
Proceedings of Machine Learning Research 95:176-191, 2018 ACML 2018

Hypernetwork-based Implicit Posterior Estimation
and Model Averaging of Convolutional Neural Networks

Kenya Ukai ukai@ai.cs.kobe-u.ac.jp

Takashi Matsubara matsubara@phoenix.kobe-u.ac.jp

Kuniaki Uehara uehara@kobe-u.ac.jp

Graduate School of System Informatics, Kobe University, 1-1 Rokko-dai, Nada, Kobe, Hyogo 657-

8501, Japan

Editors: Jun Zhu and Ichiro Takeuchi

Abstract

Deep neural networks have a rich ability to learn complex representations and achieved
remarkable results in various tasks. However, they are prone to overfitting due to the limited
number of training samples; regularizing the learning process of neural networks is critical.
In this paper, we propose a novel regularization method, which estimates parameters of
a large convolutional neural network as implicit probabilistic distributions generated by a
hypernetwork. Also, we can perform model averaging to improve the network performance.
Experimental results demonstrate our regularization method outperformed the commonly-
used maximum a posterior (MAP) estimation.

Keywords: hypernetwork, Bayesian estimation, convolutional neural network, image recog-
nition

1. Introductions

Deep neural networks have a rich ability to learn complex representations and achieved
remarkable results in various tasks; they surpassed humans in the performance on visual
recognition (He et al., 2015) and speech recognition (Xiong et al., 2017, 2016). However,
they are prone to overfitting due to the limited number of training samples; regularization
of neural networks is an essential problem and has been investigated so far (see Bishop
(2007), Section 5.5 and Goodfellow et al. (2016), Section 7 for a survey).

Many studies have addressed overfitting via parameter regularization (Goodfellow et al.,
2016; Bishop, 2007). Weight decay prevents the weights from growing excessively large. It
works as gradient descent on a quadratic weight term of the objective function and hence
it is referred to as L2 regularization. Srivastava et al. (2014) proposed dropout to preven-
t units from excessively co-adapting by randomly dropping units from a neural network
during training. Although these are heuristic methods, we can interpret them as Bayesian
methods; L2 regularization is equivalent to the maximum a posteriori (MAP) estimation
of the parameters with Gaussian priors (Bishop, 2007, Section 1.2.5), and dropout can be
interpreted as the variational inference to minimize the Kullback-Leibler divergence to a
Gaussian prior (Gal and Ghahramani, 2016). Also, many studies have trained the param-
eters of neural networks explicitly using Bayesian methods (Blundell et al., 2015; Krueger
et al., 2017; Pawlowski et al., 2017); these models are called Bayesian neural networks

c© 2018 K. Ukai, T. Matsubara & K. Uehara.

Hypernetwork-based Implicit Posterior Estimation and Model Averaging of CNN

𝑝𝑟𝑖𝑚𝑎𝑟𝑦	𝑛𝑒𝑡𝑤𝑜𝑟𝑘		𝐹(𝑥;𝑤)

ℎ𝑦𝑝𝑒𝑟𝑛𝑒𝑡𝑤𝑜𝑟𝑘		𝐺(𝑧; 𝜃)

𝑥 𝑦

𝑧

𝑤

Figure 1: Structure of neural network using hypernetwork.

(BNNs) and have been used for a fully-connected network or small convolutional neural
network (CNN). The BNNs restrict the variational posterior of parameters to a known dis-
tribution family and use drawn samples from the posterior for evaluation. Krueger et al.
(2017) proposed Bayesian Hypernetworks to tackle the restriction. A hypernetwork is a
neural network that outputs the parameters of another neural network (Ha et al., 2017).
Thanks to the special architecture of the proposed hypernetwork, they calculated the ex-
act divergence and modeled complicated shapes of the posterior distributions, but their
performances are limited by Weight Normalization.

In this paper, we propose a new hypernetwork-based regularization method for large-
scale CNNs. Like Krueger et al. (2017), we use hypernetworks to approximate the posterior
of the parameters. Because of the difficulty applying to large networks, we do not employ
generally-used variational inference; instead, we minimize the target likelihood directly. By
inputting random samples to the hypernetworks, the outputs (i.e., the parameters of the
target CNN) form a distribution implicitly (Goodfellow et al., 2014; Tran et al., 2017). This
probabilistic behavior of the parameters regularizes the learning process.

We applied the proposed method to various CNNs. Experimental results demonstrate
that our regularization method outperforms the MAP estimation under an appropriate
setting. To our best knowledge, this is the first time for hypernetworks to build a deep
CNN superior to the deep CNNs trained with the MAP estimation. Moreover, we perform
Bayesian model averaging; this enables us to adjust the trade-off between the computational
time and the performance.

2. Related Works

2.1. Hypernetworks

A hypernetwork is a neural network that outputs the parameters of another neural network
(we call it “primary network”, hereafter). Let F (x;w) : X×W → Y be a primary network,
where x is the input such as an image, y is the output such as a class label, and w is the
parameters. A hypernetwork is defined as G(z; θ) : Z × Θ → W , where z is the input and
θ is the parameters of the hypernetwork. Figure 1 shows the diagram. After training the
primary network with hypernetworks, one obtains the optimal parameters w∗ as the outputs
of the hypernetworks instead of estimating w∗ by minimizing the loss over the parameters
w.

177

Ukai Matsubara Uehara

Using a hypernetwork, Ha et al. (2017) attempted to reduce the number of the param-
eters of wide residual networks (WideResNet) (Zagoruyko and Komodakis, 2016). They
grouped every N parameters of the primary network and replaced each group with the
output of the hypernetwork in response to a corresponding M -dimensional trainable input.
When the number of hypernetwork’s parameter is negligible, the total number of parameters
were reduced N/M times. They employed the hypernetwork as a relaxed weight-sharing.
However, the experimental results showed that the classification accuracy also got worse
significantly. The results suggest that sharing one hypernetwork across the whole CNN is
an excessively strong constraint.

2.2. Bayesian Neural Networks

When training a non-bayesian neural network, we define a loss function L(x, y, w), update
the parameters w to minimize the loss function L by the gradient descent, and obtain
the optimal parameters w∗. The cross-entropy − log p(y|x;w) is often used as the loss
function. This scheme is the maximum likelihood estimation (MLE) (Goodfellow et al.,
2016, Section 5.5). We can set prior distributions of the parameters, use − log p(w|x, y) =
− log p(y|x;w)− log p(w) + C as the loss function, and obtain the optimal parameters w∗,
where C is a constant value. This scheme is the maximum a posteriori (MAP) estimation
(Goodfellow et al., 2016, Section 5.6). The MLE and MAP estimation are point estimations
of the parameters.

Conversely, a Bayesian neural network is a neural network whose parameters are estimat-
ed as posterior distributions. One can regularize the learning process by the probabilistic
behavior of the parameters and express uncertainty. In this case, one needs to integrate
over the posterior of the parameters to calculate the exact output. Instead, the following
Monte Carlo sampling is widely used;

p(y|x,D) =
∑
w∈W

p(y|x,w,D)p(w|D)

If the above Monte Carlo sampling is used in the evaluation, this is called Bayesian model
averaging, creating an implicit ensemble of multiple models and improving the performance
(Bishop, 2007, Section 14.1).

Blundell et al. (2015) proposed Bayes by Backprop, which enables backpropagation of
neural networks over the Monte Carlo sampling of weight parameters. They used factorial
Gaussian distributions as a prior and a variational posterior of each weight parameter. This
strategy only captures a single mode of the true posterior, limiting the expression ability;
Bayes by Backprop is inapplicable to deep CNNs directly (Krueger et al., 2017).

Krueger et al. (2017) proposed Bayesian Hypernetworks by employing hypernetworks
to represent complex posteriors. They used invertible-structured neural networks called
real-NVP (Dinh et al., 2017) as hypernetworks, which enables one to calculate the exact
likelihood of a given parameter set. Real-NVP requires many layers and the same number
of the input element as the output element; a simple application needs huge hypernetworks
and numerous parameters. To prevent this issue, Krueger et al. (2017) employed Weight
Normalization (Salimans and Kingma, 2016) and used hypernetworks only for generating
scale parameters of Weight Normalization. Generally speaking, for image classification, the

178

Hypernetwork-based Implicit Posterior Estimation and Model Averaging of CNN

convolution ResBlock ResBlock fully-
connected

𝑝(𝑦|𝑥, 𝑤)

Pre-convolution Sequence of ResBlocks Classification

image

Figure 2: Structure of a ResNet (He et al., 2016)

performance of Weight Normalization is inferior to Batch Normalization, which is generally
used for deep neural networks (Ioffe and Szegedy, 2015; Salimans and Kingma, 2016; Gitman
and Ginsburg, 2017). As a result, the performances of Bayesian Hypernetworks are limited
for image classification.

2.3. Convolutional Neural Networks

Convolutional neural networks (CNNs) perform well on image classification tasks. Especial-
ly, a residual network (ResNet) and its variants achieved state-of-the-art results (He et al.,
2016; Han et al., 2017). Figure 2 shows the structure of a typical ResNet. A ResNet is
composed of three parts: a pre-convolution layer, a sequence of residual blocks (ResBlocks),
and a fully-connected layer. A ResBlock is composed of convolution layers, batch normal-
ization layers, and activation functions; their order has some variations (He et al., 2016).
Zagoruyko and Komodakis (2016) introduced WideResNet and improved the results by in-
creasing the number of the channels. Xie et al. (2017) introduced ResNeXt and improved
the performance by arranging ResBlocks in parallel. ResNet, WideResNet, and ResNeXt
are suited for applying hypernetworks because their structures are simple; they use many
ResBlocks of the same size repeatedly.

3. Proposed Regularization

3.1. Implicit Posterior Estimation of Parameters by Hypernetworks

We propose a regularization method for deep CNNs using hypernetworks. Unlike previous
studies (Ha et al., 2017; Blundell et al., 2015; Krueger et al., 2017), we aim at a regularization
of a comparative or superior performance to the MAP estimation.

As mentioned in previous sections, for a neural network, we minimize the loss function
L(x, y, w), where x is an image, y is a true class label, and w is the parameters for image
classification tasks. For a network with a hypernetwork g(z; θ), we train the hypernetwork’s
parameters θ instead of the primary networks’ parameters w. We draw a sample z from
a prior distribution p(z) and input it to the hypernetwork. We used the output g(z; θ) as
the primary network’s parameters w = g(z; θ); the output w forms a distribution q(w; θ)
implicitly (Goodfellow et al., 2014; Tran et al., 2017).

Ordinarily, the prior p(w) and variational posterior q(w) of the parameters w has been
expressed as known distributions such as factorial Gaussian distributions (Blundell et al.,
2015; Kingma and Welling, 2014). This assumption could constrain parameters excessively.
Conversely, we do not assume the variational posterior as an explicit formulation of a
density function, and instead, we use the implicit distribution q(w; θ) as the variational
posterior. In other words, we consider the hypernetwork’s output w = g(z; θ) given a

179

Ukai Matsubara Uehara

random sample z ∼ p(z) as a sample w from the variational posterior q(w) of the primary
network’s parameters w. Thanks to this assumption, the primary network’s parameters
q(w) could have a variational posterior of a complicated shape.

While the hypernetwork regularizes the weight parameters of the primary network, the
hypernetwork should also be regularized. If not, the hypernetwork outputs arbitrary weight
parameters and never restrict the behavior of the primary network. From a viewpoint
of Bayesian model, this regularization corresponds to minimization of the divergence of
the variational posterior from the prior. Following the common methodology, we introduce
Gaussian priors to the hypernetworks’ parameters and implemented the priors as the weight
decay.

The joint distribution of the primary network and the hypernetwork is

p(y, x, θ) =

∫
p(y|x,w)p(w|θ)p(θ)p(x)dw

where p(w|θ) =
∫
δ(w = g(z; θ))p(z)dz. Here, we obtain the weight parameters w of the

primary network as a sample drawn from the hypernetwork p(w|θ) like deep implicit gener-
ative models (Tran et al., 2017). Since p(w|θ) is not explicitly available, we approximate it
by p̂(w|θ) =

∑N
n=1 δ(w = g(zn; θ)), where z1:N ∼ p(z). The approximate joint distribution

is

p̂(y, x, θ) =
N∑

n=1,zn∼p(z)

p(y|x,w = g(zn; θ)))p(θ)p(x)

We introduce a Gaussian prior p(θ) to the hypernetwork’s parameter θ and get its approx-
imate MAP estimation via weight decay (which is equivalent to L2-regularization). Given
an input x and the hypernetwork’s parameter θ, the posterior probability of the class label
y is

p̂(y|x, θ) =
N∑

n=1,zn∼p(z)

p(y|x,w = g(zn; θ))

In our implementation, we use N = 1. Then, the loss function L is the cross-entropy of the
true class label p(y|x,D) obtained from the dataset D and the posterior p̂(y|x, θ) in addition
to the aforementioned L2-regularization. The derivative of the loss function L w.r.t. the
hypernetwork’s parameters θ can be obtained by the backpropagation algorithm;

∂L
∂θ

=
∂L
∂w

∂w

∂θ

∣∣∣
w=g(z;θ)

.

3.2. Parameter Generation

The hypernetworks build the higher-order relationships between weight parameters w. We
propose two strategies for generating the parameters w.

First, we propose the all-in-one strategy, which builds the relationship among the whole
parameters at once. Figure 3(a) shows the graphical model, where a deterministic variable
is denoted by a black square, a sample from a probabilistic distribution is denoted by a white
triangle, and an observed variable is denoted by a gray circle. In this strategy, the whole

180

Hypernetwork-based Implicit Posterior Estimation and Model Averaging of CNN

𝑥

ℎ#

ℎ$

𝑦

𝑤#

𝑤$

𝜃$

𝜃#

𝑝(𝑧)

𝑧

(a) all-in-one strategy

𝑥

ℎ#

ℎ$

𝑦

𝑤#

𝑤$

𝜃$

𝜃#

𝑧#

𝑧$

𝑝#(𝑧#)

𝑝$(𝑧$)

(b) block-wise strategy

Figure 3: Strategies for generating parameters.

parameters of the primary network are generated from a single sample z of the distribution
p(z); the whole parameters are related to each other.

Otherwise, following the previous studies (Ha et al., 2017; Krueger et al., 2017), we
propose the block-wise strategy, dividing the parameters into N blocks and builds the re-
lationship only inside each block. Figure 3(b) shows the graphical model for the case of
N = 2. In this strategy, the parameters of each block i are generated from a sample zi of
distribution p(zi) independently from other blocks. Note that one can reduce the number
of the parameters by sharing the hypernetwork among the blocks, but this results in an
inferior performance (Ha et al., 2017).

For ResNets (He et al., 2016; Zagoruyko and Komodakis, 2016; Xie et al., 2017), we
consider that each ResBlock is suited as the block. We employed a network of the same
structure for the strategies. We prepared a hypernetwork g(z; θi) for each convolution layer
i in the ResBlock of the primary network. In the all-in-one strategy, we drew a sample z
from a distribution p(z) and input it to all the hypernetworks. Then, each hypernetwork
was co-adapted to each other. In the the block-wise strategy, we drew a sample from p(zi)
for every ResBlock independently; this prevented ResBlocks from co-adapting.

When a convolution layer i in a ResBlock has a kernel of fsize × fsize, an input of
Nin channels, and an output of Nout channels, we built a hypernetwork gi(zi; θi) which
outputs an fsize× fsize×Nin×Nout-dimensional weight parameter. Note that the ResNets
have no bias terms because of the batch normalization. We did not use hypernetworks for
the components other than ResBlocks; the pre-convolution layer, the last fully-connected
classification layer, and the batch normalization. Instead, we applied weight decay to them.

3.3. Model Averaging

Since we estimate the variational posterior of the parameters, we can perform model aver-
aging in the evaluation. If samples from the learned distribution have a diversity, the model
averaging improves the performance like an ensemble.

In this paper, we use different ways of the model averaging depending on the strategies.
For the all-in-one strategy, we generate N sets of the parameters and build N primary
networks. We perform the model averaging by averaging the outputs of the N networks.
Figure 4(a) shows the diagram of a ×2 model averaging for the all-in-one strategy. zi

denotes a sample from the prior p(z) and transformed to parameters wi by a hypernetwork.

181

Ukai Matsubara Uehara

mean

𝑧&

𝑤(

image	𝑥 𝑝(𝑦|𝑤)

𝑧(

primary	network

𝑤&

hypernetwork

(a)

mean

𝑧&' 𝑧&(

𝑤&(

ResBlock	𝑖 ResBlock	𝑖 + 1

𝑤&'

𝑤&5'(

𝑤&5''

hypernetwork

𝑧&5''
𝑧&5'(

hypernetwork

(b)

Figure 4: Model averaging of the (a) all-in-one and (b) block-wise strategies.

For the block-wise strategy, we generate N ResBlocks and arrange them in parallel like
ResNeXt (Xie et al., 2017). Figure 4(b) shows the diagram of a ×2 model averaging for
the block-wise strategy. Note that this is not a strict form of model averaging mentioned
in Section 2.2 because it averages the intermediate outputs instead of the final outputs.

3.4. Architecture of Hypernetwork

Each hypernetwork generates the weight parameters of the corresponding convolutional
layer since each convolutional layer is a computational unit in CNNs. This setting surpass
the total size of the hypernetworks and makes it available on our GPU server. When each
hypernetwork generates the weight parameters of a resblock or the whole CNN, the total
size of hypernetworks becomes much larger because of the explosion of combinations of
weight parameters. We also examined the dimension numbers of the prior p(z) and found
that the results were robust to the dimension number as long as it was set to a number
larger than a certain value (e.g., 8 in our experiments).

The increase in the computational complexity is almost negligible compared to that of
the primary CNN at least under our experimental settings.

In the training phase, we drew a single weight set per mini-batch from a hypernetwork,
and we used the weight set for all images in the mini-batch; this is the same strategy
as Krueger et al. (2017). With an increase in the number of images per mini-batch, the
computational complexity of the hypernetwork becomes negligible. We calculated the com-
putational complexity following Canziani et al. (2016); a WideResNet 28-10 needs 5.24G
Operations per 32×32 RGB image, and our proposed hypernetwork with zdim = 16 increas-
es the computational complexity by 0.59G Operations per mini-batch. Since the mini-batch
size was 128, the increase in the computational complexity was just 0.1 %. Moreover, s-
ince we used a hypernetwork for each convolution layer, we can run the hypernetworks in
parallel. However, the computation of the CNN has been highly optimized by the NVIDIA
cuDNN library compared to that of the fully-connected networks used in the hypernetworks;
a WideResNet 28-10 with our proposed hypernetwork needs around a computational time
twice as long as the plain WideResNet. Once the library is optimized for the hypernetworks,
we consider the time complexity becomes close to the theoretical computational complexity.

182

Hypernetwork-based Implicit Posterior Estimation and Model Averaging of CNN

In the inference phase, if we do not perform model averaging, we can fix the drawn weight
set and remove the hypernetworks. Then, the computational and time complexity is exactly
the same as the plain CNN, and even in this case, our proposed methods performed better
than plain CNNs in the experiments of all-in-one hypernetwork with the prior p(z) of U(0, 1)
for WideResNet28-10. The model averaging increases in the computational complexity
proportionally to the number of involved models. We can adjust the trade-off between the
computational complexity and the performance by determining the number of models.

4. Experiments and Results

4.1. Common Settings

We applied our regularization method to various CNNs based on residual networks (He
et al., 2016). As a hypernetwork, we built a fully-connected feedforward neural network for
each convolutional layer.

Each CNN layer has one feedforward hypernetwork, which has zdim ∗hdim+hdim ∗fsize ∗
fsize ∗Nin ∗Nout parameters. We used zdim = hdim = 32 or zdim = hdim = 16 according to
the limitation of computational resources.

We removed bias terms from all connections to remain the randomness of the hypernet-
work inputs. We followed the training methods in the original study of each CNN unless
otherwise stated.

Following the original studies (Zagoruyko and Komodakis, 2016; Han et al., 2017; Xie
et al., 2017), all CNN architectures in our experiments were trained using batch normal-
ization and weight decay and not using dropout unless otherwise stated. The weight pa-
rameters trained with the weight decay are equivalent to those with the L2 regularization
and to the MAP estimates under the weight prior of a normal distribution (Bishop, 2007,
Section 1.2.5). In other words, we refer to the CNNs trained with the weight decay as the
MAP estimation.

For comparison, we trained the CNNs without the weight decay for evaluating the
efficiency of the weight decay and our proposed method. Since the weight prior was removed,
the resultant weight parameters can be regarded as the maximum likelihood estimation
(MLE). Even in this case, we applied batch normalization. Note that Atanov et al. (2018)
suggests that the batch normalization is related to the variational inference. If so, this case
is not purely the MLE.

We initialized the parameters of hypernetworks using He’s method (He et al., 2015)
except for the final layers of hypernetworks. If the final layers initialized in the same way,
we found that the loss function diverges to infinity at early stage of training owing to the
large magnitude of weights drawn from hypernetworks and to the resultant large gradi-
ents. Instead, we initialized the final layers of hypernetworks with samples from uniform
distribution whose bounds are 10 times smaller than He’s method (He et al., 2015).

We evaluated the deterministic networks (i.e., the MLE and MAP estimation) by the
median of three runs, which is a commonly used measure for deep CNNs (He et al., 2016).
In addition, since our regularization method is stochastic, we evaluated it by the median of
15 runs (three models from scratch with weight generations from five different inputs).

183

Ukai Matsubara Uehara

4.2. Proposed Regularization Method and Model Averaging

We compared our regularization method of the all-in-one and block-wise strategies with the
MLE and the MAP estimation as explained in Sec. 4.1 for WideResNet (Zagoruyko and
Komodakis, 2016).

We followed the training methods in the original study of Zagoruyko and Komodakis
(2016) unless otherwise stated. We evaluated the regularized WideResNet on CIFAR-10
dataset (Krizhevsky and Hinton, 2009); it consists of 50,000 training samples and 10,000
testing samples, and each sample is a 32 × 32 color natural image in 10 classes. We applied
mean/std normalization, random horizontal flipping, padding, and random cropping to
samples in the dataset. We trained all the parameters to minimize the cross-entropy loss
by the stochastic gradient descendent (SGD) with a Nesterov momentum of 0.9 and a mini-
batch size of 128. We set the learning rate to 0.1 and dropped by 0.2 at 40%, 60%, and
80% of the training period. The original study (Zagoruyko and Komodakis, 2016) trained
the WideResNets for 200 epochs, but we found that a longer training further improves the
test accuracies; we trained the WideResNets for 800 epochs. We applied the weight decay
of 0.0005 to all the deterministic parameters, i.e., the parameters of hypernetworks and the
parameters of the primary network not generated by hypernetworks. The hypernetworks’
unit size was 32 for WideResNet28-4 and 16 for WideResNet28-10.

We employed the standard normal distribution N (0, 1) and the uniform distribution
U(0, 1) as the prior p(z) of the hypernetwork’s input. Table 1 summarizes the test error
rates, where ×N implies averaging of N models. The numbers following the WideResNets
are the hyperparameters, each of which determines the depth and width of the networks, re-
spectively (see Zagoruyko and Komodakis (2016)). The MLE got the worse error rates; this
emphasizes the importance of regularization. Without model averaging, the WideResNet
generated by the hypernetworks with the all-in-one strategy and the prior p(z) of U(0, 1)
achieved the test error rates lower than that of the ordinary MAP estimation. This im-
plies that our method with an appropriate prior successfully regularized the WideResNet
and, to our best knowledge, this is the first time that a regularization by a hypernetwork
outperformed the MAP estimation.

With model averaging, our regularization method achieved the lower test error rates in
many cases. Especially, with the prior of N (0, 1) and the block-wise strategy, the model
averaging improved the error rates by large margins. On the other hand, with the prior of
U(0, 1), the improvement was limited. Figure 5 summarizes the test error rates with the
varying number of averaged models.

By definition, the model averaging employs the average of the outputs of multiple mod-
els, while the intermediate outputs were averaged in the block-wise strategy; this strategy
is not guaranteed to function. Veit et al. (2016) showed that the ResNet behaves like an
ensemble of relatively shallow structures (ResBlocks). In this sense, the block-wise strategy
prevented co-adaptation between different blocks and was expected to enhance the ensem-
ble within the ResNet. However, the block-wise strategy got worse test error rates than the
all-in-one strategy, implying that a slight co-adaptation is required ever for ResNets. We
will explore an appropriate co-adaptation in future works.

As another study related to our method, Ha et al. (2017) aimed at reducing the total
number of parameters and, as they confess, the performance was severely worsened. Con-

184

Hypernetwork-based Implicit Posterior Estimation and Model Averaging of CNN

Table 1: Test error rates on CIFAR-10 for WideResNet with different regularization meth-
ods.

WideResNet28-4 WideResNet28-10

Methods strategy prior p(z) ×1 ×16 ×1 ×16

MLE — — 6.05% — 5.49% —
MAP — — 4.23% — 3.90% —
Baysian Hypernetworks — — failed — failed —
Bayes-by-Backprop — — failed — failed —

hypernetwork all-in-one N (0, 1) 4.65% 4.06% 4.13% 3.79%
all-in-one U(0, 1) 4.21% 4.19% 3.76% 3.73%

hypernetwork block-wise N (0, 1) 4.70% 4.03% 4.42% 3.85%
block-wise U(0, 1) 4.34% 4.34% 4.02% 3.97%

The error rates lower than that of the MAP estimation are emphasized using bold fonts.

1 2 4 8 16

evaluation time widening rate (times)

4.0

4.2

4.4

4.6

4.8

te
st

er
ro

r
(%

)

MAP

block-wise, N (0, 1)

all-in-one, N (0, 1)

block-wise, U(0, 1)

all-in-one, U(0, 1)

(a) WideResNet28-4

1 2 4 8 16

evaluation time widening rate (times)

3.6

3.8

4.0

4.2

4.4

te
st

er
ro

r
(%

)

MAP

block-wise, N (0, 1)

all-in-one, N (0, 1)

block-wise, U(0, 1)

all-in-one, U(0, 1)

(b) WideResNet28-10

Figure 5: The test error rates with the varying number of averaged models.

versely, our purpose is to regularize and improve the primary network; we consider that the
comparison with Ha et al. (2017) is not fair.

We also examined weight normalization and confirmed that it does not work well for
recent large-scale CNNs. The original study of weight normalization by Salimans and
Kingma (2016) demonstrated that CNNs with weight normalization is inferior to CNNs with
batch normalization for image recognition, while it works well for the fully-connected neural
networks. Gitman and Ginsburg (2017) also confirmed a similar tendency. We applied
weight normalization to WideResNet instead of batch normalization, and we confirmed that
the weight parameters diverse to the infinity in the early phase of the training procedure.

185

Ukai Matsubara Uehara

Table 2: Double faults on CIFAR-10 of the WideResNet28-10 with different regularizations.

number of missclassified samples

Regularization method strategy prior p(z) 4 times 3 times 2 times 1 time

MAP estimation — — 172 114 129 258

hypernetwork all-in-one N (0, 1) 246 106 119 193
all-in-one U(0, 1) 340 15 29 32
block-wise N (0, 1) 216 119 123 223
block-wise U(0, 1) 327 50 43 66

We consider that weight normalization does not work well with recent large-scale CNNs or,
at least, the appropriate hyper-parameters for the weight normalization are considerably
different from those for bach normalization.

We also examined Bayesian hypernetwork (Krueger et al., 2017), but we found weight
normalization disturbed the training procedure of WideResNet as stated above.

We also examined Bayes-by-Backprop and found that weight parameters continued fluc-
tuating and the classification accuracy never exceeded the chance level. This was because
the variance of drawn weight was much larger than their gradients. We consider that they
are not suited for recent large-scale CNNs or we have to adjust hyper-parameters carefully
unlike our proposed method. A more detailed adjustment is out of scope of this study.

4.3. Model Diversity

A model averaging is a Bayesian version of ensemble and, generally speaking, the ensemble
improves the performances better if involved models have a greater diversity (Zhou, 2012).
These results suggest that the prior N (0, 1) generated a wide variety of the primary net-
works; some models got worse results, but the variety prompted the better performance
after the model averaging. On the other hand, the prior U(0, 1) achieved a better result
without model averaging and got a limited improvement with model averaging, suggesting
a limited variety of the primary networks.

We evaluated the diversity by double fault, which is defined as the ratio of test samples
that two models misclassified together (Giacinto and Roli, 2001). A large ratio suggests
that the two models classify samples with similar boundaries and have a limited diversity.
We used four models (so it may be better to call it quadruple fault). Tables 2 summarizes
the results of the double fault of the WideResNets. With our regularization method, we
generated the WideResNets by the same hypernetwork with different inputs. For the MAP
estimation, we trained the WideResNets from scratch. With the prior of N (0, 1), the
WideResNets got smaller ratios than the case with the prior of U(0, 1), indicating a greater
diversity. This is consistent with the performance improvement rates in Table 1. The ratios
are at a similar level to the MAP estimation. Hence, using the prior of N (0, 1), one can get
multiple models from the hypernetworks and adjust the trade-off between the computational
time and the performance by determining the number of models.

186

Hypernetwork-based Implicit Posterior Estimation and Model Averaging of CNN

−0.5 0.0
×10−2

−0.8

−0.6

−0.4

−0.2

0.0

×10−2

(a) all-in-one, N (0, 1)

−6 −4
×10−4

−4

−2

×10−4

(b) all-in-one, U(0, 1)

Figure 6: Scatter plot and histogram of samples from a approximate posterior of
WideResNet28-10.

4.4. Weight Distributions

We examined the posterior distribution of weights learned by our proposed hypernetworks.
Figure 6 shows the 1000 scatter samples from specific two dimensions of the weight posterior
of WideResNet28-10 with the prior U(0, 1) and N (0, 1). We can find that the pair of
weight parameters forms distributions with covariances (see Fig. 6). Conversely, the weight
parameters learned with Bayes-by-Backprop have no covariance by definition and the MAP
estimation is a point estimate.

We also calculated the correlation between random two dimensions and examined the
difference of all-in-one strategy and block-wise strategy with the prior U(0, 1). When we
chose a pair of weight parameters randomly from the same ResBlock, the average of the
absolute correlation was 0.977 for all-in-one strategy and 0.986 for block-wise strategy.
When we chose a pair of weight parameters randomly from different ResBlocks, the average
was 0.968 for all-in-one strategy and 0.008 for block-wise strategy. These results indicate
that our proposed method trains stochastic weight parameters with correlations, and we
can restrict the correlations across different subparts by choosing the strategies. According
to the results in Table 1, the error rates were nonetheless insensitive to the strategies. With
the prior of N (0, 1), the correlations were relatively smaller (around 0.2 on average), but
we can find higher order correlations and skewness as shown in Fig. 6(a). We conclude
that our proposed method successfully obtains variational posterior that has a complicated
shape compared to conventional methods.

187

Ukai Matsubara Uehara

Table 3: Test error rates on CIFAR-10 for WideResNet28-4 with different prior p(z).

prior p(z) ×1 ×16

U(0, 1) 4.21% 4.19%
U(−1, 1) 4.74% 4.22%
N (0, 1) 4.65% 4.06%
|N (0, 1)| 4.64% 4.58%

Table 4: Test error rates on CIFAR-10 for various CNNs.

Pyramidal ResNet-110-48 ResNeXt-29-8-64d

Methods ×1 ×16 ×1 ×16

MAP 4.59% — 4.03% —

hypernetwork 4.64% 4.61% 3.92% 3.91%

4.5. Experiments with various Prior p(z)

We examine a normal distribution and a uniform distribution as the prior p(z) of the
hypernetworks. In preliminary experiments, we examined several intervals of the prior p(x)
and confirmed that the scale of the interval does not have a clear influence on the behavior
of the primary network. This is because a neural network can scale the inputs by scaling
the weight parameters of the input layer. Hence, we used typical values such as 0 and 1.

Also in preliminary experiments, we found the bias terms in the hypernetworks dimin-
ish the randomness of the hypernetwork inputs; we removed the bias terms. Because of
not using bias terms in the hypernetworks, the hypernetworks cannot shift the activation
arbitrarily. Hence, we examine the sign of the support by using the distributions U(0, 1),
U(−1, 1), N (0, 1), and U(0, 1).

We performed the experiments on CIFAR-10 for WideResNet28-4 with all-in-one strat-
egy. We summarized the results in Table 3. When employing the prior p(z) of U(−1, 1)
and N (0, 1), the accuracy was improved by model averaging; these distributions can take
positive and negative values. Conversely, improvement by model averaging was limited with
the prior distributions U(0, 1) and |N (0, 1)|, which take positive values only. Hence, model
averaging is effective when the prior takes both the positive and negative values, while the
CNNs work better when the prior takes positive values only.

4.6. Experiments for Various CNNs

We also applied our proposed hypernetwork with the prior of U(0, 1) to ResNeXt and
Pyramidal ResNet on CIFAR-10. We summarized the results on Table 4.

As ResNeXt, we used ResNeXt29-8-64d, consisting of 29 convolution layers with cardi-
nality of 8 and base channel widths of 64. As Pyramidal ResNet, we used Pyramidal ResNet
110-48, consisting of 110 convolution layers with widening factor of α = 48. We employed
all-in-one hypernetwork with the prior p(z) of U(0, 1), which worked better with WideRes-

188

Hypernetwork-based Implicit Posterior Estimation and Model Averaging of CNN

Table 5: Test error rates on SVHN for WideResNet16-4.

Methods prior p(z) ×1 ×16

MAP — 1.90% —

hypernetwork U(0, 1) 1.93% 1.93%
N (0, 1) 1.90% 1.80%

Table 6: Test error rates on ImageNet for ResNet50 with the prior of U(0, 1).

Top 1 Top 5

Methods ×1 ×16 ×1 ×16

MAP 23.84% — 7.06% —

hypernetwork 25.97% 25.87% 8.17% 8.16%

Net. The hypernetworks’ unit size z was 16 for ResNeXt and 32 for Pyramidal ResNet. The
hyper-parameters were the same as in the original studies except for the training epochs.
We trained ResNeXt for 900 epoch and Pyramidal ResNet for 600 epoch.

We found that our proposed method achieved better results on ResNeXt and competitive
results on Pyramidal ResNet. ResNeXt has a similar structure to WideResNet; it has
multiple ResBlocks of the same channel size. Conversely, Pyramidal ResNet have ResBlocks
of various channel sizes. Therefore, our proposed method could prefer a repetitive structure
rather then Pyramidal ResNet.

4.7. Experiments for Various Datasets

We also evaluated our proposed method on SVHN (Russakovsky et al., 2015) using WideResNet16-
4 (Zagoruyko and Komodakis, 2016). The hyper-parameters were the same as in Zagoruyko
and Komodakis (2016). We employed all-in-one hypernetwork with the prior p(z) of U(0, 1)
and N (0, 1). The hypernetworks’ unit size z was 32. We summarized the results in Ta-
ble 5. Our proposed method with each prior was competitive to the baseline. With model
averaging, our proposed method with the prior p(z) of N (0, 1) outperformed the baseline.

We also evaluated proposed method on ImageNet (Russakovsky et al., 2015). We used
ResNet50 (He et al., 2016). The hyper-parameters were the same as in the original studies.
We employed all-in-one hypernetwork with the prior p(z) of U(0, 1). The hypernetworks’
unit size z is 32. We summarized the results in Table 6. The result is based on 1-run due
to the limitation of computational resources.

The proposed method got slightly worse results than baseline. In the experiments on
CIFAR-10 and SVHN datasets, the training error converged to almost zero while the test
error had certain positive values; these results indicate slight overfitting of the CNNs. Con-
versely, in the experiments on ImageNet, the training error has remained at a similar level
to the test error. This implies that the ResNet50 underfitted to the training set owing to
its limited expression ability compared to the dataset size, and hence, it does not require

189

Ukai Matsubara Uehara

regularization. Huang et al. (2016) obtained a similar result. A larger network will be
explored in future work.

5. Conclusions

We proposed a new regularization method for large-scale CNNs. We used hypernetworks
to approximate posterior of the parameters under the implicit constraints. We applied
the proposed regularization method to various CNNs. The probabilistic behavior of the
parameters regularized the learning process. We evaluated four settings (strategies and
priors p(z)) and found that our regularization method outperformed the MAP estimation
under the appropriate settings. With model averaging, our regularization method improved
their performance further. In future works, we will investigate the methodology to adjust
the strength of co-adaptation and regularization.

Acknowledgments

This study partially supported by the JSPS KAKENHI (16K12487) and the MIC/SCOPE
#172107101.

References

Andrei Atanov et al. Uncertainty estimation via stochastic batch normalization. In ICLR
Workshop, 2018.

Christopher M. Bishop. Pattern recognition and machine learning, 5th Edition. Information
science and statistics. Springer, 2007.

Charles Blundell et al. Weight uncertainty in neural network. In ICML, 2015.

Alfredo Canziani et al. An analysis of deep neural network models for practical applications.
arXiv, 2016.

Laurent Dinh et al. Density estimation using real NVP. In ICLR, 2017.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing
model uncertainty in deep learning. In ICML, 2016.

Giorgio Giacinto and Fabio Roli. Design of effective neural network ensembles for image
classification purposes. Image Vision Comput., 2001.

Igor Gitman and Boris Ginsburg. Comparison of batch normalization and weight normal-
ization algorithms for the large-scale image classification. arXiv, 2017.

Ian J. Goodfellow et al. Generative adversarial nets. In NIPS, 2014.

Ian J. Goodfellow et al. Deep Learning. Adaptive computation and machine learning. MIT
Press, 2016.

David Ha et al. Hypernetworks. In ICLR, 2017.

190

Hypernetwork-based Implicit Posterior Estimation and Model Averaging of CNN

Dongyoon Han et al. Deep pyramidal residual networks. In CVPR, 2017.

Kaiming He et al. Delving deep into rectifiers: Surpassing human-level performance on
imagenet classification. In ICCV, 2015.

Kaiming He et al. Identity mappings in deep residual networks. In ECCV, 2016.

Gao Huang et al. Deep networks with stochastic depth. In ECCV, 2016.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network train-
ing by reducing internal covariate shift. In ICML, 2015.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In ICLR, 2014.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images,
masters thesis, dept. of comp. sci., university of toronto. 2009.

David Krueger et al. Bayesian hypernetworks. arXiv, 2017.

Nick Pawlowski et al. Implicit weight uncertainty in neural networks. In NIPS workshop
on Bayesian deep learning, 2017.

Olga Russakovsky et al. ImageNet Large Scale Visual Recognition Challenge. IJCV, 2015.

Tim Salimans and Diederik P. Kingma. Weight normalization: A simple reparameterization
to accelerate training of deep neural networks. In NIPS, 2016.

Nitish Srivastava et al. Dropout: a simple way to prevent neural networks from overfitting.
JMLR, 2014.

Dustin Tran et al. Hierarchical implicit models and likelihood-free variational inference. In
NIPS, 2017.

Andreas Veit et al. Residual networks behave like ensembles of relatively shallow networks.
In NIPS, 2016.

Saining Xie et al. Aggregated residual transformations for deep neural networks. In CVPR,
2017.

Wayne Xiong et al. Achieving human parity in conversational speech recognition. arXiv,
2016.

Wayne Xiong et al. The microsoft 2016 conversational speech recognition system. In
ICASSP, 2017.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In BMVC, 2016.

Zhi-Hua Zhou. Ensemble methods: foundations and algorithms. CRC press, 2012.

191

	Introductions
	Related Works
	Hypernetworks
	Bayesian Neural Networks
	Convolutional Neural Networks

	Proposed Regularization
	Implicit Posterior Estimation of Parameters by Hypernetworks
	Parameter Generation
	Model Averaging
	Architecture of Hypernetwork

	Experiments and Results
	Common Settings
	Proposed Regularization Method and Model Averaging
	Model Diversity
	Weight Distributions
	Experiments with various Prior p(z)
	Experiments for Various CNNs
	Experiments for Various Datasets

	Conclusions

