟨
∇f(xst−1), x

s
t−1 − x̃s−1

⟩]
≤ f(xst−1) + E

[
ωs−1

⟨
∇̃t, y

s
t − yst−1

⟩
+

L̃αω2
s−1

2
∥yst − yst−1∥2 + ωs−1g(y

s
t )

]
+ (1− ωs−1)g(x̃

s−1) +
1

α−1

[
f(x̃s−1)− f(xst−1) +

⟨
∇f(xst−1), x

s
t−1 − x̃s−1

⟩]
≤f(xst−1)+E

[
ωs−1

⟨
∇̃t, x

⋆−yst−1

⟩
+
L̃αω2

s−1
2

(∥x⋆−yst−1∥2−∥x⋆−yst ∥2)+ωs−1g(x
⋆)

]
+ (1− ωs−1)g(x̃

s−1) +
1

α−1

[
f(x̃s−1)− f(xst−1) +

⟨
∇f(xst−1), x

s
t−1 − x̃s−1

⟩]
= f(xst−1) + E

[
L̃αω2

s−1
2

(
∥x⋆−yst−1∥2−∥x⋆−yst ∥2

)
+ωs−1g(x

⋆)

]
+(1−ωs−1)g(x̃

s−1)

+

⟨
∇f(xst−1), ωs−1x

⋆ + (1− ωs−1)x̃
s−1−xst−1+

1

α−1
(xst−1−x̃s−1)

⟩
+E
[⟨
−∇fit(x̃s−1)+∇f(x̃s−1), ωs−1x

⋆+(1−ωs−1)x̃
s−1−xst−1

⟩]
+
f(x̃s−1)−f(xst−1)

α−1

= f(xst−1)+E

[
L̃αω2

s−1
2

(
∥x⋆−yst−1∥2−∥x⋆−yst ∥2

)
+ωs−1g(x

⋆)

]
+(1−ωs−1)g(x̃

s−1)

+

⟨
∇f(xst−1), ωs−1x

⋆ + (1− ωs−1)x̃
s−1−xst−1+

1

α−1
(xst−1−x̃s−1)

⟩
+

1

α−1

(
f(x̃s−1)− f(xst−1)

)
,

(16)

where the first inequality holds due to the inequalities (14) and (15); the second inequality follows
from the facts that xst = x̃s−1 + ωs−1(y

s
t − x̃s−1) = ωs−1y

s
t + (1 − ωs−1)x̃

s−1, xst − xst−1 =
ωs−1(y

s
t − yst−1), and

g(ωs−1y
s
t + (1− ωs−1)x̃

s−1) ≤ ωs−1g(y
s
t ) + (1− ωs−1)g(x̃

s−1).
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Since yst is the optimal solution of the problem (5), the third inequality follows from Property 2 with
z∗ = yst , z = x⋆, z0 = yst−1, ν = L̃αωs−1 = ωs−1/η and h(y) := ⟨∇̃t, y − yst−1⟩+ g(y). The first
equality holds due to the facts that

ωs−1

⟨
∇̃t, x

⋆ − yst−1

⟩
=
⟨
∇̃t, ωs−1x

⋆ + (1− ωs−1)x̃
s−1 − xst−1

⟩
=
⟨
∇fit(xst−1), ωs−1x

⋆+(1−ωs−1)x̃
s−1−xst−1

⟩
+
⟨
−∇fit(x̃s−1)+∇f(x̃s−1), ωs−1x

⋆+(1−ωs−1)x̃
s−1−xst−1

⟩
,

and E[∇fit(xst−1)] = ∇f(xst−1), and the last equality follows from the fact that

E
[
⟨−∇fit(x̃s−1) +∇f(x̃s−1), ωs−1x

⋆ + (1− ωs−1)x̃
s−1 − xst−1⟩

]
= 0.

Furthermore,⟨
∇f(xst−1), (1− ωs−1)x̃

s−1 + ωs−1x
⋆ − xst−1 +

1

α−1
(xst−1 − x̃s−1)

⟩
=

⟨
∇f(xst−1), ωs−1x

⋆ + (1− ωs−1 −
1

α−1
)x̃s−1 +

1

α−1
xst−1 − xst−1

⟩
≤ f

(
ωs−1x

⋆ + (1− ωs−1 −
1

α−1
)x̃s−1 +

1

α−1
xst−1

)
− f(xst−1)

≤ωs−1f(x
⋆) +

(
1− ωs−1 −

1

α−1

)
f(x̃s−1) +

1

α−1
f(xst−1)− f(xst−1),

(17)

where the first inequality holds due to the fact that ⟨∇f(x), y − x⟩ ≤ f(y) − f(x), and the last
inequality follows from the convexity of the function f(·) and the assumption that 1−ωs−1− 1

α−1 =

1− ωs−1 − L̃η

1−L̃η
≥ 0. Substituting the inequality (17) into the inequality (16), we have

E[F (xst )] ≤ f(xst−1) + E

[
L̃αω2

s−1
2

(
∥x⋆−yst−1∥2−∥x⋆−yst ∥2

)
+ωs−1g(x

⋆)+(1−ωs−1)g(x̃
s−1)

]

+ ωs−1f(x
⋆) +

(
1− ωs−1 −

1

α−1

)
f(x̃s−1) +

1

α−1
f(xst−1)− f(xst−1)

+
1

α−1

(
f(x̃s−1)− f(xst−1)

)
= ωs−1F (x⋆) + (1− ωs−1)F (x̃s−1) +

L̃αω2
s−1

2
E
[
∥x⋆ − yst−1∥2 − ∥x⋆ − yst ∥2

]
.

Therefore, we have

E[F (xst )− F (x⋆)]

≤ (1−ωs−1)E
[
[F (x̃s−1)− F (x⋆)

]
+

L̃αω2
s−1

2
E
[
∥x⋆ − yst−1∥2 − ∥x⋆ − yst ∥2

]
.

Since

x̃s =
1

m

m∑
t=1

xst and F

(
1

m

m∑
t=1

xst

)
≤ 1

m

m∑
t=1

F (xst ),
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by taking the expectation over the random choice of the history of random variables i1, · · · , im on
the above inequality, and summing it over t = 1, · · · ,m at the s-th stage, then we have

E[F (x̃s)− F (x⋆)]

≤ (1−ωs−1)E
[
F (x̃s−1)− F (x⋆)

]
+

L̃αω2
s−1

2m
E
[
∥x⋆−ys0∥

2 − ∥x⋆−ysm∥2
]

= (1−ωs−1)E
[
F (x̃s−1)− F (x⋆)

]
+

ω2
s−1

2mη
E
[
∥x⋆−ys0∥

2 − ∥x⋆−ysm∥2
]
.

This completes the proof.

Appendix C.

Appendix C1: Proof of Theorem 3

Proof Since the regularizer g(x) is µ-strongly convex, then the objective function F (x) is also
strongly convex with the parameter µ̃ ≥ µ, i.e. there exists a constant µ̃ > 0 such that for all x ∈ Rd

F (x) ≥ F (x⋆) + ξT (x− x⋆) +
µ̃

2
∥x− x⋆∥2, ∀ξ ∈ ∂F (x⋆),

where ∂F (x) is the subdifferential of F (·) at x.
Since 0 ∈ ∂F (x⋆), then we have

F (x)− F (x⋆) ≥ µ̃

2
∥x− x⋆∥2 ≥ µ

2
∥x− x⋆∥2. (18)

Using the above inequality, Lemma 2 with ωs = ω for all stages, and ys0 = x̃s−1, we have

E[F (x̃s)− F (x⋆)]

≤ (1− ω)E
[
F (x̃s−1)− F (x⋆)

]
+

L̃αω2

2m
E
[
∥x⋆ − ys0∥

2 − ∥x⋆ − ysm∥2
]

≤ (1− ω)E
[
F (x̃s−1)− F (x⋆)

]
+

L̃αω2

µm

[
F (x̃s−1)− F (x⋆)

]
=

(
1− ω +

L̃αω2

µm

)
E
[
F (x̃s−1)− F (x⋆)

]
=

(
1− ω +

ω2

µmη

)
E
[
F (x̃s−1)− F (x⋆)

]
,

where the first inequality holds due to Lemma 2, and the second inequality follows from the in-
equality in (18).

This completes the proof.
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Table 2: Theoretical suggestion for the parameters η, ω, and m.

Condition Learning rate η Parameter ω Epoch Length m

mµ/L̃ ∈ [0.68623, 145.72] 2
5

√
1/(µmL̃) 2

25

√
mµ/L̃ Θ(n)

otherwise 1/(5L̃) 1/5 2L̃/µ

Appendix C2: Proof of Corollary 4

For Algorithm 1 with Option I, the theoretical suggestion of the parameter settings for the learning
rate η, the momentum parameter ω and the epoch size m is shown in Table 2.

Proof Using the inequality in Theorem 3, we have

E
[
F (x̃S)− F (x⋆)

]
≤
(
1− ω +

ω2

µmη

)S

[F (x̃0)− F (x⋆)].

Then by setting η =
√

1

a2µmL̃
, ω =

√
mµ

b2L̃
for some constants a and b, m = Θ(n), we have

(
1− ω +

ω2

µmη

)S

=

(
1− b− a

b2

√
mµ

L̃

)S

,

which means that our algorithm needs

S = O

 b2

b− a

√
L̃

µn

 log
F (x̃0)− F (x⋆)

ε
,

epochs to an ε-suboptimal solution. Then the oracle complexity of Algorithm 1 with Option I is

O(S(m+ n)) = O

 b2

b− a

√
nL̃

µ
log

F (x̃0)− F (x⋆)

ε

 .

Next we need to find the constants a, b as well as a region for mµ/L̃ that makes the above bound
valid subject to some constrains,

0 < ω ≤ 1− L̃η

1− L̃η
. (19)

By substituting our parameter settings, we get

1

b

√
mµ

L̃
−
(

1

ab
+ 1

)
+

2

a

√
L̃

µm
≤ 0.

In order for the above inequality to has a solution, the constants a and b should satisfy the following
inequalities: {

b > a > 0,

ab ≤ 3− 2
√
2, or ab ≥ 3 + 2

√
2.

25



SHANG JIAO ZHOU CHENG REN JIN

Table 3: Theoretical suggestion for the parameters η, ω, and m.

Condition Learning rate η Parameter ω Epoch Length m

mµ/L̃ ≤ 3/4 1/(3L̃)

√
(mµ)/(3L̃) Θ(n)

mµ/L̃ > 3/4 1/(4mµ) 1/2 Θ(n)

Suppose that the above inequalities are satisfied. Let ζ1, ζ2 with ζ1 ≤ ζ2 be the solutions to
x2/b− (1/ab+ 1)x+ 2/a = 0, if mµ/L̃ satisfies

ζ21 ≤ mµ

L̃
≤ ζ22 , (20)

then the oracle complexity in this case is O
(√

nL̃/µ log F (x̃0)−F (x⋆)
ε

)
.

For example, let a = 2.5, b = 12.5, then the range in (20) is from approximately 0.68623 to
145.72, that is, mµ/L̃ ∈ [0.68623, 145.72].

Now we consider the other case, i.e., out of the range in (20). Setting ω = 1/5, η = 1/(5L̃),
m = 2L̃/µ (one can easily verify that this setting satisfies the constraint in (19)), we have

1− ω +
ω2

µmη
= 0.9.

Thus, the oracle complexity for this case is O
(
(n+ L̃/µ) log F (x̃0)−F (x⋆)

ε

)
.

Appendix C3: Proof of Corollary 5

For Algorithm 1 with Option II, the theoretical suggestion of the parameter settings for the learning
rate η, the momentum parameter ω and the epoch size m is shown in Table 3.

Proof Using Lemma 2 and ωs ≡ ω, we have

E[F (x̃s)− F (x⋆)] ≤ (1− ω)E
[
F (x̃s−1)− F (x⋆)

]
+

ω2

2ηm
E
[
∥x⋆− ys0∥

2 − ∥x⋆− ysm∥2
]
.

Let ∆̃s = F (x̃s)− F (x⋆), Λs
t = ∥x⋆ − yst ∥2, the above inequality becomes

E
[
∆̃s

]
≤ (1− ω)E

[
∆̃s−1

]
+

ω2

2ηm
E [Λs

0 − Λs
m] .

Subtracting (1−ω)E[∆̃s] to both sides of the above inequality, we can rewrite the inequality as

E
[
∆̃s

]
≤ 1− ω

ω
E
[
∆̃s−1 − ∆̃s

]
+

ω

2ηm
E [Λs

0 − Λs
m] .
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Assume that our algorithm needs to restart every S epochs. Then in S epochs, by summing the
above inequality overt s = 1 . . .S, we have

S∑
s=1

E
[
∆̃s

]
≤ 1− ω

ω
E
[
∆̃0 − ∆̃S

]
+

ω

2ηm
E
[
Λ1
0 − ΛS

m

]
≤
(1− ω

ω
+

ω

ηmµ

)
∆̃0,

where the last inequality holds due to the µ-strongly convex property of Problem (1). Choosing the
initial vector as xnew0 = 1

S
∑S

s=1 x̃
s for the restart, we have

∆̃new
0 ≤

1−ω
ω + ω

ηmµ

S
∆̃0.

By setting S = 2 ·
(
1−ω
ω + ω

ηmµ

)
, we have that ∆̃0 decreases by a factor of 1/2 every S epochs.

So in order to achieve an ε-suboptimal solution, the algorithm needs to perform totally O(log ∆̃0
ε )

rounds of S epochs.
(I) We consider the first case, i.e., mµ/L̃ ≤ 3/4. Setting m = Θ(n), η = 1/(3L̃) and ω =√

(mµ)/(3L̃) ≤ 1/2 (which satisfy the constraint in (19)), we have S = O(

√
L̃/(nµ)), and then

the oracle complexity of our algorithm is

O
(
S ·O

(
log

F (x̃0)− F (x⋆)

ε

)
· (m+ n)

)
= O

√nL̃

µ
log

F (x̃0)− F (x⋆)

ε

 .

(II) We then consider the other case, i.e., mµ/L̃ > 3/4. Setting m = Θ(n), η = 1/(4mµ) <
1/(3L̃) and ω = 1/2 (which satisfy constraint in (19)), we have S = 6 ∈ O(1). Therefore, the
oracle complexity of our algorithm in this case is

O
(
n log

F (x̃0)− F (x⋆)

ε

)
.

In short, all the results imply that the oracle complexity of Algorithm 1 is

O
(
(n+

√
nL̃/µ) log

F (x̃0)− F (x⋆)

ε

)
.

This completes the proof.

Appendix D. Proof of Theorem 7

Proof Using Lemma 2, we have

1

ω2
s−1

E[F (x̃s)− F (x⋆)] ≤ 1− ωs−1

ω2
s−1

E
[
F (x̃s−1)− F (x⋆)

]
+

L̃α

2m
E
[
∥x⋆− ys0∥

2 − ∥x⋆− ysm∥2
]
,
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for all s = 1, . . . , S. By the update rules ys0 = ys−1
m and (1− ωs)/ω

2
s = 1/ω2

s−1, and summing the
above inequality over s = 1, 2, · · · , S, we have

1

ω2
S−1

E
[
F (x̃S)− F (x⋆)

]
≤ 1− ω0

ω2
0

[
F (x̃0)− F (x⋆)

]
+

L̃α

2m
E
[∥∥x⋆ − y00

∥∥2 − ∥∥x⋆ − ySm
∥∥2].

Using Property 3, we have

ωs ≤
2

s+ 2
and ω0 = 1− L̃η

1− L̃η
= 1− 1

α− 1
,

where α = 1/(L̃η). Then

E
[
F (x̃S)− F (x⋆)

]
≤ 4(α− 1)

(α− 2)2(S + 1)2
[
F (x̃0)− F (x⋆)

]
+

2L̃α

m(S + 1)2
E
[∥∥x⋆ − y00

∥∥2 − ∥∥x⋆ − ySm
∥∥2]

≤ 4(α− 1)

(α− 2)2(S + 1)2
[
F (x̃0)− F (x⋆)

]
+

2

mη(S + 1)2
E
[∥∥x⋆ − x̃0

∥∥2] .
This completes the proof.

Appendix E. Proof of Lemma 9

Before proving Lemma 9, we first give the following lemma (Konečný et al., 2016).

Lemma 2 Let ξi∈Rd for all i=1, 2, . . . , n, and ξ̄ := 1
n

∑n
i=1 ξi. b is the size of the mini-batch It,

which is chosen independently and uniformly at random from all subsets of [n]. Then we have

E

∥∥∥∥∥1b∑
i∈It

ξi − ξ̄

∥∥∥∥∥
2
 ≤ n− b

nb(n− 1)

n∑
i=1

∥ξi∥2 .

Proof of Lemma 2:

Proof We extend the upper bound on the expected variance of the modified stochastic gradient
estimator in Lemma 1 to the mini-batch setting, i.e., b ≥ 2.

E
[∥∥∥∇̃fIt(xst−1)−∇f(xst−1)

∥∥∥2]

= E

∥∥∥∥∥1b∑
i∈It

[
∇fi(xst−1)−∇fi(x̃s−1)

]
/(npi) +∇f(x̃s−1)−∇f(xst−1)

∥∥∥∥∥
2


≤ n−b

b(n−1)

1

n

n∑
i=1

1

npi

∥∥∇fi(xst−1)−∇fi(x̃s−1)
∥∥2

≤ 2L̃(n− b)

b(n− 1)

[
f(x̃s−1)− f(xst−1)−

⟨
∇f(xst−1), x̃

s−1 − xst−1

⟩]
,
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where the first inequality follows from Lemma 2, and the second inequality holds due to Theorem
2.1.5 in Nesterov (2004), i.e.,∥∥∇fi(xst−1)−∇fi(x̃s−1)

∥∥2 ≤ 2Li

[
fi(x̃

s−1)− fi(x
s
t−1)−

⟨
∇fi(xst−1), x̃

s−1 − xst−1

⟩]
.

This completes the proof.

Appendix F. Proof of Theorem 10

The proof of Theorem 10 is similar to that of Theorem 7. Hence, we briefly sketch the proof of
Theorem 10 for the sake of completeness.
Proof Let

ω0 = 1− τ(b)L̃η

1− L̃η
= 1− τ(b)

α− 1
,

where α = 1

L̃η
, and y00 = x̃0, then we have

E[F (x̃s)− F (x⋆)]

≤ 4(α− 1)τ(b)

(α− 1− τ(b))2(s+ 1)2
[
F (x̃0)− F (x⋆)

]
+

2L̃α

m(s+ 1)2
E
[∥∥x⋆ − x̃0

∥∥2 − ∥x⋆ − ysm∥2
]

≤ 4(α− 1)τ(b)

(α− 1− τ(b))2(s+ 1)2
[
F (x̃0)− F (x⋆)

]
+

2

ηm(s+ 1)2
E
[∥∥x⋆ − x̃0

∥∥2] .
This completes the proof.
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