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Abstract

Time series imputation (replacing missing data) plays an important role in time series anal-
ysis due to missing values in real world data. How to recover missing values and model the
underlying dynamic dependencies from incomplete time series remains a challenge. A recent
work has found that residual networks help build very deep networks by leveraging short
paths due to skip connections (Veit et al., 2016). Inspired by this, we observe that these
short paths can model underlying correlations between missing items and their previous
non-missing observations in a graph-like way. Hence, we propose an end-to-end imputation
network with residual short paths, called Residual IMPutation LSTM (RIMP-LSTM), a
flexible combination of residual short paths with graph-based temporal dependencies. We
construct a residual sum unit (RSU), which enables RIMP-LSTM to make full use of pre-
vious revealed information to model incomplete time series and reduce the negative impact
of missing values. Moreover, a switch unit is designed to detect the missing values and a
new loss function is then developed to train our model with time series in the presence of
missing values in an end-to-end way, which also allows simultaneous imputation and pre-
diction. Extensive empirical comparisons with other competitive imputation approaches
over several synthetic and real world time series with various rates of missing data verify
the superiority of our model.

Keywords: Time series imputation, LSTMs, end to end learning

1. Introduction

Time series is an important form of data in practical applications, including geo-sensory (Yi
et al., 2016), financial markets (Qin et al., 2017) and action recognition (Ma et al., 2017).
However, these practical time series data inevitably contain missing values due to noise or
malfunctioning sensors. A survey of some incomplete time series in the UCI ML Repository
is shown in Table 1. Traditional methods require complete data and have to impute miss-
ing values before prediction. This can be cumbersome and is not an end-to-end solution.
Furthermore, missing values make any kind of inference more difficult (Rubin, 1976), such
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as prediction (Yu et al., 2016) and classification (Keogh and Pazzani, 1998). Time series
imputation is a very challenging task, since it needs to model temporal dependencies from
incomplete data. Especially in the case of missing a continuous chunk of data, a long-term
and robust memory with history information will be required in the model. How to model
these dependencies from incomplete time series is an important issue.

Table 1: Statistical results of incomplete time series in UCI.

Time Series #Total  #Incomplete | Rate(%)
Dodgers Loop Sensor 50400 2903 6
Heterogeneity Activity Recognition | 33741500 4643613 14
Ozone Level Detection 2536 688 27
SML2010 4137 2152 52
PM2.5 Data of Five Chinese Cities 262920 162236 62
OPP-Activity Recognition 869387 639853 74

Using a graph to describe the temporal dependencies between the missing item and its
previously revealed points is a very explicit and natural strategy for time series imputation.
A recent representative work is Temporal Regularized Matrix Factorization (TRMF) (Yu
et al., 2016), in which a graph-based temporal regularization was introduced to model
temporal dependencies. These dependencies are simplified to an autoregressive structure
illustrated in Fig. 1. For example, assuming the missing variable at time step t is x;, the
autoregressive dependencies can be formulated as z; = Zle r w(l)xt_l, where £ denotes a
lag set. Although TRMF demonstrated the effectiveness of graph-based modeling in time
series imputation, the graph-based dependency structure (such as £) still depends on manual
design and cannot automatically capture complex dynamic correlations in an end-to-end
way.

TS W
t-4 t-3 t-2 t-1 t

Figure 1: Graph-based regularization for temporal dependencies shown in Yu et al. (2016).

In the past decades, the deep learning community has developed powerful methods,
such as LSTM units (Hochreiter et al., 1997), for learning temporal dependencies within
data. However, the standard LSTM is not designed to fill in missing data; rather, it learns
to remember data it needs for prediction. Missing items will have negative impact on the
memory states in an LSTM. If we arbitrarily replace a missing item with the mean value
or the previously revealed item, there is no mechanism for the LSTM to recognize this as
not being real data, which could mislead the LSTM in a prediction task.

Recently, Veit et al. (2016) performed an enlightening analysis of residual networks (He
et al., 2016). They argued that a residual network can be regarded as an ensemble of
relatively shallow networks. As seen in Fig. 2, adapted from their paper, a 3-block residual
network is a collection of 23 = 8 short paths with different lengths. In their view, with the
structure of short paths, the flow of the gradient information can be efficiently propagated
in this corresponding shallow network. This is the main reason why He et al.’s residual
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It

(a) 3-block residual network (b) unraveled view of (a)

Figure 2: As analyzed in Veit et al. (2016), residual networks (a) enable very deep networks
by leveraging the short paths shown in (b). There are 23 = 8 short paths in a
3-block residual network.

networks work so well. This work inspired us to use this structure of short paths to model
time series with missing values. It has a close connection to the graph-based models in
the aforementioned TRMF. With this structure, we can model longer-term dependencies
on previous data using shorter paths. To the best of our knowledge, this residual structure
has not been previously considered as an approach to the imputation problem in time series
prediction.

In this paper we address the problem of incomplete time series imputation from the view-
point of modeling graph dependencies and propose a novel end-to-end imputation network
called the Residual IMPutation LSTM (RIMP-LSTM). We introduce the residual-short-
path structure into LSTM and construct a Residual Sum Unit (RSU) to fuse the residual
information flows. In particular, the role of RSU at each time step is to fuse the LSTM’s
hidden states and the RSUs from previous time steps. From the point of view of graph
dependencies, the current value of the RSU directly integrates the information from its his-
torical states via residual paths, much as a weighted graph does. In this way, it can take full
advantage of the previous observed information and reduce the negative impact of missing
values. Moreover, we propose a switch unit to detect the missing values. If the next input
value is known, the switch will be off, and the output of RSU at current time will be trained
to approximate the known next input value; while if the next input is missing, the switch
will be on and the missing value is imputed by the output of RSU. A new loss function is
then developed to achieve switching the states adaptively. Finally, all the parameters are
learned via the standard BPTT algorithm. In this way, the RIMP-LSTM can be trained
with incomplete time series, simultaneously imputing the missing values and conducting
time series prediction. Since RIMP-LSTM is a flexible framework based on RNNs, the
LSTM can be replaced with any other type of RNN.

Our contributions can be summarized as follows:

e We propose an end-to-end Residual IMPutation LSTM (RIMP-LSTM) to address the

problem of time series imputation.

e This model unifies the idea of residual short paths with the method of graph-based
modeling of temporal dependencies.

e RIMP-LSTM can be trained with incomplete time series in an end-to-end way, simul-
taneously achieving imputation and prediction.

e RIMP-LSTM is evaluated by experiments on several synthetic and real-world time
series with different levels of missing values. Results show that our model obtains
state of the art imputation and prediction performance.
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The remainder of this paper is organized as follows. Section 2 discusses related work
on time series imputation. Section 3 presents our method formally. Section 4 reports the
detailed experimental settings and results. We draw our conclusion in Section 5.

2. Related Work

The demand for imputing missing data arises in many areas, giving rise to a lot of relevant
studies. Traditional time series imputation methods, such as interpolation, splines and
moving averages (MA), are commonly used to impute missing values in time series. All of
them estimate the missing value from immediately preceding or succeeding values. Hence,
they will achieve poor performance when encountering a large number of missing values. The
Expectation Maximization (EM) algorithm (Dempster et al., 1977) is also widely applied in
dealing with missing values in time series. Sinopoli et al. (2004) combine it with a Kalman
filter. Oba et al. (2003) combine it with PCA and variational Bayes methods. Both of them
reconstruct the missing values by iterative EM steps over the available values.

Similar to the Kalman filter, Li et al. (2009) propose Dynammo, using a sequence of
latent variables to model the underlying linear dynamical system and hidden patterns of
the observation sequences for multivariate time series imputation. White et al. (2011)
propose MICE, a sequential linear regression multivariate imputation method, in which
the variable with missing value is regressed on other available variables and draws from
the corresponding posterior predictive distribution to replace the missing value. Anava
et al. (2015) use an autoregressive (AR) model to address online time series prediction with
missing values. In particular, they assume that the missing item can be represented as a
recursive autoregressive form of its previous non-missing points and missing ones. However,
all of them assume the time series has underlying linear dynamics, while non-linear dynamics
is more common in time series.

Recently, modeling temporal dependencies with graph-based regularization provides a
new insight into time series imputation. The aforementioned TRMF (Yu et al., 2016) em-
ployed low-rank matrix factorization to deal with the correlation among multiple variables
and further generalized the AR model as a weighted dependency graph-based regularizer
to learn the temporal dependencies between non-missing observations and missing values
at different time steps, which allows it simultaneous imputation and prediction. However,
TRMF is limited to linear dependency with manually-designed structures.

Recurrent neural networks (RNNs) are suitable for modeling non-linear temporal de-
pendencies for both univariate and multivariate time series. However, conventional RNNs
are based on sequential memory and can not be trained in the presence of missing values.
Although Brakel et al. (2013) presented a training strategy for time series imputation, their
method still required the guidance of ground truth in the training stage. Recently, Lipton
et al. (2016) used an RNN with an added binary variable to indicate whether the value is
missing or not, and set the missing value to zero when it is missing. This allowed them to
train a recurrent network with missing data, which was especially important in their medi-
cal data domain. However, their use case was not filling in the missing variables. In medical
data, lack of data is actually useful information (e.g., that a test was not run). More recent-
ly, Che et al. (2018) further combined the indicator based approach with a decay mechanism
for clinical data classification with missing values. However, as they claimed, their mod-
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el is not explicitly designed for filling in the missing values in the data. It requires the
missing patterns are informative (not missing-at-random), otherwise, it may gain limited
improvements or even fail.

Our method is related to TRMF with a temporal dependency graph and LSTM units.
We address time series imputation from the viewpoint of modeling graph dependencies with
weighted residual short paths. Moreover, our model is an end-to-end imputation network
adopting a novel learning mechanism, which takes full advantage of the previous observed
information of incomplete time series and reduces the negative impact of missing values to
the memory in LSTM.

3. Proposed Methods
3.1. Brief Review of LSTM Networks

Given x = {x;}, a T-length time series without any missing values, an LSTM network
can encode this time series as a hidden sequence h = {h;}, where input at each time is
a n-dimensional vector x; € R”, and the corresponding hidden output is a m-dimensional
vector hy € R™, ¢t = 1,2,...,T. As a variant of an RNN, the LSTM neurons consist four
special types: a memory cell ¢; € R, an input gate i; € R™, a forget gate f; € R™, and an
output gate oy € R™. With these four units, we can formulate the basic LSTM as follows:

¢; = tanh(W,[h;_1,x¢] + be)

i; = o(Wilhy_1,x¢] + by)

fi = o(Wylhy—1,%x¢] + by)

oy = U(Wo[ht—h Xt] + bO)

ag=fi®c1+ii®c

h; = o; ® tanh(cy) (1)

where o(-) denotes the sigmoid function o(x) = 1/(1 + exp(—x)), the weight matrices Wy,
W;, W;, W, are learned parameters that control the memory cells and gates. The operator
® denotes the element-wise product. We can simplify the notation of an LSTM as a function
Frsrm:

hy = Frorp(hi—1,x¢,¢6-1) (2)

Note that we ignore the other output ¢; in (2). This form is convenient for explaining our
model later.

3.2. Proposed RIMP-LSTM

Denote a T-length time series with missing values as x = {x1,x2,...,xp}, where x; € R"
(t=1,2,...,T) is a n-dimensional vector at time ¢. The time series is allowed to be missing
some x;’s or some components of the x;’s.

Our RIMP-LSTM architecture is illustrated in Fig. 3.

We introduce a unit called a Residual Sum Unit (RSU) into the LSTM network (colored
green in Fig. 3). The value of the RSU at time step ¢, r; € R™, is called the residual sum,
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Residual Paths Residual Sum Unit (RSU)

Xts x Xt NaN /‘ NaN Xt-1 NaN X1

Imputation Switch (switch off ) Imputation Switch (switch on)

Figure 3: The RIMP-LSTM architecture. We use green to denote Residual Sum Units
(RSUs), yellow for observed inputs, blue for missing values and violet for the
task-related output.

and is given by:

f(hy) t=1

fhy + g(Wyri—q)) t>1 (3)

ry = Frsu(he,ri—1) :{
where g and f are identity functions (used for generality), h; denotes the hidden state of
LSTM at the time step t, and W, € R™*™ is a learned weight matrix, which allows the
RSU to have the same dimensionality as the hidden states.
RIMP-LSTM approximates the next input value with a linear transformation of the
residual sum:

Z; = Wrort (4)

where W,, € R is a learned transformation matrix.
The imputation switches in Fig. 3 are used for detecting and filling in the missing items.
Unifying the next revealed input and the imputed one as uy, then we have

uy = (% QI{x; is revealed})®(zi—1 QL{x; is missing}) (5)

where ® and @ denote element-wise product and addition, respectively, and I{x;} denotes
the element-wise indicator function, which returns an n-dimensional binary vector to indi-
cate the missing attributes. Hence, we will input x; when x; is revealed, and input z; 1
when x; is missing. In this way, we can formulate the updating process of LSTM hidden
states by hy = Frera(hy—1,us,¢,-1), where ¢;—1 € R denotes the LSTM’s memory cell.

Our training process runs under two cases: approximation and imputation. As shown
in Fig. 3, it uses the approximation process when the switch is turned off, and conducts
the imputation when the switch is turned on. If the next input x; is revealed, we train
the output z;—; of the RSU to approximate x;, aiming to model temporal dependencies
between x; (including the case of missing terms) and its previous information. When x; is
missing, we directly copy z;—1 to x¢. Unifying these two cases, we can formulate a Residual
Imputation Loss (RIMP Loss) £;(z;—1,%;) at time t as

L= |[(ze—1 — x¢) @L{xy is revealed}”% (6)
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where I{x;} denotes the element-wise indicator function, t = 2,3,...,T. If we let the
superscript k denote the k-th sample of time series collections (k = 1,2,..., N), then we
have the overall training loss L;o1q; as

N T
Liotar = ¥ DIz —x(") @ 1{x{" is revealed} |3 +Marger Liarger (P, ¥57)}  (7)
k=1 t=2

Task-related Loss

Residual Imputation Loss (RIMP Loss)
where d*®) and y§£€ ) denote task-related target and output of k-th sample. The second term
of Liotar is task-related. For example, in a prediction task, Liqrget is the square loss. Finally,
the training of the RIMP-LSTM is the same as other RNNs/LSTMs and uses the BPTT
algorithm to learn their parameters.
During the testing stage, the transferred output z;_; of the RSU fills in the missing
value x; in an online manner.

3.3. Discussion

RIMP-LSTM combines the merits of graph-based models with explicitly modeled tempo-
ral dependencies via weighted residual connection between nodes, with the ones of LSTM
that can accumulate historical residual information and learn the underlying patterns of
incomplete time series automatically. Compared to other general graph methods (such as
Yu et al. (2016), shown in Fig. 1), our RIMP-LSTM has two advantages:

e The temporal dependency graph in RIMP-LSTM considers all direct connections a-
mong variables (e.g., given K previous points, the number of residual short paths is
2K which avoids handcrafted design of dependency structure.

e These residual short paths in RIMP-LSTM can be automatically learned in an end-
to-end way using BPTT, which does not limit the system to some set of user-intuited
assumptions, like the dependency length (delay) in autoregression (AR).

RIMP-LSTM thus models temporal dependencies with weighted residual short path-
s, takes advantage of RSU to accumulate historical residual information, and learns the
underlying patterns of time series with missing data in an end-to-end manner.

4. Experimental Evaluations

In this section, we demonstrate the effectiveness of our RIMP-LSTM for time series imputa-
tion of different-level missing values. We consider two kinds of time series: univariate time
series and multivariate ones. Univariate time series imputation depends on the temporal
dependencies between the missing item and its previous history (or neighbors) only, due
to the data are one dimensional points at each time step. On the other hand, multivari-
ate time series contain multiple variables and each variable has a corresponding univariate
time series. In this case, imputation can use the correlations among variables, since some
variables at specific time steps may be missing, while other non-missing variables are still
helpful for modeling temporal dependencies. Based on these observations, we conduct two
types of independent imputation experiments on six synthetic and real world datasets.
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Table 2: Experimental Datasets Summarization

Data type data set dim length source missing rate
Sanity check 1 496 synthetic
univariate Daily births 1 5113 10% - 50%
real world
Electricity MT124 1 17536
DSIM 16 1440 theti
o I 5% - 50%
multivariate SCITOS G5 24 5456
real world ——M——
Traffic volume 10 4272 10%

4.1. Datasets

Three univariate time series (Sanity check, Daily births and Electricity MT124 datasets)
and three multivariate time series (DSIM, SCITOS G5 and Traffic volume datasets) are
listed in Table 2. More details are introduced as follows:

1. Sanity check (Anava et al., 2015): This is a synthetic time series generated from a
fifth-order autoregression (AR) equation:

5
X; = ¢ + Z OiX—i + € (8)

i=1

where ¢g and {¢;}(i € 1,...,5) are set to 0, 0.6, -0.5, 0.4, -0.4, 0.3, respectively. The
noise terms {e;} are sampled from a distribution of N'(0,0.3%). The first five points
{x;}(i € 1,2...,5) are initialized by 1,2, 3,4, 5, respectively. The length of this time
series is 496.

2. Daily births (Hipel and McLeod, 1994): This is a time series of the number of daily
births in Quebec from Jan, 1977 to Dec, 1990. There are 5113 records.

3. Electricity-MT124 (Dheeru and Karra Taniskidou, 2017) records clients’ electricity
consumption every 15 minutes with 140,256 data points. We select one of the client’s
data as a univariate time series and downsample to 17536 points.

4. DSIM dataset (Rahman et al., 2014): DSIM is a simulated diabetes multivariate
dataset. 16-dimensional data with additive Gaussian noise is generated for each sim-
ulated minute, yielding 1440 data points.

5. SCITOS G5 (Freire et al., 2009) is a real world dataset, which consists of the mea-
surements of the 24 ultrasound sensors of a SCITOS G5 robot navigating a room.
The 5456 sensor readings were sampled at a rate of 9Hz and the robot was following
the wall of the room in a clockwise direction, making four trips around the room.

6. Traffic volume: This is a real traffic volume dataset collected from 10 stations in
the freeway network in a province of China. Each station records flow every 5 minutes
from Feb to Apr, resulting in 25632 records. We downsample the recording interval
every 30 minutes, and obtain 4272 10-dim records.

In our experiments, we randomly remove some values according to a certain missing
rate. For univariate imputation, the missing rates are from 10% to 50% with increments of
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10%. For the multivariate imputation on DSIM and SCITOS G5, the missing rates are from
5% to 50% with increments of 5%. Moreover, we imitate a consecutive missing case (we set
the total missing rate as 10% ) on realistic Traffic volume dataset to show the imputation
results of different methods.

4.2. Compared Methods

In the univariate imputation, we compare RIMP-LSTM with 6 representative time series
imputation methods both on imputation and prediction tasks. Notice that since these
baselines cannot conduct prediction by themselves, they need to be combined with predictors
such as ARMA (Kashyap, 1982) or LSTM after imputation. In particular, for Sanity check,
we use ARMA as predictors since this data is derived from the autoregression equation.
For other univariate data sets, we use LSTM as predictors due to their non-linearity. The
univariate imputation methods are as follows:

1. Forward imputation: Filling in a missing item with its last observed value.

2. Indicator approach (Lipton et al., 2016): Adding an indicator value at each time
step. We then obtain a two variable time series from the original univariate time
series. If the current input is missing, the added variable is set to 1, otherwise 0.

3. Spline imputation (Schoenberg, 1973): Filling in a missing item with spline inter-
polation.

4. Moving average (MA) imputation (Moritz and Bartz-Beielstein, 2015): Filling
in missing item with the mean of a tuned window near the missing value.

5. Regularized EM imputation (Schneider, 2001): This is a regularized variant of
expectation maximization (EM) algorithm for imputation.

6. Kalman imputation (Grewal, 2001): One of the most used univariate imputation
methods.

For the multivariate dataset (DSIM and SCITOS G5), we compare advanced multivari-
ate imputation methods with RIMP-LSTM. These techniques include:

1. BPCA (Oba et al., 2003): An estimation method based on Bayesian principal com-
ponent analysis (BPCA).

2. k-NN imputation: Using the nearest neighbors to fill in the missing values.

3. MICE (White et al., 2011): Using a chained equation to fill the missing values.

4. FLk-NN (Rahman et al., 2014): Incorporating time lagged correlations both within
and across variables by combining k-NN and Fourier transform.

5. Dynammo (Li et al., 2009): Learns a linear dynamical system in presence of missing
values and fills them.

6. TRMF (Yu et al., 2016): This is a most recently proposed framework for time series
imputation, based on matrix factorization and graph regularization.

We also design a baseline model called IMP-LSTM to verify the effectiveness of
residual-short-path modeling. IMP-LSTM does not have residual structures, but uses the
same loss function proposed in (7). In this way, IMP-LSTM can fill the missing values and
conduct the prediction simultaneously as RIMP-LSTM does.
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4.3. Experimental Settings

We evaluate results on two criteria: mean absolute error (MAE) for DSIM task, in order
to directly compare with results reported in Rahman et al. (2014), and root mean square
error (RMSE) for other datasets. These two criteria can be formulated by

n

1 , )

RMSE = (=) (27 — 2]")?)2 9
(n;(wz z; ")%)? 9)
1 — ,

MAE = — real _ ptmp 1
n;l(wz z; )| (10)

where n is the number of missing data points. 27°* and :cimP denote the truth and the
imputed value of i-th missing item respectively.

For the configuration, a single-layer LSTM is used in the RIMP-LSTM architecture, with
128 hidden units. Empirically, we found that more hidden units will slightly improve the
imputation performance. For the univariate time series, we randomly remove data with a
given missing rate (e.g., 15%), and divide the whole time series into two parts: the first 70%
for training and remaining 30% for testing. In this task, we compute the imputation error
in the training set (we do not give any ground truth as targets) and report the prediction
performance in the test set. For the multivariate time series, we follow the methods in
previous work (Li et al., 2009; Rahman et al., 2014; Yu et al., 2016), and compute the
imputation performance on the whole dataset.

We use the ADAM (Kingma and Ba, 2014) optimizer and early stopping in our training
stage. In the following experiments, Aqrger is set to 1. All the following experiments are
repeated 10 times and their average results reported.

The experiments are run on the tensorflow platform using an Intel Core i5-6500, 3.20-
GHz CPU 32-GB RAM and a GeForce GTX 980-Ti 6G. For the Sanity check dataset, we
use mean normalization. For other datasets, we adopted min-max normalization. A 5-step
sliding window smoothing is adopted for the TraVol dataset due to its strong non-linearity.

4.4. Experimental Results

We report our results of univariate imputation and prediction on three datasets with dif-
ferent missing rates in Table 3 and Table 4, respectively.

For the imputation results (see Table 3), RIMP-LSTM is superior to others in almost all
cases. IMP-LLSTM is a strong baseline, outperforming the other methods while is inferior
to RIMP-LSTM, which verifies the effectiveness of modeling temporal dependency with
residual short paths. The one-step-ahead prediction results are shown in Table 4. RIMP-
LSTM achieves the best prediction performance on three datasets with various missing
rates. Here, IMP-LSTM displays unstable prediction performance on Sanity Check (e.g.
the case of 40-50%), on which IMP-LSTM performs worse than other methods. Without
residual short paths, IMP-LSTM imputes the missing value only depending on the last
state preceding the missing item, and the long short-term memory will be impacted when
it is corrupted by inaccurate imputation. Hence, inaccurate imputation will disrupt later
prediction.
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Table 3: Imputation results (RMSE) for univariate time series.

Dataset ml(a;;l)ng Forward Indicator  Spline MA EM Kalman _EIS\4TPM _IL{ISI\{IHI\D/[
10 0.296 0.280 0.282  0.247  0.280 0.258 0.261 0.246
20 0.482 0.332 0.317  0.317  0.347 0.326 0.310 0.295
Sanity check 30 0.454 0.378 0.394 0.363 0.372 0.400 0.371 0.365
40 0.464 0.342 0.490  0.389  0.438 0.355 0.366 0.346
50 0.460 0.354 0.508  0.389  0.474 0.352 0.342 0.335
10 0.371 0.342 0.284  0.327 0.285 0.327 0.256 0.208
20 0.415 0.361 0.345  0.334  0.299 0.318 0.258 0.215
Daily births 30 0.417 0.376 0.360  0.348  0.323 0.323 0.263 0.225
40 0.438 0.357 0.398  0.353  0.338 0.322 0.266 0.229
50 0.450 0.369 0.531 0.372  0.361 0.328 0.307 0.237
10 0.352 0.272 0.334  0.284  0.292 0.265 0.201 0.189
20 0.369 0.277 0.362  0.293  0.302 0.273 0.227 0.219
Electricity-MT124 30 0.385 0.302 0.405  0.304 0.317 0.277 0.239 0.226
40 0.389 0.323 0.411 0.315  0.326 0.281 0.245 0.229
50 0.396 0.332 0.467  0.319  0.330 0.279 0.257 0.240

Table 4: One-step-ahead prediction results (RMSE) for univariate time series.

Dataset ml(;sol)n &  Forward Indicator Spline MA EM Kalman -I_Ié/['I?M _lzlsl\,ﬁl}\:[
10 0.357 0.315 0.335  0.335 0.288 0.335 0.289 0.283

20 0.359 0.333 0.337  0.336  0.335 0.336 0.293 0.291

Sanity check 30 0.353 0.344 0.339 0.337 0.324 0.338 0.329 0.312
40 0.391 0.341 0.343  0.341 0.343 0.340 0.346 0.312

50 0.372 0.351 0.334 0.335 0.334 0.334 0.348 0.327

10 0.274 0.377 0.253  0.271  0.262 0.269 0.275 0.244

20 0.308 0.380 0.307 0.282  0.279 0.275 0.268 0.225

Daily Births 30 0.342 0.383 0.299  0.321  0.280 0.299 0.285 0.246
40 0.359 0.383 0.325  0.328 0.299 0.313 0.275 0.254

50 0.413 0.389 0.386  0.359  0.348 0.330 0.327 0.269

10 0.259 0.294 0.266  0.232  0.247 0.243 0.220 0.210

20 0.268 0.298 0.267  0.252  0.251 0.255 0.225 0.213

Electricity-MT124 30 0.284 0.310 0.329 0.271 0.261 0.263 0.233 0.227
40 0.296 0.323 0.350  0.288  0.276 0.270 0.238 0.238

50 0.312 0.332 0.365  0.298  0.279 0.274 0.244 0.243

In Fig. 4, the nonparametric tests (Nemenyi test) (Demsar, 2006) at the significance
level of 0.05 are conducted for statistical comparisons (overall results of 8 methods on
imputation. RIMP-LSTM is slightly better than IMP-LSTM and Kalman models in the
case of univariate time seires, and significantly outperforms other methods.

For DSIM and SCITOS G5 datasets, we summarize our average imputation results in
Fig. 5(a) and Fig. 5(b) respectively, where the results of BPCA, EM, k-NN, MICE and
FLk-NN are published in Rahman et al. (2014) and we reported the results of Dynammo
and TRMF by running their source codes.

As seen in Fig. 5, we find that our RIMP-LSTM both has the best imputation per-
formance than other methods both on DSIM and SCITOS G5 datasets. IMP-LSTM and
FLk-NN also perform well, and on SCITOS G5, our RIMP-LSTM is equivalent or slightly
better than IMP-LSTM. k-NN has inferior performance when the missing ratio increases,
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Figure 4: Comparison of RIMP-LSTM on univariate time series imputation with seven
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Figure 5: Imputation results for

since they ignore the temporal dependencies. TRMF achieves temporal dependency mod-
eling with its graph-based temporal regularization while its performance limits on its lag
settings. FLk-NN incorporates time-lagged correlations both within and across variables.
And our RIMP-LSTM model temporal dependencies via the graph-based residual-short-

path structures and LSTM.
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Figure 6: Comparison of RIMP-LSTM on multivariate time series imputation with seven

baselines on the Nemenyi test. The methods connected in one group are not

significantly different at 0.05 significance level.
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In Fig. 6, Nemenyi test (Demsar, 2006) at the significance level of 0.05 are also conducted
for statistical comparisons on multivariate imputation. RIMP-LSTM is slightly better than
FLk-NN and IMP-LSTM models, and significantly outperforms other methods.

To further analyze the computational efficiency of our RIMP-LSTM, we compare it with
vanilla LSTM (with forward imputation first) and IMP-LSTM with the same configurations
and report the runtime (per 100 epochs of training) on DSIM in Fig. 7. The results show
that our RIMP-LSTM only slightly increases the cost of runtime due to the added structure
of residual short paths and switch units.

250

LST™M
IMP-LSTM
{ mmm RIMP-LSTM

= Yo ‘o <, % % 2
# of hidden unit

Figure 7: The runtime comparisons among vanilla LSTM, IMP-LSTM and RIMP-LSTM
on the DSIM dataset.

4.5. Visualization of Imputation

We visualize the imputation results on multivariate traffic volume dataset which contains
10% consecutive missing block.

In Fig. 8, we found that our end-to-end methods (RIMP-LSTM and IMP-LSTM) achieved
better imputation performance than FLk-NN, Dynammo and TRMF, as the imputed val-
ues (red points) are located in or closed to the original curves. Dynammo and TRMF can
hardly work in this case. TRMF models the missing values in two ways: by correlation with
other variables at the same time step, and by the dependency graph regularization. Since
all the values of variables at the same time interval are deleted, there is nothing to correlate
with (it also causes the failure of Dynammo). Moreover, since the missing time interval is
relatively large, the dependency graph regularization is not effective.

On the other hand, compared with IMP-LSTM, RIMP-LSTM has better performance
as it is good at modeling temporal dependencies with weighted residual short paths, which
demonstrates that the reasonability of using these weighted residual paths to model graph-
like temporal dependencies for imputation.

5. Conclusions

In this work, we consider recovering missing values and modeling the dynamic dependencies
from incomplete time series in an end-to-end way. From the point of view of a temporal
dependency graph, we regard residual-short paths as a specific graph topology and integrate
these structures into an LSTM network, called RIMP-LSTM. This novel model can be
trained end-to-end with missing data, and at run-time, simultaneously imputes missing
values and predicts the next value. To the best of our knowledge, this is the first work that
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Figure 8: The visualization result of imputation on the traffic volume dataset. The dashed
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combines the idea of a graph-based model with residual short paths and learns temporal
dependencies from incomplete time series in an end-to-end way. We evaluated RIMP-LSTM
on several data with different levels of random missing data and consecutive missing ones.
The results show that our model achieves state of the art performance of imputation and
prediction.
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