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Abstract

Deep convolutional neural networks (CNNs) have demonstrated remarkable results in image
recognition owing to their rich expression ability and numerous parameters. However, an
excessive expression ability compared to the variety of training images often has a risk of
overfitting. Data augmentation techniques have been proposed to address this problem as
they enrich datasets by flipping, cropping, resizing, and color-translating images. They
enable deep CNNs to achieve an impressive performance. In this study, we propose a new
data augmentation technique called random image cropping and patching (RICAP), which
randomly crops four images and patches them to construct a new training image. Hence,
RICAP randomly picks up subsets of original features among the four images and discard
others, enriching the variety of training images. Also, RICAP mixes the class labels of the
four images and enjoys a benefit similar to label smoothing. We evaluated RICAP with
current state-of-the-art CNNs (e.g., shake-shake regularization model) and achieved a new
state-of-the-art test error of 2.23% on CIFAR-10 among competitive data augmentation
techniques such as cutout and mixup. We also confirmed that deep CNNs with RICAP
achieved better results on CIFAR-100 and ImageNet than those results obtained by other
techniques.
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1. Introduction

Deep convolutional neural networks (CNNs) (LeCun et al., 1989) have yielded significant
achievements in image classification and image processing tasks thanks to their numerous
parameters and rich expression ability (Zeiler and Fergus, 2014; Sermanet et al., 2014).
However, CNNs with numerous parameters have a risk of overfitting because they learn
detailed features of training images that do not generalize to others (Zeiler and Fergus,
2014; Zintgraf et al., 2017). Data augmentation has been used to address this problem
(Krizhevsky et al., 2012; He et al., 2016a; DeVries and Taylor, 2017). Data augmentation
increases the variety of images by manipulating them in several ways; flipping, resizing,
random-cropping, and color-translating (He et al., 2016a). Dropout, proposed by
Hinton et al. (2012), is another common data augmentation technique that injects noise
into an image by dropping pixels. Differently from conventional data augmentation tech-
niques, dropout could disturb and mask out the features in original images. Many recent
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Figure 1: A conceptual explanation of the proposed random image cropping and patching
(RICAP) data augmentation. We randomly crop four training images as denoted
by the red shaded areas, and patch them to construct a new training image (at
the center of this figure). The size of the final image is identical to that of the
original one (e.g., 32×32 for the CIFAR dataset (Krizhevsky, 2009)). We collected
the images in this figure from the training set of ImageNet dataset (Russakovsky
et al., 2014).

studies have proposed new network architectures of CNN that have much more parame-
ters (Zagoruyko and Komodakis, 2016; Huang et al., 2017; Han et al., 2017), and these
traditional data augmentation techniques have become insufficient for such deeper CNNs.

Therefore, these days, data augmentation techniques attract rising attention
(DeVries and Taylor, 2017; Zhong et al., 2017; Zhang et al., 2018). DeVries and Taylor
(2017) proposed cutout, which randomly masks out a square region in an image at every
training step and thus changes the apparent features. Cutout is an extension of dropout
that can achieve better performance than it. Random erasing, proposed by Zhong et al.
(2017), also masks out a subregion in an image like cutout. However, it randomly determines
whether or not to mask out as well as the size and aspect ratio of the masked region. Mixup,
proposed by Zhang et al. (2018), α-blends two images to form a new image, regularizing
the CNN to favor a simple linear behavior in-between training images. Not limited to an
increase in the variety of images, mixup also behaves like class label smoothing as it mixes
the class labels of two images with the ratio α : 1 − α (Szegedy et al., 2016). These new
data augmentation techniques have been applied to modern deep CNNs and have broken
the state-of-the-art records, demonstrating the importance of data augmentation.

In this study, as a further advance in data augmentation, we propose a novel method
called random image cropping and patching (RICAP). RICAP crops four training images
and patches them to construct a new training image; it selects the images and determines the
cropping sizes randomly, where the size of the final image is identical to that of the original.
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A conceptual explanation is shown in Fig. 1. RICAP also mixes class labels with ratios
proportional to the areas of the four images like the label smoothing in mixup. Compared
to mixup, RICAP has three clear distinctions; it mixes images spatially, it uses images
partially by cropping, and it does not create features that absent from the original dataset
except for patching boundary. We apply RICAP to existing deep CNNs and evaluate them
on the CIFAR-10, CIFAR-100 (Krizhevsky, 2009), and ImageNet (Russakovsky et al., 2014)
datasets. The experimental results demonstrate that RICAP outperforms the existing data
augmentation techniques and achieves new state-of-the-art performances.

2. Related Works

RICAP is a novel data augmentation technique and can be applied to deep CNNs in the
same manner as conventional techniques. In addition, RICAP is related to the class la-
bel smoothing technique. In this section, we explain about data augmentation and label
smoothing as related works.

2.1. Data Augmentation

Data augmentation increases the variety of training samples and prevents overfitting.
Krizhevsky et al. (2012) used random-cropping and horizontal-flipping for a deep CNN
evaluated on the CIFAR dataset (Krizhevsky, 2009). Random-cropping prevents the over-
fitting to specific features by changing remarking points in an image. Horizontal-flipping
doubles the variation in image with specific orientations, such as an airplane taken from
one side. Krizhevsky et al. (2012) performed principal components analysis (PCA) on a
set of RGB values to alter the intensities of the RGB channels for the evaluation on the
ImageNet dataset (Russakovsky et al., 2014). This kind of color translation is useful for
colorful objects, such as flowers. Facebook AI Research employed another method of color
translation called color jitter for the reimplementaion of ResNet (He et al., 2016a) that is
available at https://github.com/facebook/fb.resnet.torch. Color jitter manipulates
the brightness, contrast, and saturation of an image instead of the RGB channels. These
traditional data augmentation techniques play an important role in training deep CNNs.
However, after He et al. (2016a) proposed ResNet, many studies proposed new network
architectures (Zagoruyko and Komodakis, 2016; Huang et al., 2017; Han et al., 2017). The
number of parameters is ever-growing, and the risk of overfitting is also ever-increasing.
With this background, further data augmentation techniques attract much attention.

Dropout, proposed by Hinton et al. (2012), is a data augmentation that disturbs and
masks out the original information of the given data by dropping pixels. Pixel-dropping
can be considered an injection of noise into the image (Sietsma and Dow, 1991). It makes
the CNN robust to noisy images and contributes to the generalization rather than enriching
dataset.

Cutout randomly masks out a square region in an image at every training step
(DeVries and Taylor, 2017). It is an extension of dropout, where the masking out of regions
behaves as injected noise and makes the CNNs robust to noisy images. In addition to this,
cutout can mask out the whole main part of an object in an image, such as the face of a
cat. In this case, the CNNs need to learn other parts that are usually ignored, such as the
tail of the cat in this case. This prevents deep CNNs from overfitting to features of the
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main part of the object. In other words, cutout increases the variety of features by changing
the apparent features at every training step. A similar method, random erasing, has been
proposed by Zhong et al. (2017). It also masks out a certain area of an image, but it has
clear differences; it randomly determines whether or not to mask out as well as the size and
aspect ratio of the masked region.

Mixup α-blends two images to construct a new training image (Zhang et al., 2018).
α-blending not only increases the variety of training images but also works like adversarial
perturbation (Goodfellow et al., 2015). Mixup can train deep CNNs on convex combinations
of pairs of training samples and their labels, and it enables deep CNNs to favor a simple
liner behavior in-between training samples. This behavior makes the prediction confidence
transit linearly from a class to another class, thus providing smoother estimation and mar-
gin maximization. Thereby, mixup makes deep CNNs robust to adversarial examples and
stabilizes the training of generative adversarial networks. In addition, it behaves like class
label smoothing by mixing of class labels with the ratio α : 1 − α (Szegedy et al., 2016).
We explain the label smoothing in detail below.

AutoAugment Cubuk et al. (2018) is a framework that exploring the best hyperparam-
eters of existing data augmentations using reinforcement learning Zoph and Le (2017). It
achieved the significant results on the CIFAR-10 classification and proved the importance
of data augmentation for learning of deep CNN.

2.2. Label Smoothing

In classification tasks, class labels are often expressed as 0 and 1 probabilities. Deep CNNs
commonly employ the softmax function, which never predicts an exact probability of 0 or
1. Thus, deep CNNs continue to learn ever-larger weight parameters and make an unjustly
high confidence. Label smoothing sets the class probabilities to intermediate values, such
as 0.9 and 0.8. It prevents the endless pursuit of the hard 0 and 1 probabilities for the
estimated classes and enables the weight parameters to converge to certain values without
discouraging correct classification (Szegedy et al., 2016). Mixup also mixes class labels
of the α-blended images in the ratio α : 1 − α and has a similar contribution to label
smoothing (Zhang et al., 2018).

3. Methods

3.1. Random Image Cropping and Patching

In this paper, we propose a novel data augmentation technique called random image crop-
ping and patching (RICAP) for deep convolutional neural networks (CNNs). The concep-
tual explanation of RICAP is shown in Fig. 1. It consists of three steps of data manipulation.
First, we randomly select four images from the training set. Second, we crop the images
separately. Third, we patch the cropped images to construct a new image and feed it to the
CNNs. Despite this simple procedure, RICAP increases the variety of images drastically
and prevents overfitting of deep CNNs having numerous parameters. We mix the class
labels of the four images with the ratios proportional to the image areas. This label mixing
works as label smoothing and prevents the endless pursuit of the hard 0 and 1 probabilities
in deep CNNs using the softmax function.
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Figure 2: Detailed explanation of RICAP. Ix and Iy are the width and height of the image.
We randomly crop four images, shown by the area shaded in red, and patch
them based on the boundary position (w, h). We select (w, h) based on methods
explained in detail in subsection 3.2. Based on the value of (w, h), we select
(xi, yi) such that it does not increase image size.

A specific explanation of the implementation is shown in Fig. 2. We randomly select
four images k ∈ {1, 2, 3, 4} from the training set and patch them on the upper left, upper
right, lower left, and lower right sides. Ix and Iy denote the width and height of the training
image, respectively. We draw the boundary position (w, h) of the four images k from an
uniform distribution; we explain the optimization of the distributions in the next subsection.
We then automatically obtain the cropping sizes (wk, hk) of the images k, i.e., w1 = w3 = w,
w2 = w4 = Ix − w, h1 = h2 = h, and h3 = h4 = Iy − h. For cropping the four images k
following the sizes (wk, hk), we randomly determine the coordinates (xk, yk) of the upper
left corners of the cropped areas as xk ∼ U(0, Ix − wk) and yk ∼ U(0, Iy − hk). Finally, we
define the target label c by mixing one-hot coded class labels ck of the four patched images
with ratios Wi proportional to their areas in the new constructed image;

c =
∑

k∈{1,2,3,4}

Wkck for Wk =
wkhk
IxIy

, (1)
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Figure 3: Three variants of the distribution of the boundary position (w, h). (left panel)
The most trivial case called anywhere-RICAP. The boundary position (w, h) is
selected from all possible values. (middle panel) center-RICAP narrows the range
of boundary position (w, h) using the parameter t. (right panel) corner-RICAP
restricts the boundary position (w, h) within ranges close to the four corners.

where wkhk is the area of the cropped image k and IxIy is the area of the original image.

3.2. Optimization of RICAP

In this section, we describe the optimization of the distribution of the boundary position
(w, h). We first introduce the simplest method, in which we select the boundary position
(w, h) from the range of all possible values [0, Ix] and [0, Iy], as shown in the left panel of
Fig. 3. The distribution of the boundary position (w, h) is

w ∼ U(0, Ix),

h ∼ U(0, Iy).

We call this variant anywhere-RICAP, hereafter. Moreover, we introduce two other variants
because we can move the range of boundary position. First, we restrict the boundary
position (w, h) to the center of the patched image as shown in the middle panel of Fig. 3.
The distribution of the boundary position (w, u) is

w ∼ U(tIx, (1− t)Ix),

h ∼ U(tIy, (1− t)Iy),

t ∈ [0, 0.5],

where the parameter value t = 0.0 denotes the same range as that of the anywhere-RICAP
and a larger parameter value t restricts the boundary position (w, h) within a narrower
range. We call this variant center-RICAP, hereafter. However, using center-RICAP with
t > 0.0, the target class probabilities c never get the value of 1.0 but often have values close
to 0.25. This has a risk of excessive label smoothing and discourages correct classification.
We introduce a variant with the opposite tendency. We restrict the boundary position (w, h)
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within ranges close to the four corners as shown in the right panel of Fig. 3. Specifically,
the distribution of the boundary position (w, u) is

w ∼ 1

2
(U(0, uIx) + U((1− u)Ix, Ix)) ,

h ∼ 1

2
(U(0, uIy) + U((1− u)Iy, Iy)) ,

u ∈ [0, 0.5],

where the parameter value u = 0.5 denotes the same range as the anywhere-RICAP, a
smaller parameter value u restricts the boundary position (w, h) within ranges close to the
four corners, and the parameter value u = 0.0 indicates the case without RICAP. We call
this variant corner-RICAP, hereafter.

4. Experiments and Results

To evaluate the performance of RICAP, we apply it to deep CNNs and evaluate them on
the CIFAR-10, CIFAR-100, and ImageNet datasets.

4.1. Classification of CIFAR-10 and CIFAR-100

In this section, we apply RICAP to an existing deep CNN and evaluate it on the CIFAR-10
and CIFAR-100 datasets (Krizhevsky, 2009). CIFAR-10 and CIFAR-100 consist of 32× 32
RGB images of objects in natural scenes. 50,000 images are used for training and 10,000 for
evaluation. Each image is manually given one of 10 class labels in CIFAR-10 and one of 100
in CIFAR-100. The number of images per class is thus reduced in CIFAR-100. According
to previous studies (Lee et al., 2015; Romero et al., 2015; Springenberg et al., 2015), we
normalized each channel of all images to zero mean and unit variance as preprocessing. We
also employed 4-pixel padding on each side, 32× 32 random cropping, and random-flipping
in the horizontal direction as conventional data augmentation techniques.

We used a residual network called WideResNet proposed by Zagoruyko and Komodakis
(2016). We used architecture called WideResNet 28-10, which consists of 28 convolution
layers with a widen factor of 10 and employs dropout of a drop probability of p = 0.3 in
the intermediate layers. This architecture achieved the highest accuracy on the CIFAR
datasets in Zagoruyko and Komodakis (2016). The hyperparameters were set to the same
as those used in the original study. Batch normalization (Ioffe and Szegedy, 2015) and the
ReLU activation function (Nair and Hinton, 2010) were used. The weight parameters were
initialized following the algorithm proposed by He et al. (2016b). The weight parameters
were updated using the momentum SGD algorithm with a momentum parameter of 0.9 and
weight decay of 10−4 over 200 epochs with batches of 128 images. The learning rate was
initialized to 0.1, and then, it was reduced to 0.02, 0.004 and 0.0008 at the 60th, 120th and
160th epochs, respectively.

We evaluated RICAP with the WideResNet 28-10 to explore the best variant among
anywhere-RICAP, center-RICAP and corner-RICAP, and the best hyperparameter t and u.
Ix and Iy were 32 for the CIFAR datasets. Fig. 4 shows the results on CIFAR-10 and CIFAR-
100. The baselines denote the WideResNet 28-10 without RICAP. Anywhere-RICAP, which
does not have a hyperparameter, obtained better test error rates than the baselines on both
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Figure 4: The optimization of RICAP using the WideResNet 28-10. We arranged corner-
RICAP using the hyperparameter u, anywhere-RICAP, and center-RICAP with
hyperparameter t along one axis. (left panel) The test error rate on CIFAR-10
and (right panel) that of CIFAR-100. We performed three runs and depicted the
means and standard deviations using the red lines and shaded areas, respectively.
Baseline indicates the results of the WideResNet 28-10 without RICAP.

datasets. Corner-RICAP obtained better test error rates than the baselines over the entire
range of the value of hyperparameter u and the best test error rates with u = 0.437 on both
datasets. Center-RICAP obtained better test error rates than the baselines only with small
values of u. Results of large values of u demonstrated a negative influence of excessive label
smoothing. We also summarized the results of RICAP in Table 1 as well as the results
of competitive methods; dropout (Hinton et al., 2012), cutout (DeVries and Taylor, 2017),
random erasing (Zhong et al., 2017), and mixup (Zhang et al., 2018). Competitive results
denoted by the † symbols were obtained from our experiments and the other results were
cited from the original studies. In our experiments, each value following the ± symbol is
the standard deviation over three runs. Recall that WideResNet 28-10 usually employs
dropout in intermediate layers. For dropout, we added dropout to the input layer as data
augmentation for comparison. Drop probability was set to p = 0.2 according to Hinton
et al. (2012). For other competitive methods, we set the hyperparameters to the values
with witch the CNNs achieved the best result in each study; cutout size 16 × 16 (CIFAR-
10) and 8× 8 (CIFAR-100) for cutout, and α = 1.0 for mixup. Anywhere-RICAP achieved
test error rates superior to or comparable to the competitive methods, and Corner-RICAP
clearly outperformed them. Corner-RICAP is expected to be the best variant because it
can acquire the benefit of cropping and patching of RICAP without harms by the extreme
label smoothing.
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Table 1: Test Error Rates using WideResNet.

Method CIFAR-10 CIFAR-100

Baseline 3.89 18.85
+ dropout (input) 4.69† 21.54†

+ cutout 3.08 18.41
+ random erasing 3.08 ±0.05 17.73 ±0.15
+ mixup 3.02 ±0.04† 17.62 ±0.25†

+ anywhere-RICAP 2.94 ±0.03 17.97 ±0.05
+ corner-RICAP (u = 0.437) 2.82 ±0.09 17.44 ±0.10
† indicates the results of our experiments.

Table 2: Test Error Rates on CIFAR-10.
Method Pyramidal ResNet 272-200 ShakeShake 26 2x96d

Baseline 3.31 ±0.08 2.86
+ dropout (input) 4.06† 3.79†

+ cutout 2.82† 2.56
+ mixup 2.61† 2.48†

+ anywhere-RICAP 2.61 ±0.06 2.42 ±0.13
+ corner-RICAP (u = 0.437) 2.59 ±0.05 2.23 ±0.07
† indicates the results of our experiments.

4.2. Classification by Other Architectures

We also evaluated RICAP with the pyramidal ResNet, proposed by Han et al. (2017), and
the shake-shake regularization model, proposed by Gastaldi (2017). For the pyramidal
ResNet, we used the architecture called Pyramidal ResNet 272-200 ; as the name implies,
it consists of 272 convolution layers using bottleneck residual blocks with a widening factor
of α = 200. For the shake-shake regularization model, we used the architecture called
ShakeShake 26 2×96d ; that is a ResNet of 26 convolution layers and 2 × 96d channels
with Shake-Shake-Image regularization. Each architecture had achieved the highest test
accuracies in the corresponding paper. Data normalization and data augmentation were
performed in the same way as for the Sec. 4.1. The hyperparameters were the same as in
the original studies by Han et al. (2017) and Gastaldi (2017).

We also summarized the results in Table 2. Anywhere-RICAP outperformed the com-
petitive methods and Corner-RICAP achieved even better results. In particular, the shake-
shake regularization model with corner-RICAP (u = 0.437) achieved a test error rate of
2.23%. This is a new state-of-the-art result on the CIFAR-10. These results also indi-
cate that RICAP is applicable to various CNN architectures and the choice of appropriate
hyperparameter depends on the dataset but not on the CNN architectures.

4.3. Classification of ImageNet

In this section, we evaluate RICAP on the ImageNet dataset (Russakovsky et al., 2014).
ImageNet consists of 1.28 million training images and 50,000 validation images. Each image
is given one of 1,000 class labels. We normalized each channel of all images to the zero mean
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Table 3: Single Crop Test Error Rates on ImageNet using WideResNet-50-2-bottleneck.

Network Epochs top-1 Error(%) top-5 Error(%)

Baseline 100 21.90 6.03
+ cutout 100 22.45† 6.22†

+ mixup 100 21.83† 5.81†

+ anywhere-RICAP 100 21.70 5.83

Baseline 200 22.88† 6.61†

+ anywhere-RICAP 200 21.38 5.89
† indicates the results of our experiments.

and unit variance as preprocessing. We also employed random-resizing, random 224× 224
cropping, color jitter, lighting, and random-flipping in the horizontal direction following
previous studies (Zagoruyko and Komodakis, 2016; Zhang et al., 2018).

To evaluate RICAP, we apply it to the architecture called WideResNet 50-2-bottleneck,
consisting of 50 convolution layers using bottleneck residual blocks with a widen factor of
2 and dropout with a drop probability of p = 0.3 (Zagoruyko and Komodakis, 2016). This
architecture had achieved the highest accuracy on ImageNet in Zagoruyko and Komodakis
(2016). The hyperparameters and other conditions were the same as those used in the base-
line study. WideResNet 50-2-bottleneck was trained using the momentum SGD algorithm
with a momentum parameter of 0.9 and weight decay of 10−4 over 100 or 200 epochs with
batches of 256 images. The learning rate was initialized to 0.1, and then, it was reduced to
0.01, 0.001 and 0.0001 at the 30th, 60th, and 90th epochs in the case of 100 epoch training.
The learning rate was reduced at the 65th, 130th, and 190th epochs in the case of 200 epoch
training.

Table 3 summarizes the results of RICAP with WideResNet 50-2-bottleneck as well as
the results of competitive methods: cutout DeVries and Taylor (2017) and mixup Zhang
et al. (2018). Competitive results denoted by † symbols are obtained from our experiments
and the other results are cited from the original studies. For the competitive methods, we
set the hyperparameters to specific values according to each study: cutout size 56× 56 for
cutout, and α = 0.2 for mixup. We did not optimize the hyperparameter of RICAP but
used anywhere-RICAP because of limited computational resources. Even without hyper-
parameter tuning, anywhere-RICAP reduced the test error rates. About the competitive
methods, only mixup can reduce the test error rates and outperformed the RICAP only the
case of top-5 error. In the case of 200 epochs training without anywhere-RICAP, WideRes-
Net achieved worse results than in the case of 100 epochs training. Deep CNNs including
WideResNet sometimes obtained worse results through a longer training, as reported by
Zagoruyko and Komodakis (2016). In contrast, WideResNet with anywhere-RICAP im-
proved the top-1 test error rate by 200 epochs training. This result indicates that RICAP
prevents deep CNNs from overfitting or other harmful effects in a longer training.

Cutout did not attempt to classify ImageNet in DeVries and Taylor (2017) and requires
further hyperparameter adjustment. Mixup classified ImageNet in Zhang et al. (2018) using
other CNNs but the appropriate hyperparameter was considerably different from those for
the CIFAR datasets. On the other hand, anywhere-RICAP worked well for all CIFAR
datasets and ImageNet even though corner-RICAP could achieve better results.
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5. Conclusion

In this study, we proposed a novel data augmentation method called random image cropping
and patching (RICAP) to improve the accuracy of the classification of images. RICAP
selects four training images randomly, crops them randomly, and patches them to construct a
new training image. Experimental results demonstrated that RICAP improves classification
accuracy of various datasets by increasing the variety of training images and preventing
overfitting. Future works include a more detailed evaluation by applying it to other tasks,
such as image-caption retrieval.
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