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Abstract

Heterogeneous domain adaptation (HDA), which aims to adapt information across domains
with different input feature spaces, has attracted a lot of attention recently. However,
many existing HDA approaches rely on labeled data in the target domain, which is either
scarce or even absent in many tasks. In this paper, we propose a novel unsupervised
heterogeneous domain adaptation approach to bridge the representation gap between the
source and target domains. The proposed method learns a sparse feature transformation
function based on the data in both the source and target domains and a small number of
existing parallel instances. The learning problem is formulated as a sparsity regularized
optimization problem and an ADMM algorithm is developed to solve it. We conduct
experiments on several real-world domain adaptation datasets and the experimental results
validate the advantages of the proposed method over existing unsupervised heterogeneous
domain adaptation approaches.

1. Introduction

For supervised learning, labels of instances play a key role for classification model training
with majority of approaches. However, for many real-world problems, it is difficult or
expensive to collect a sufficient amount of labeled data. Domain adaptation (DA), which
aims to transfer label knowledge from a source domain to a target domain, hence has
attracted a lot of attention recently in computer vision (Niu et al., 2015) and many other
fields (Xiao and Guo, 2013).

Much existing DA work assumes a homogeneous cross-domain feature space, which
hinders the applicability of domain adaptation in many real world scenarios where a source
domain with different input feature space can be readily available for the prediction task in
a given target domain. For example, for image classification in a target domain, a source
domain can have labeled images across the same set of classes but with different resolutions,
which leads to different dimensions of codebook and hence feature space; labeled text data
that describe a set of object classes can be a natural heterogeneous source domain for images
from the same set of object classes. Heterogeneous domain adaptation (HDA) techniques,
which tackle domain adaptation problems with different cross-domain feature spaces, hence
are in high demand.
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The major challenge for HDA lies in bridging the disjoint cross-domain features spaces.
Supervised HDA methods tackle this problem by building cross-domain connections based
on the existence of a small set of labeled instances in the target domain. They utilize the
labeled data to learn a feature mapping function from one domain to another (Kulis et al.,
2011; Hoffman et al., 2013; Zhou et al., 2014), or map the feature spaces of both domains
into a common subspace (Duan et al., 2012; Sukhija et al., 2016). The performance of such
methods however is highly restricted by the scarcity of the labeled instances in the target
domain. A number of semi-supervised HDA approaches hence further exploit the unlabeled
instances in the target domain to alleviate this restriction and improve the learning of
feature transformation or classifiers (Tsai et al., 2016; Wu et al., 2013; Xiao and Guo,
2015; Yao et al., 2015). Some semi-supervised HDA methods even utilize parallel unlabeled
instances to learn cross-domain representations (Platt et al., 2010; Xiao and Guo, 2013).
These methods however still depend on the existence of labeled target instances. A few
unsupervised HDA approaches overcome this dependence limitation on labeled target data
by learning a common latent correlation subspace based only on parallel instances (Hardoon
et al., 2004; Yeh et al., 2014). However, these existing methods typically require a large
number of parallel instances to achieve reasonable performance.

In this paper, we propose a novel feature transformation method to tackle unsupervised
heterogeneous domain adaptation by assuming the existence of a small number of paral-
lel instances. The method uses a linear function to transform the source domain features
into the target domain features to match the parallel instances, while minimizing the cross
domain distribution divergence by aligning the transformed source domain covariance ma-
trix with the target domain covariance matrix. Under the assumption that only a small
number of source domain features are needed to induce a target domain feature, we fur-
ther exploit two types of sparsity inducing norms to regularize the linear transformation
model. We formulate this unsupervised HDA problem as a minimization problem over a
sparsity regularized quartic function and develop an alternating direction method of mul-
tipliers (ADMM) to solve it efficiently. Experiments are conducted on a few heterogeneous
domain adaptation datasets for image classification. The experimental results show that
the proposed method outperforms existing unsupervised heterogeneous domain adaptation
approaches and achieves promising results even when there are only a very small number
of parallel instances.

2. Related Work

In this section, we briefly review the related groups of DA approaches, including unsu-
pervised domain adaptation methods, (semi-)supervised HDA methods, and unsupervised
HDA methods.

2.1. Unsupervised Domain Adaptation

Unsupervised DA aims to exploit the labeled data in a source domain to assist a target
domain that has no labeled instances at all. Many unsupervised DA techniques have been
developed in computer vision field. The work in (Gong et al., 2012) addresses cross-domain
object recognition problems. It constructs and computes the geodesic flow kernel of infinite
subspaces between the source and target domains to overcome the domain shift problem.
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Fernando et al. (2013) propose a visual domain adaptation approach for image classification
that uses a linear mapping to align subspaces across domains. Long et al. (2014) introduce a
transfer joint matching model that considers both feature matching and instance reweighting
for cross-domain digit classification and object recognition. Recently, Sun et al. (2015)
propose a simple but effective DA approach based on correlation alignment, which learns a
feature transformation by aligning the covariance matrices of the source and target domains.
The approach has been applied on cross-domain object recognition problems. Bousmalis
et al. (2016) propose to combine feature extraction with domain adaptation. It learns and
coordinates both private and shared subspaces with a deep learning model. Recently Cao
et al. (2018) propose to extract invariant feature representations and estimate unbiased
instance weights for minimizing the cross-domain distribution discrepancy. These methods
though share some similarities with our proposed approach in bridging the cross-domain
feature gaps with feature transformation and alignment, they are limited to homogeneous
domain adaptation problems and do not handle disjoint cross-domain feature spaces.

2.2. (Semi-) Supervised HDA

Most existing HDA methods require the availability of a small number of labeled instances
in the target domain. Depending on whether unlabeled target domain instances are utilized,
these methods can be divided into two groups: supervised and semi-supervised methods.

Supervised HDA methods exploit the labeled target domain instances in addition to
the source domain data to bridge the feature representation gap. For example, Kulis et al.
(2011) learn an asymmetric and nonlinear feature transformation matrix for cross-domain
image classification by solving an ARC-t problem with the help of the labeled data. Duan
et al. (2012) propose a heterogeneous feature augmentation method that transforms the
data in both domains into a common subspace and then augments the projected data
with original features. Hoffman et al. (2013) propose a max-margin domain transforma-
tion method, which combines the learning of an asymmetric cross-domain transformation
function and the learning the classification parameters in max-margin framework. Zhou
et al. (2014) construct a sparse and class-invariant feature transformation matrix to map
the weight vector of classifiers. Recently, Sukhija et al. (2016) propose to use the shared
label distributions across domains as pivots for learning a sparse feature transformation in
a supervised HDA setting.

Semi-supervised HDA methods further exploit unlabeled target domain instances to help
the adaptation. Wu et al. (2013) propose to learn a discriminative common feature space
for cross-view action recognition by minimizing canonical correlations of interclass instances
and maximizing intraclass instances. Xiao and Guo (2015) develop a semi-supervised kernel
matching framework that simultaneously maps the target domain instance into the source
domain instances and learns a prediction function on the labeled source instances. Tsai et al.
(2016) propose a cross-domain landmark selection method to learn representative landmarks
from cross-domain data. Yao et al. (2015) propose a semi-supervised domain adaptation
method which learns a subspace that reduces the underlying cross-domain difference and
preserves the local structures of domains. More recently, Yan et al. (2017) propose to learn
a discriminative correlation subspace and the target domain classifier simultaneously with a
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unified objective, which achieves state-of-the-art results. The requirement of labeled target
instances however remains to be a limitation for such (semi-)supervised methods.

2.3. Unsupervised HDA

Unsupervised HDA methods do not require any labeled data from the target domain and
mainly use unlabeled instances to bridge the heterogeneous cross-domain feature spaces.
Although a lot of approaches have been developed for unsupervised domain adaptation
(Wei et al., 2016), unsupervised heterogeneous domain adaptation has received far little at-
tention due to its difficulty. Hardoon et al. (2004) propose a canonical correlation analysis
(CCA) method which learns a common semantic representation between the text and image
domains. This method can naturally bridge the representation gap across heterogeneous
domains with parallel data. Recently, Yeh et al. (2014) propose a novel unsupervised HDA
framework that exploits unlabeled cross-domain data pairs to derive a feature transforma-
tion model for cross-domain recognition. Similar to CCA, it utilizes the derived correlation
subspace as a joint representation for associating data across domains, and advances reduced
kernel techniques for kernel CCA (KCCA) for producing nonlinear correlation subspace. It
also incorporates the domain adaptation ability into classifier design by employing a SVM
with a correlation regularizer. This method however can only exploit the unlabeled cross-
domain data pairs (i.e., parallel instances) which can be limited in many domains, while
ignoring the large set of unlabeled nonparallel instances in each domain. Our proposed
unsupervised HDA approach in this paper can overcome such a drawback by exploiting all
existing data in both domains in an unsupervised manner.

3. Unsupervised HDA with Sparse Feature Transformation

In this section, we present a novel sparse feature transformation method for unsupervised
heterogeneous domain adaptation (SFT-HDA). It induces a feature transformation by align-
ing the distributions of the transformed source features and target features in an unsuper-
vised manner.

3.1. Problem Setting

We assume Dy and D; are the source and target domains respectively with different feature
spaces. There are ng labeled instances (Xg,Ys) in the source domain Dy, where X €
R"s*%s is the feature matrix and Ys € {0,1}"*% is the label matrix over L classes with
a single 1 indicating its class label in each row. In the target domain D, we only have
ny unlabeled instances X; € R™*% and need to predict their unknown label matrix Y; €
{0, 1}"tXL in the same label space as in the source domain. Unlike vast HDA approaches
that utilize the labeled instances in the target domain to adapt the heterogeneous domains,
we consider a harder unsupervised scenario where there is no labeled data in the target
domain. Instead, we assume there are a small number of n, unlabeled parallel instances,
ie., (X9, XD) with X0 € R™>% and X € R"%*4, The unlabeled parallel instances have
feature representations in both the source and target domain feature spaces to build cross-
domain connections. Compared with the expensive labeled target domain instances, the
acquisition of a small number of unlabeled parallel instances can be more convenient — they
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Figure 1: Unsupervised sparse feature transformation. The input data are indicated with
blue stripes and red edges.

can be readily available in many applications; e.g., images taken by two cameras on the
same set of objects.

Under this unsupervised domain adaptation setting, our proposed feature transforma-
tion framework can be demonstrated in Figure 1. We will present the details below.

3.2. Feature Transformation Model for HDA

To exploit the information in the source domain for our target prediction task, the major
challenge is to bridge the heterogeneous cross-domain feature spaces. Although projecting
data from both domains into a common subspace has been a typically technique adopted in
the literature for DA tasks, such a third space induces transformation loss for both source
and target domains. Hence we propose to directly transfer the source domain features
into the target domain feature space without seeking a middle ground representation. In
particular, we consider a linear transformation function, f : X5 — A}, that maps the
source domain features into the target domain features via a transformation matrix A €
R4 On the parallel data, we expect the transformed data f(X?) = X?A can be a good
approximation to its counterpart, X,?, in the target domain. By minimizing the squared
approximation loss, this leads to the following transformation learning problem:

. 2
min [ x04 - X0 m

where || - || denotes the Frobenius matrix norm. This learning formulation however entirely
relies on the parallel instances, while ignoring the large amount of non-parallel data in the
two domains. When the number of parallel instances is small, this learning mechanism
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can hardly induce well generalizable transformation functions — there can be distribution
divergence between the transformed source feature space and the original target domain
feature space.

To bridge the cross-domain divergence, we propose to align the transformed feature
distribution with the original target domain feature distribution by adopting a second mo-
ment matching strategy (Sun et al., 2015). Specifically, we minimize the distance between
the second-order statistics, i.e., covariance, of the transformed source features and target
features and formulate the distribution alignment of HDA as:

min HATCsA—CtH2 (2)
A F
where the source feature covariance matrix Cy € R%*% is computed from the non-parallel
source domain data X, and the target feature covariance matrix C; € R%*% is computed
from the non-parallel target domain data X;. The covariance matrix in the transformed
source feature space is computed with the linear transformation matrix A as AT CsA. With
the large amount of non-parallel data in the source and target domains, we expect the
empirical covariance matrix matching will reduce the cross-domain feature distribution di-
vergence and facilitate cross-domain information transfer.

To ensure both a meaningful feature transformation and a minimal cross-domain dis-
tribution divergence, we finally combine the loss functions in both Eq.(1) and Eq.(2) and
formulate a heterogeneous feature transformation model as below by exploiting both the
non-parallel data and the parallel-data in the two domains:

2
. T 0 02
min |[ATCA =G|+ o] X0 - XP| (3)
where « is a trade-off parameter to balance the two losses.

3.3. Sparse Feature Transformation

The cross-domain feature transformation above can be interpreted as constructing each
target domain feature as a linear combination of the source domain features. With a large
number of source domain features, an unregularized full linear transformation however
can easily cause overfitting, encode noise, or capture spontaneous cross-domain feature
relations. We hence propose to enforce sparsity on our linear feature transformation model
by employing the following form of mixed norm of sparsity regularizers (Kowalski et al.,
2009):

dy a/p] 1/

1Al = | D

Jj=1

ds

> 1A,

i=1

p

(4)

With different (p,q) values, this mixed norm can result in different type of regularizers.
This leads to the following sparse feature transformation model for HDA:

. 1 T 2 (6% 0 0 2 g
min iHA CsA—CtHF+§HXSA_XtHF+5||AHZ,q (5)

where 7 is a trade-off parameter for the sparsity regularizer. By integrating the three
components — distribution alignment of the source and target domains, transformation error

380



UNSUPERVISED HETEROGENEOUS DOMAIN ADAPTATION

minimization of the parallel data, and the sparsity regularization, we expect to learn a robust
and generalizable feature transformation matrix A that can effectively bridge the cross-
domain representation gap and facilitate information adaptation from the source domain
to the target domain.

In this work, we consider two types of norms with (p=1,¢=1) and (p=1,g=2) respectively.
First, to filter noise and avoid spontaneous cross-domain feature correlations, we consider
enforcing an overall sparsity regularization over the linear coefficients in the transformation
matrix A. This can be achieved by using an entrywise /1 norm regularizer with p=1 and
q=1:

ds di
JAl, =303 14y (6)
i=1 j=1

Second, typically only a small fraction of the source domain features are related to a
target domain feature. For instance, for domain adaptation across two types of image feature
spaces, a target domain local feature that describes one part/position of image may only
related to a small number of source domain features over several related parts/positions.
With this motivation, we consider employing an individual sparsity inducing ¢; 2 norm
regularizer below:

1/2
4 271/

1Al = |

j=1

ds

D |Ai

=1

(7)

This ¢1 2 norm can enforce individual sparsity on each column of the transformation matrix
A separately (Vatashsky and Crammer, 2013), and hence relate each target domain feature
to only a few source domain features with the non-zero entries of the corresponding column
of matrix A.

3.4. Learning Algorithm

The unsupervised sparse feature transformation learning problem formulated in Eq.(5) is a
quartic program with a non-smooth sparsity regularizer. It is difficult to tackle due to the
existence of the quartic term. We propose to solve it using an alternating direction method
of multipliers (ADMM), which breaks a complex optimization problem into a few simpler
subproblems, and solves the simpler subproblems separately (Boyd et al., 2011).

We first rewrite Eq.(5) into the following equivalent formulation by introducing an ad-
ditional matrix B and an equality constraint

i 2 Q50 012 .7 q
min §HA CSB—C’tHF+ SIXOB-XL4 1B, st A=B (8)
The re-expressed problem is a quadratic minimization problem with sparsity regularizer
in terms of A and B separately, subjecting to the equality constraint. The augmented
Lagrangian function for this problem is
1 T 2 « 0 0112
Ly(4,B,) =5 [ATCB-Ci|| + | X0B-x7| 7+

v p
E\\Bllg,q+tr(AT(A—B))+§IIA—BII?: (9)
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where A is the dual variable matrix associated with the equality constraint and p is the
penalty parameter for the constraint. In each iteration of the ADMM algorithm, we then
minimize this augmented Lagrangian over the primal variable matrices A and B separately,
while updating the dual variable matrix. Specifically, in the (k+1)-th iteration, given the
(A®) BF) AK)) from the previous iteration, we perform the following three steps.

(1) Minimization over B. Given the current fixed A®) and A®) | B can be updated by
minimizing the augmented Lagrangian:

B¥ D .— arg min L,,(A(k), B,A®)Y := argmin ¢(B) + J B34 (10)
B B q ’
where ¢(B) is a smooth function such that

(B) =3 [A9TC,B - | + 2 |1X0B — X%~ (A®TB) + £ [ a® — B[

I
F
This minimization problem is a convex quadratic programming with a non-smooth sparsity
regularizer. We solve it using a fast proximal gradient descent method with a quadratic
convergence rate (Beck and Teboulle, 2009), which tackles Eq.(10) by solving a sequence
of intermediate problems iteratively with proximity operators. In the ¢-th iteration, the
intermediate problem at the current point Q) is in the following form:

1 ~
)y _ i oWy Lipe
Pp(QY) arg;nm{2||3 Q ||+q77HB||p,q} (11)

where @(t) = Q" — %VE(Q@)) is derived from the gradient of E(Q(t)) at the current point
Q(t) and 7 is the Lipschitz constant of the gradient; we used 17 = omax (C’Jz‘l(k)A(k)TCS +
aXOT X0 pr ), where omax denotes the largest singular value of the given matrix. The
nice property about this intermediate problem is that it allows us to exploit closed-form
solutions for the proximity operator Pn(Q(t)) with either the ¢1-norm regularizer (p = 1 and
q = 1) or the ¢ g-norm regularizer (p = 1 and g = 2). According to (Kowalski et al., 2009),
we have a closed-form solution PU(Q(t)) = Q for the proximity operation such that for all

(4, 7),

n

PP ~ ™3,
sien(@()) (10 - (fm)lgwk I p=1,q =2 (f15-norm);

sign(Q)) (1017 - 1)+ Tfp—1,qg=1 ({1-norm);

Qij = (12)

where (-)4+ = max(0,-), 6:;’ denotes a reordered j-th column |@(;)| with a descending order
of the entries, and m; is the number such that

77’Lj+l m;
5m]-+1,j < 1 Z (67:;' - 6mj+1,j> , and amj,j > %Z (67«,3‘ - 6771]',]') . (13)
r=1 r=1

Ui

With the proximal operators, the proximal gradient descent method can easily handle the
non-smooth mixed-norms and produce desired sparse solutions.
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Algorithm 1 ADMM training algorithm
Input: Covariance matrices Cy and Cy; parallel data X9 and X?; «, v, p, A and €
Initialize A = BM with Eq.(17), set A1) =0 and k =1
repeat
B*H) = argming L,(A®, B,A®); A+ .= argmin, L,(A, Bk AK);
AGFD = AR) 1 p(ABHD — B Qet k= k4 1.
until convergence;

(2) Minimization over A. With the current values of B and A®) being fixed, we
update A by minimizing the augmented Lagrangian objective:

AFHD — argmin L,(A, BE+HD AR (14)
A
This is a simple quadratic minimization problem, which yields a closed-form solution:
-1
Ale+1) (CSB(k—i-l)B(lH—l)TC;F erl) (CSB(k+1)CtT _ AR +pB(k+1)> (15)

(3) Update of the dual variable matrix A. Following the standard ADMM method,
we update the dual matrix A by

AFEFD = AR o pAR+D) _ plkt1)y (16)

The overall ADMM algorithm is given in Algorithm 1. Given the input data and pa-
rameter settings, the algorithm first initializes A, B and A before the iterative updates.
We initialize A and B by simply setting them as the closed-form solution of the fo-norm
regularized parallel data transformation:

A0 — ) — arg min || X5 — XP |7+ \| B
_ T
— (XOTX0 4 ALy, (x0T XY) (n

where I;, denotes an identity matrix of size ds X ds; A is the regularization trade-off param-
eter and can be used to avoid the numerical problem of matrix inversion in the closed-form
solution. We expect this initialization can provide a more informative starting point than
random initialization. For the dual matrix A, we initialize it with all zero values.

The iterative three step updates of primal and dual variable matrices of the ADMM
algorithm aim to minimize the augmented Lagrangian function, which will eventually push
A to be close to the sparse B to recover the equality constraint A = B. Hence the algorithm
eventually solves Eq.(8). It has been shown in (Hong et al., 2016) that even in the presence
of non-convex objective, the ADMM algorithm is able to reach the set of stationary solutions
for the linearly constrained problem in the form of Eq. (8). In our experiments, we adopt the
following stopping criterion for the iterative updates: We stop the iteration loop whenever
the distance between A%+ and B*+1) is less than a very small positive constant € or the
maximum iterations is reached.
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3.5. Cross-Domain Classification with Feature Transformation

After obtaining a cross-domain feature transformation matrix A, we can transform the
labeled source domain data X, into the target domain feature space as X;A. Then we can
train a multi-class classification model over the labeled data (XA, Ys) and use it to predict
the class categories of the unlabeled target domain instances X;. In our experiments, we
used one-vs-all SVM as the classification model.

4. Experiments

4.1. Datasets and Settings

We conducted experiments on three datasets, UCI Multiple Features (Asuncion and New-
man, 2007), Wikipedia (Rasiwasia et al., 2010), and Office-Caltech (Gong et al., 2012). The
UCT multiple features dataset contains 2000 images of 10 handwritten digits from ‘0’ to ‘9’,
with 200 images per-class. For each image, there are six types of features. We dropped
two types of features which have very small dimensions, and used the remaining four types
of features: Fourier coefficient (fou), profile correlations (fac), Karhunen-Love coefficients
(kar) and pixel averages (pix). By using one feature type as the source domain and another
as the target domain, we formed 12 HDA tasks. For each task, 100 instances are pre-selected
as the parallel instances. We then randomly sampled 20 instances per-category as the la-
beled source instances and the rest are used as the target instances. The Wikipedia dataset
contains 2,866 multimedia documents over 29 categories, and each document consists of
one paragraph of text and one related image. The images are represented as 128-dim bag-
of-word SIFT features. Latent Dirichlet Allocation (LDA) is used to extract 10-dim text
features from the document set. Following (Yeh et al., 2014), we considered five categories:
art and architecture, biology, literature, sport, and warfare. In total 200 instances are
used as parallel instances. Then 100 instances are selected for each category: 20 instances
per-category are used as the labeled source instances and the rest instances are used as
the target domain instances. The Office-Caltech dataset contains 10 classes of images from
four domains: Amazon (A), DSLR (D), Webcam(W) and Caltech-256(C). We excluded the
DSLR domain as there are very few instances per class. In addition to the 800-dimensional
SURF features, we extracted 4096-dimensional CNN features (VGG19) (Simonyan and Zis-
serman, 2014). We select one domain from the three domains (A, C, W) as the source
domain with one feature type (e.g., SURF), and select another domain as the target do-
main with a different feature type (e.g., VGG19). Hence in total we have 6 HDA tasks
from SURF feature to VGG19 and another 6 HDA tasks from VGG19 feature to SURF.
We selected 50 instances from both the source and target domains as the unlabeled parallel
data. Then we randomly selected 20 instances (10 for Webcam) per-category as the labeled
source domain instances and used the other source instances as unlabeled source instances.
The instances in target domain are used as unlabeled target instances.

4.2. Comparison Methods

There is not much work on unsupervised HDA. We compared to two CCA based unsuper-
vised HDA methods. Moreover, we also compared to a number of variants of the proposed
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model by only considering parts of the three components in Eq.(5). All the comparison
methods used in the experiments are listed below.

e linear CCA: It uses the linear canonical correlation analysis (Hardoon et al., 2004)
to learn a common cross-domain representation with the unlabeled parallel instances.

e Rd KCCA: This is a Reduced Kernel CCA method, which is an unsupervised HDA
method from (Yeh et al., 2014).

e SFT-noCov: A variant of the proposed SFT-HDA method that drops the covariance
alignment component.

e SFT-noPara: A variant of the proposed SFT-HDA that drops the parallel data.

e SFT-noSparse: A variant of the proposed SFT-HDA method that drops the sparse
regularization term.

e SFT;; and SFT;5: Our proposed SFT-HDA approach with the ¢;-norm and /; o-
norm sparisity regularizers respectively.

For both linear CCA and Rd KCCA, we conducted experiments following the work in (Yeh
et al., 2014). and set the correlation coefficient as 0.5. But we set the size of reduced set as
30, which leads to better performance than their original setting in our experiments.

For each method, a linear Support Vector Machine (SVM) is trained on the transformed
labeled source instances, and tested on the target domain instances. For linear CCA and
Rd KCCA, the target instances are also projected to the learned subspace. The hyper-
parameter C' of the SVM is selected with 5-fold cross-validation on the transformed labeled
source instances. We also tried the linear CCA and Rd KCCA with the correlation-transfer
SVM (CTSVM) proposed in (Yeh et al., 2014), the improvement of accuracy is about 2%
and it has little influence on the conclusions. To provide a fair comparison, we hence
reported the SVM classification results for all comparison methods.

4.3. Parameter Selection

There are three hyper parameters in our approach: p,a and +. However, p is only related to
the ADMM optimization algorithm and it just needs to be set to a reasonable large value to
guarantee the recovery of the equality constraint. We used p = 10 for the first and second
experiments, but used p = 1000 in the third experiment to make the huge sparse feature
transformation converge quicker. « is the trade-off parameter to balance the weights of
the distribution alignment loss and the parallel mapping loss. We simply gave both losses
equal weights and set « = 1 in all experiments. As this is an unsupervised approach (no
labeled data in the target domain), the traditional hyper-parameter tuning method of cross-
validation is not really applicable. Nevertheless, we used 5-fold cross-validation of linear
SVM to select the value of vy from [0.01,0.1, 1] on the transformed labeled source instances
X A. Moreover, the regularization parameter A in the closed-form initialization of A and B
is also set to a reasonable large value — we simply used the same value as p, while ¢ = 10~
is used for detecting the convergence of the training algorithm.
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Table 1: Average classification accuracy (%) over 20 runs on UCI Multiple Feature dataset.

Source fou fou fou fac fac fac
Target fac kar pix fou kar pix
linear CC 36.34 | 32.36 | 32.31 | 27.32 | 50.60 | 57.45
Rd KCCA 64.03 | 52.67 | 58.62 | 52.33 | 76.26 | 87.49

SFT-noCov 66.05 | 58.28 | 65.17 | 55.84 | 83.79 | 87.67
SEFT-noPara 14.49 | 12.64 | 7.37 9.01 18.18 | 11.86
SFT-noSparse || 71.16 | 52.87 | 65.37 | 59.53 | 85.00 | 92.96

SFT1 1 73.83 | 56.50 | 69.53 | 61.53 | 85.97 | 93.35
SFT » 71.06 | 60.44 | 66.79 | 61.17 | 85.50 | 93.53
Source kar kar kar pix pix pix
Target fou fac pix fou fac kar
linear CC 29.72 | 57.37 | 74.00 | 27.14 | 51.58 | 66.78
Rd KCCA 53.62 | 84.85 | 86.43 | 53.33 | 89.65 | 81.66

SFT-noCov 62.16 | 81.86 | 88.86 | 58.07 | 83.88 | 87.40
SEFT-noPara 11.54 | 18.27 | 1748 | 6.99 17.56 | 16.45
SFT-noSparse || 62.47 | 91.30 | 93.71 | 56.51 | 91.59 | 89.31
SFTy 1 62.66 | 91.59 | 93.82 | 58.92 | 92.14 | 89.69
SFT » 63.40 | 91.86 | 93.79 | 60.01 | 92.01 | 88.13

4.4. Classification Results
4.4.1. Di1GITs CLASSIFICATION

We first tested all the comparison methods on the 12 HDA tasks formed on the UCI Multi-
ple Features dataset for digits classification. The average multi-class classification accuracy
results over 20 runs are reported in Table 1 — each run is with a different random source and
target instance partition. We can see SF'T-noPara has very poor performance here. Though
this strategy works well on DA tasks (Sun et al., 2015), HDA is apparently a more chal-
lenging task. This set of HDA experiments suggest that the parallel data transformation
component provides a major contribution to our SFT-HDA model. But nevertheless, the
covariance matching and sparsity regularization components can further improve the per-
formance, as the two full versions of the proposed SFT-HDA (SFT}; and SFT 2) cover the
best results across all the 12 HDA tasks. Compared with the baseline variants, the accuracy
results of SFT7; and SFTi are in general better than SFT without either the sparsity
regularizer or the covariance alignment component. Moreover, our proposed full SFT-HDA
methods substantially outperform the linear CCA and Rd KCCA methods, which depend
on the parallel data. These results verified the efficacy of our proposed model.

4.4.2. MULTIMEDIA CLASSIFICATION

On the multimedia Wikipedia dataset, we have two HDA tasks, one performs adaptation
from image to text and the other adapts from text to image. On this dataset, instead of
using a fixed number of parallel instances, we conducted evaluations with different numbers
of parallel instances, i.e., with n, varies from 100 to 200. The mean values and standard
deviations of the multi-class classification accuracy results over 20 runs for the 2 HDA tasks
are reported in Table 2. We can see for Image—Text HDA task, SFT 2 achieves a high
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Table 2: Average classification accuracy (%) over 20 runs on Wikipedia dataset.

HDA task Image — Text

# parallel instances 100 150 200
linear CCA 58.23+2.50 49.6043.61 40.804+2.27
Rd KCCA 47.67+4.83 64.584+2.06 67.404+2.55
SET-noCov 75.70+2.11 81.47+1.44 84.354+1.58
SFT-noPara 22.10+1.99 22.10£1.99 22.10+1.99
SET-noSparse 61.02+2.28 69.53+£2.78 78.88+2.02
SFT; 1 71.47£2.74 79.03£2.11 83.78+£1.37
SFT1 2 76.17+2.81 83.92+1.56 88.05+1.44
HDA task Text — Image

# parallel instances 100 150 200
linear CCA 27.48+0.72 20.88+0.43 26.884+0.48
Rd KCCA 35.92+1.95 38.85£1.23 46.33+0.80
SFT-noCov 41.9240.43 41.08+0.66 42.9840.46
SFT-noPara 20.25+1.18 20.25+1.18 20.25+1.18
SFT-noSparse 43.354+0.91 40.33+£0.78 43.55+0.66
SFT; 1 42.83+0.67 40.2340.68 42.80+0.55
SFT1,2 42.4240.77 40.5840.76 42.85+0.55

accuracy of 76.17% even if there is only 100 parallel instances and it outperforms linear
CCA and Rd KCCA by about 18% and 29% respectively. The performance of Rd KCCA
is not good when there is not much parallel data available. Linear CCA performs worse
as ny increases to 200, which might be caused by the small dimension of the subspace and
the high variety of the covariance with more instances. With the increasing of the number
of parallel instances, the performance of our proposed approaches increases dramatically,
which again shows the importance of parallel data. We can also see that with ¢; o-norm
SEFT1 2 produces the best results on Image—Text and outperforms the ¢;-norm variant
SFT; ; with notable margins. This suggests each text feature can be explained by a small
fraction of image features. For the Text—Image HDA task, the sparsity regularizers for our
approach however are not effective, and the impact of increasing parallel instance number
is negligible. The reason is that the feature dimension of the text domain is quite small —
only 10 features. It is hence not beneficial to have a sparse mapping to the image features
or increase the number of parallel instances. Overall, our proposed full approaches again
outperform both linear CCA and Rd KCCA.

4.4.3. CROSS-DOMAIN IMAGE CLASSIFICATION

The experimental results on 12 HDA tasks of the Office-Caltech dataset are reported in
Table 3. The 4096-dim deep features are challenging. Rd KCCA fails to work on this
dataset because it relies on k-means to cluster the instances into several splits with similar
sizes and k-means fails to work on centralized deep features. The sparsity regularizers
in our model are also affected by the deep features. The performance of SFT-noSparse,
SFT; 1 and SFT 5 are quite close. Nevertheless, our proposed approaches still outperform
the linear CCA method, while our approach is the first to achieve promising results under
unsupervised HDA setting for deep features.
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Table 3: Average classification accuracy (%) over 20 runs on Office-Caltech dataset.

HDA task SURF — VGG

Source A A W W C C
Target W C A C A W
linear CCA 33.96 | 43.09 | 40.14 | 40.36 | 44.63 | 28.96

SFT-noCov 57.31 | 63.04 | 65.46 | 63.89 | 64.68 | 49.73
SFT-noPara 14.55 | 8.14 2.37 7.03 19.48 | 13.53
SFT-noSparse || 72.69 | 70.05 | 78.57 | 72.30 | 72.64 | 50.04

SFT1 1 72.59 | 69.99 | 78.06 | 72.30 | 73.58 | 48.33
SFT » 71.57 | 70.26 | 76.66 | 70.90 | 70.79 | 46.55
HDA task VGG — SURF

Source A A W W% C C
Target W C A C A W
linear CCA 29.41 29.91 24.28 24.81 31.15 25.61

SEFT-noCov 33.51 | 31.10 | 37.21 | 33.36 | 43.47 | 43.82
SFT-noPara 9.67 11.64 7.84 9.55 18.86 | 16.41
SEFT-noSparse || 37.12 | 34.51 | 37.26 | 32.03 | 48.87 | 53.37
SEFTy 1 36.71 | 34.32 | 38.45 | 32.05 | 48.19 | 54.86
SFT1 2 35.61 | 33.85 | 38.56 | 33.10 | 46.58 | 52.84

4.4.4. PARAMETER SENSITIVITY ANALYSIS

We conducted sensitivity analysis for the trade-off parameters o and v with the HDA tasks
on the Wikipedia dataset. We used 150 parallel instances, p = 10 and A = 10. For the
proposed methods, we conducted experiments first with v = 1 and a € [0.1,0.5,1,2,10],
and then with « = 1 and v € [0.01,0.05,0.1,0.5,1]. The average accuracy and standard
deviation of 20 rounds for each HDA task are reported in Figure 2. From the two sub-figures
on the left side, we can see that with a fixed ~ value, & = 1 leads to test performance that
is among the best for both HDA tasks, which suggests that it is reasonable to give equal
weights to the distribution alignment loss and the parallel mapping loss. The parameter
~ controls the sparsity regularization term. The best value choice for v depends on the
properties of cross-domain features. As shown in the two sub-figures on the right side,
~ should be set to a relative large value for mapping 128-dimensional image features to
10-dimensional text features. We also tested a much larger v value than the range in the
figure, but found the performance could be unstable and drop down rapidly, while selecting
v from [0.01,0.1,1] in the previous experiments is reasonable for both the mapping from
high to low dimensional feature space and the reverse mapping.

5. Conclusions

In this paper, we proposed a novel sparse feature transformation method for unsupervised
heterogeneous domain adaptation. The method transforms the source domain features into
the target domain feature space by matching the parallel instances and aligning the empirical
second moments of the transformed source feature distribution and target domain feature
distribution. To encode the assumption that only a small fraction of source domain features
are related to a target domain feature and increase the robustness of transformation, we
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Figure 2: Performance of SFT7 1 and SF'T7 2 with respect to trade-off parameters a and ~
for two HDA tasks on Wikipedia dataset

further exploited two types of sparsity inducing norms to regularize the linear transformation
model. We developed an ADMM based optimization algorithm to solve the induced problem
and conducted experiments for heterogeneous cross-domain classification. The experimental
results demonstrated the benefits of our proposed approach.

Acknowledgments

This research was supported in part by NSF grant (1546480), NSERC discovery grant and
Canada Research Chairs program.

References
A. Asuncion and D. Newman. UCI machine learning repository. http://archive.ics.
uci.edu/, 2007.

A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse
problems. J. on Imaging Sciences, 2(1):183-202, 2009.

K. Bousmalis, G. Trigeorgis, N. Silberman, D. Krishnan, and D. Erhan. Domain separation
networks. In NIPS, 2016.

S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, et al. Distributed optimization and
statistical learning via the alternating direction method of multipliers. Foundations and
Trends in Machine Learning (FTML), 3(1):1-122, 2011.

Y. Cao, M. Long, and J. Wang. Unsupervised domain adaptation with distribution matching
machines. In AAAI 2018.

L. Duan, D. Xu, and I. Tsang. Learning with augmented features for heterogeneous domain
adaptation. In ICML, 2012.

B. Fernando, A. Habrard, M. Sebban, and T. Tuytelaars. Unsupervised visual domain
adaptation using subspace alignment. In ICCV, 2013.

B. Gong, Y. Shi, F. Sha, and K. Grauman. Geodesic flow kernel for unsupervised domain
adaptation. In CVPR, 2012.

D. Hardoon, S. Szedmak, and J. Shawe-Taylor. Canonical correlation analysis: An overview
with application to learning methods. Neural Computat., 16(12):2639-2664, 2004.

J. Hoffman, E. Rodner, J. Donahue, T. Darrell, and K. Saenko. Efficient learning of domain-
invariant image representations. arXiv preprint arXiv:1301.3224, 2013.

389


http://archive.ics.uci.edu/
http://archive.ics.uci.edu/

SHEN GUO

M. Hong, Z. Luo, and M. Razaviyayn. Convergence analysis of alternating direction method
of multipliers for a family of nonconvex problems. J. on Optimizat., 26(1):337-364, 2016.

M. Kowalski, M. Szafranski, and L. Ralaivola. Multiple indefinite kernel learning with
mixed norm regularization. In ICML, 2009.

B. Kulis, K. Saenko, and T. Darrell. What you saw is not what you get: Domain adaptation
using asymmetric kernel transforms. In CVPR, 2011.

M. Long, J. Wang, G. Ding, J. Sun, and P. S Yu. Transfer joint matching for unsupervised
domain adaptation. In CVPR, 2014.

L. Niu, W. Li, and D. Xu. Multi-view domain generalization for visual recognition. In
1CCV, 2015.

J. C Platt, K. Toutanova, and W. Yih. Translingual document representations from dis-
criminative projections. In EMNLP, 2010.

N. Rasiwasia, J. C. Pereira, E. Coviello, G. Doyle, G. RG Lanckriet, R. Levy, and N. Vas-
concelos. A new approach to cross-modal multimedia retrieval. In ACM MM, 2010.

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiw preprint arXiv:1409.1556, 2014.

S. Sukhija, N. C Krishnan, and G. Singh. Supervised heterogeneous domain adaptation via
random forests. In IJCAI, 2016.

B. Sun, J. Feng, and K. Saenko. Return of frustratingly easy domain adaptation. arXiv
preprint arXiw:1511.05547, 2015.

T.H. Tsai, Y. Yeh, and Y. Wang. Learning cross-domain landmarks for heterogeneous
domain adaptation. In CVPR, 2016.

B. Vatashsky and K. Crammer. Multi class learning with individual sparsity. In IJCAI
2013.

P. Wei, Y. Ke, and C.K. Goh. Deep nonlinear feature coding for unsupervised domain
adaptation. In IJCAI 2016.

X. Wu, H. Wang, C. Liu, and Y. Jia. Cross-view action recognition over heterogeneous
feature spaces. In ICCV, 2013.

M. Xiao and Y. Guo. A novel two-step method for cross language representation learning.
In NIPS, 2013.

M. Xiao and Y. Guo. Feature space independent semi-supervised domain adaptation via
kernel matching. PAMI, 37(1):54-66, 2015.

Y. Yan, W. Li, M. KP Ng, M. Tan, H. Wu, H. Min, and Q. Wu. Learning discriminative
correlation subspace for heterogeneous domain adaptation. In IJCAI 2017.

T. Yao, Y. Pan, C. Ngo, H. Li, and T. Mei. Semi-supervised domain adaptation with
subspace learning for visual recognition. In CVPR, 2015.

Y. Yeh, C. Huang, and Y.F. Wang. Heterogeneous domain adaptation and classification by
exploiting the correlation subspace. TIP, 23(5):2009-2018, 2014.

J.T. Zhou, I. W Tsang, S.J. Pan, and M. Tan. Heterogeneous domain adaptation for
multiple classes. In AISTATS, 2014.

390



	Introduction
	Related Work
	Unsupervised Domain Adaptation
	(Semi-) Supervised HDA
	Unsupervised HDA

	Unsupervised HDA with Sparse Feature Transformation
	Problem Setting
	Feature Transformation Model for HDA
	Sparse Feature Transformation
	Learning Algorithm
	Cross-Domain Classification with Feature Transformation 

	Experiments
	Datasets and Settings
	Comparison Methods
	Parameter Selection
	Classification Results
	Digits Classification
	Multimedia Classification
	Cross-domain Image Classification
	Parameter Sensitivity Analysis


	Conclusions

