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Supplementary Material:
Unsupervised Heterogeneous Domain Adaptation
with Sparse Feature Transformation

1. Minimization Over B

Given the current fixed A® and A®), B can be updated by minimizing the augmented
Lagrangian:

BU+1) = arg min Lp(A(k),B,A(k))
B
.= argmin ¢(B) + || B||7,, (10)
B q '
where the smooth part of function is
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This minimization problem is a convex quadratic programing with a non-smooth sparsity
regularizer. We solve it using a fast proximal gradient descent method with a quadratic
convergence rate (Beck and Teboulle, 2009), which tackles Eq.(10) by solving a sequence
of intermediate problems iteratively with proximity operators. The algorithm is given in
Algorithm 1 below. The convergence of the algorithm is proved in (Beck and Teboulle,
2009).

Algorithm 1 Fast Proximal Gradient Descent Algorithm

Initialization: Q) = B =starting point, 81 =1, t = 0.
For iter = l:maxiters
1. Set t=t+1

2. Update: B®) = PU(Q(t))’ Biy1 = ﬂ7
QWY = p® 4 (%’;—1) (B — Bt=1)
End For

For the t-th iteration, the intermediate problem at point Q® is in the following form:
Lo

where Q(*) is derived from the gradient of £(Q®) such that

1 ~
Po(Q) = argmin{HB -QUI+ LB
B 2 qan

OO — QW) _ ;Vg(Q(t))
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and 7 is the Lipschitz constant of the general gradient function V/(B). The gradient can
be computed as

VU(B) = (cj AR ABT 4 o x0T X0 4 pI) B- (cj A®C, 1+ axOT X0 4 AR 4 pA(k)>
A Lipschitz constant n of V/(B) needs to satisfy the property

|VUB) — VB r <n||B— B|F, for any feasible B, B’.

Lemma 1 Let
7 = Omax (C’;A(k)A(k)TCS + anTXS + pI) ,

where omax(+) denotes the largest singular value of the corresponding matriz. Then n is a
Lipschitz constant of V{(B).
Proof Let H = C] AN AWTC, + aX0T X0 + pI. We have the following derivations

IVU(B) = VUB)||r
- H (CTABADT O, 4 ax9T X0 4 pI)(B — B')
=[|H(B =B

(S, - yR)”

F

j
) o\ 1/2
< (HHH2 Z |B.; — B H2> (since spectral norm is induced by the Euclidean norm)
J

= Hll=l1B - B'||
:UmaX(H)HB - B/HF

where || - ||2 denotes the spectral norm of the corresponding matrix or the Euclidean norm
of a vector; B.; denotes the j-th column of matrix B. |

The nice property about the intermediate problem in Eq.(11) is that it allows us to
exploit closed-form solutions for the proximity operator Pn(Q(t)) with either the ¢;-norm
regularizer (p = 1 and ¢ = 1) or the ¢; >-norm regularizer (p = 1 and ¢ = 2). According
to (Kowalski et al., 2009), we have the following closed-form solution for the proximity
operations:

If p=1and ¢=1 ({;-norm), we have
PQ) = sign(@) o (10 - 1)
N/ +

where (-); = max(0,-) and o denotes the entrywise Hadamard product operator.
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If p=1and ¢ =2 ({;2-norm), we have

Py(QY) =Q

Y Z;nzjl 67@]’ )

0+ 4m)1QY 1

such that

sz = Slgn( ) <‘Q ,]| (

where a;j denotes a reordered j-th column \Q\(;)\ with a descending order of the entries,
and the corresponding m; is the number such that

+

amj-i-l,j < 1 Z (5 .j am]—f—l j>

r=1
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