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Abstract

In this paper, we study a new learning paradigm for neural machine translation (NMT).
Instead of maximizing the likelihood of the human translation as in previous works, we
minimize the distinction between human translation and the translation given by an NMT
model. To achieve this goal, inspired by the recent success of generative adversarial net-
works (GANs), we employ an adversarial training architecture and name it as Adversarial-
NMT. In Adversarial-NMT, the training of the NMT model is assisted by an adversary,
which is an elaborately designed 2D convolutional neural network (CNN). The goal of the
adversary is to differentiate the translation result generated by the NMT model from that
by human. The goal of the NMT model is to produce high quality translations so as to
cheat the adversary. A policy gradient method is leveraged to co-train the NMT model and
the adversary. Experimental results on English→French and German→English translation
tasks show that Adversarial-NMT can achieve significantly better translation quality than
several strong baselines.

Keywords: Adversarial training, Generative adversarial networks, Neural machine trans-
lation.

1. Introduction

Neural machine translation (NMT) (Bahdanau et al., 2015; Cho et al., 2014) has drawn more
and more attention in both academia and industry (Jean et al., 2015; Luong and Manning,
2016; Sennrich et al., 2016; Wu et al., 2016). Compared with traditional statistical machine
translation (SMT) (Koehn et al., 2003), NMT achieves similar or even better translation
results in an end-to-end framework. The maximum likelihood estimation (MLE) training
and encoder-decoder framework, together with attention mechanisms (Bahdanau et al.,
2015) grant NMT with the ability to better translate sentences.
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Despite its success, the translation quality of latest NMT systems is still far from satis-
factory and there remains large room for improvement. For example, NMT usually adopts
the maximum likelihood estimation principle for training, i.e., to maximize the probability
of the target ground-truth sentence conditioned on the source sentence. Such an objective
does not guarantee the translation results from NMT model to be natural, sufficient, and
accurate compared with ground-truth translation written by human. There are previous
works (Bahdanau et al., 2017; Ranzato et al., 2016; Shen et al., 2016) that aim to alleviate
such limitations of maximum likelihood training, by adopting sequence level objectives (e.g.,
directly maximizing BLEU (Papineni et al., 2002)), to reduce the objective inconsistency
between NMT training and inference. Yet somewhat improved, such objectives still cannot
fully bridge the gap between NMT translations and ground-truth translations.

In this paper, we adopt a thoroughly different training objective for NMT, targeting at
directly minimizing the difference between human translation and the translation given by
an NMT model. To achieve this goal, inspired by the recent success of generative adversar-
ial networks (GANs) (Goodfellow et al., 2014a), we design an adversarial training protocol
for NMT and name it as Adversarial-NMT. In Adversarial-NMT, besides the typical N-
MT model, an adversary is introduced to distinguish the translation generated by NMT
from that by human (i.e., ground-truth). Meanwhile, the NMT model tries to improve its
translation results so that it can successfully cheat the adversary.

These two modules in Adversarial-NMT are jointly trained, and their performances
get mutually improved. In particular, the discriminative power of the adversary can be
improved by learning from more and more training samples (both positive ones generated
by human and negative ones sampled from NMT); and the ability of the NMT model in
cheating the adversary can be improved by taking the output of the adversary as reward.
In this way, the NMT translations are professor forced (Lamb et al., 2016) to be as close as
possible to the human translations.

Different from previous GANs, which assume the existence of a generator in continuous
space, in our proposed framework, the NMT model is not a typical generative model in
continuous space, but instead, a probabilistic transformation that maps a source language
sentence to a target language sentence, both in discrete space. Such differences make it
necessary to design both new network architectures and optimization methods to make
adversarial training possible for NMT. We therefore on one aspect, leverage a specially
designed 2D pconvolutional neural network (CNN) model as adversary, which takes the
(source, target) sentence pair as input; on the other aspect, we turn to a policy gradient
method named REINFORCE (Williams, 1992), widely used in reinforcement learning lit-
erature (Sutton and Barto, 1998), to guarantee the two modules are effectively optimized
in an adversarial manner. We conduct extensive experiments, which demonstrate that
Adversarial-NMT can achieve significantly better translation results than traditional NMT
models with even much larger vocabulary size and higher model complexity.

2. Related Work

End-to-end neural machine translation (NMT) (Bahdanau et al., 2015; Jean et al., 2015;
Sutskever et al., 2014; Wu et al., 2016) has drawn a lot of attention from the community.
A typical NMT system is built on the RNN based encoder-decoder framework. In such
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a framework, the encoder RNN sequentially processes the words in the source language
sentence into fixed length vectors, and then the decoder RNN works on the output vectors
of the encoder to generate the translation sentence in the target language. NMT typically
adopts the principle of maximum likelihood estimation (MLE) for training, i.e., maximizing
the per-word likelihood of target sentence. Other training criteria, such as minimum risk
training (MRT) based on reinforcement learning (Ranzato et al., 2016; Shen et al., 2016)
and translation reconstruction (Tu et al., 2016), are shown to improve over such word level
MLE principle since these objectives take the translation sentence as a whole.

The training principle we propose is based on the spirit of generative adversarial net-
works (GANs) (Goodfellow et al., 2014a; Salimans et al., 2016), or more generally, adver-
sarial training (Goodfellow et al., 2014b). In adversarial training, a discriminator and a
generator competes with each other, forcing the generator to produce high quality out-
puts that are able to fool the discriminator. Adversarial training typically is widely used
in image generation (Goodfellow et al., 2014a; Reed et al., 2016), with few attempts in
natural language processing tasks (Yu et al., 2017), in which it is difficult to propagate
the error signals from the discriminator to the generator through the discretely generat-
ed natural language tokens. Yu et al. (2017) alleviates such a difficulty by reinforcement
learning approach for speech language generation, poem generation and music generation,
and Zhang et al. (2017) proposes approximated discretization with soft-argmax function
in the adversarial training to generate text. However, there are few efforts on adversarial
training for sequence-to-sequence task. Li et al. (2017) adopts the adversarial training with
recurrent neural network based discriminator in the dialogue generation task. In parallel
to our work, Yang et al. (2018) also adapts the generative adversarial networks into neural
machine translation. However, our work is different from the above works in the following
aspects: 1) In terms of the discriminator, Yang et al. (2018) follows Yu et al. (2017) and
uses two separate CNNs as discriminator to model the source sentence and target sentence
representation independently, and then the two sentence representations are concatenated
for classification. Different from their two independent CNNs, we adopt a 2D convolutional
architecture which is built directly on the interaction space between the source and target
sentences. Acting in this way, the two sentences meet before their own high-level repre-
sentations, while still retaining the space for the individual development of abstraction of
each sentence. Our method therefore can better model the semantic relationship between
source sentence and target sentence, which has been verified in previous work (Hu et al.,
2014). 2) In terms of optimization efficiency, to apply reinforcement learning approach, the
Monte-Carlo search is used in every step to get the intermediate action-value score (Yang
et al., 2018; Yu et al., 2017), which is computationally cost. We only use one sample from
a trajectory to estimate the terminal reward. To avoid bringing high variance into training
procedure, we use a moving average of the historical reward values to set as a reward base-
line (Weaver and Tao, 2001). Therefore, our model is faster and computationally efficient,
while maintaining good accuracy. Detailed training strategies and model structures will be
described in the next Section 3.
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Figure 1: The Adversarial-NMT framework. ‘Ref’ is short for ‘Reference’ which means
the ground-truth translation and ‘Hyp’ is short for ‘Hypothesis’, denoting model
translation sentence. All the yellow parts denote the NMT model G, which maps
a source sentence x to a translation sentence. The red parts are the adversary
network D, which predicts whether a given target sentence is the ground-truth
translation of the given source sentence x. G and D combat with each other,
generating both sampled translation y′ to train D, and the reward signals to
train G by policy gradient (the blue arrows).

3. Adversarial-NMT

The overall framework of our proposed Adversarial-NMT is shown in Figure 1. There are
two main components in our framework, a generator G, which is an NMT model used to
translate sentences, and an adversary model D, which is used to distinguish the trans-
lation generated by NMT model from that by human. Let (x = {x1, x2, ..., xTx}, y =
{y1, y2, ..., yTy}) be a bilingual aligned sentence pair for training, where xi is the i-th word
in the source sentence and yj is the j-th word in the target sentence, Tx and Ty are the
number of words in x and y respectively. Let y′ denote the translation sentence of the source
sentence x generated by G. Intuitively, the more similar y′ is to y, the better translation
quality y′ has. Therefore, inspired by the success of GAN, we explicitly force y′ to be similar
to y in an adversarial manner. We introduce an adversary network D to differentiate human
translation from machine translation. The objective of the NMT model G is to produce a
target sentence as similar as the human translation so as to fool the adversary.

3.1. NMT Model

We adopt the recurrent neural network (RNN) based encoder-decoder as the NMT model to
seek a target language translation y′ given source sentence x. In particular, a probabilistic
mapping G(y|x) is firstly learnt and the translation result y′ ∼ G(·|x) is sampled from it.
To be specific, given source sentence x and previously generated words y<t, the probability
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of generating word yt is:

G(yt|y<t, x) = ρ(yt−1, rt, ct), (1)

rt = g(rt−1, yt−1, ct), (2)

where ρ is the non-linear function like softmax, rt is the decoding state from decoder at
time t. Here g is the recurrent unit such as the long short term memory (LSTM) unit
(Hochreiter and Schmidhuber, 1997) or gated recurrent unit (GRU) (Cho et al., 2014),
and ct is a distinct source representation at time t calculated by an attention mechanism
(Bahdanau et al., 2015):

ct =

Tx∑
i=1

αithi, (3)

αit =
exp{a(hi, rt−1)}∑
k exp{a(hk, rt−1)}

, (4)

where Tx is the source sentence length, a(·, ·) is a feed-forward neural network, and hi is
the hidden state from RNN encoder computed by hi−1 and xi:

hi = f(hi−1, xi). (5)

The translation result y′ can be sampled from G(·|x) either in a greedy way or using beam
search (Sutskever et al., 2014) at each timestep.

3.2. Adversary Model

Figure 2: The CNN adversary framework.

The adversary is used to differentiate the model translation result y′ from the ground-
truth translation y, given the source language sentence x. To achieve that, one needs to
measure the translation matching degree of (source, target) sentence pair (x, y). We turn
to convolution neural network (CNN) for this task (Hu et al., 2014; Yin et al., 2016). With
the layer-by-layer convolution and pooling strategies, CNN is able to accurately capture the
hierarchical correspondence of (x, y) at different abstraction levels.

The general structure is shown in Figure 2. Specifically, given a sentence pair (x, y),
we first construct an image-like representation z(0) by simply concatenating the embedding

538



Adversarial-NMT

vectors of words in x and y. That is, for i-th word xi in the source sentence x and j-th
word yj in the target sentence y, we have the following feature map:

z
(0)
i,j = [xTi , y

T
j ]T .

Based on such an image-like representation, we perform convolution on every 3× 3 win-
dow, with the purpose to capture the correspondence between segments in x and segments
in y by the following feature map of type f :

z
(1,f)
i,j = σ(W (1,f)ẑ

(0)
i,j + b(1,f)),

where ẑ
(0)
i,j = [z

(0)
i−1:i+1,j−1:j+1] represents the 3× 3 window, and σ(x) = 1/(1 + exp(−x)) is

the sigmoid function.
After that we perform a max-pooling in non-overlapping 2× 2 window:

z
(2,f)
i,j =max({z(1,f)

2i−1,2j−1, z
(1,f)
2i−1,2j , z

(1,f)
2i,2j−1, z

(1,f)
2i,2j }).

Such a 2D architecture can make the source and target sentences meet before their
own high-level representations, and still retain the space for the individual development of
abstraction of each sentence. Therefore, the semantic relationship between the two sentences
can be better modeled (Hu et al., 2014).

We could go on for more layers of convolution and max-pooling, aiming at capturing the
correspondence at different levels of abstraction. The extracted features are then fed into
a multi-layer perceptron, with sigmoid activation at the last layer to give the probability
that (x, y) is from ground-truth data, i.e., D(x, y). The optimization target of such CNN
adversary is to minimize the cross-entropy loss for binary classification, with ground-truth
data (x, y) as the positive instance while sampled data from G as the negative one.

3.3. Policy Gradient Algorithm to Train Adversarial-NMT

Following (Goodfellow et al., 2014a), we formulate the training of Adversarial-NMT as a
two-player minimax game:

min
G

max
D

V (G,D), (6)

where V (G,D) is the value function of the two participants: NMT model G and adversary
D. For Adversarial-NMT, V (G,D) is specified as

V (G,D) =E(x,y)∼Pdata(x,y)[logD(x, y)]+

Ex∼Pdata(x),y′∼G(·|x)[log(1−D(x, y′))],
(7)

where D(x, y) is the probability that (x, y) is from the ground-truth data as described above,
Pdata is the unknown underlining distribution of the data. The parameters of G and D are
denoted as ΘG and ΘD respectively.

Intuitively, as shown in Eqn.(7), the translation model G tries to produce high quality
translation y′ to fool the adversary D (the outer-operator min), while the adversary D
tries to classify whether a translation result is from real data (i.e., ground-truth) or from
translation model G (the inner-operator max).
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We can use gradient based algorithm to optimize G and D. The most important thing
is to calculate the gradients of V (G,D) w.r.t ΘG and ΘD respectively. For ease of reference,
denote L(x, y;G,D) as

L(x, y;G,D) = logD(x, y) +
∑
y′∈Y

G(y′|x) log(1−D(x, y′)), (8)

where Y is the collection of all possible translations. When the context is clear, we denote
L(x, y;G,D) as L(x, y). Note to mention that Ex,y∼Pdata(x,y)L(x, y) is the value function
V (G,D).

The gradients ∇ΘD
L(x, y) and ∇ΘG

L(x, y) can be calculated as follows:

∇ΘD
L(x, y) = ∇ΘD

logD(x, y) +
∑
y′∈Y

G(y′|x)∇ΘD
log(1−D(x, y′)), (9)

∇ΘG
L(x, y) =

∑
y′∈Y
∇ΘG

G(y′|x) log(1−D(x, y′)). (10)

Since Y is exponentially large, ∇ΘD
L(x, y) and ∇ΘG

L(x, y) are intractable to calculate, and
so are ∇ΘD

V (G,D) and ∇ΘG
V (G,D).

To tackle the above challenge, we leverage a Monte-Carlo based method to optimize D
and G. Note that Eqn.(10) can be equivalently written as

∇ΘG
L(x, y) =

∑
y′∈Y

G(y′|x)∇ΘG
logG(y′|x) log(1−D(x, y′)). (11)

Thus, we can estimate ∇ΘD
L(x, y) and ∇ΘG

L(x, y) by the following two steps: 1) for any
x, sample a translation y′ ∼ G(·|x); 2) calculate ∇ΘD

L̃(x, y, y′) and ∇ΘG
L̃(x, y, y′), which

are defined as

∇ΘD
L̃(x, y, y′) = ∇ΘD

logD(x, y) +∇ΘD
log(1−D(x, y′)), (12)

∇ΘG
L̃(x, y, y′) = ∇ΘG

logG(y′|x) log(1−D(x, y′)). (13)

One can easily verify that ∇ΘD
L̃(x, y, y′) and ∇ΘG

L̃(x, y, y′) are unbiased estimators of
∇ΘD

L(x, y) and ∇ΘG
L(x, y). As a result, taking the SGD algorithm as an example, we can

update ΘD and ΘG as follows.

ΘD ← ΘD + αD∇ΘD
L̃(x, y, y′); ΘG ← ΘG − αG∇ΘG

L̃(x, y, y′), (14)

where αD and αG are the learning rates of D and G respectively, and y′ ∼ G(·|x).
Eqn.(13) is exactly the REINFORCE algorithm (Williams, 1992) in reinforcement learn-

ing literature. Using the language of reinforcement learning, in Adversarial-NMT: the NMT
model acts as the agent with policy function G(·|x), and the translation sentence y′ is the
action. The environment is characterized via the source sequence x and the adversary
model D, which provides the reward − log(1−D(x, y′)) based on the classification accuracy
based on y′.

The variance of such a Monte-Carlo estimation is high, leading to the instability issue
in training as observed in previous works (Bahdanau et al., 2017; Ranzato et al., 2016).
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To reduce the variance, a moving average of the historical reward values is set as a reward
baseline (Weaver and Tao, 2001). Another way to reduce high variance is sampling multiple
trajectories y′ in each decoding step, by regarding G as the roll-out policy (Silver et al., 2016;
Yu et al., 2017). However, empirically we find such approach is intolerably time-consuming,
given that the decoding space in NMT is extremely large (the same as vocabulary size).

It is worth comparing our adversarial training with existing methods that directly max-
imize sequence level measure BLEU in training NMT models, such as minimal risk training
(MRT) (Shen et al., 2016) and related approaches based on reinforcement learning (Bah-
danau et al., 2017; Ranzato et al., 2016). We argue that Adversarial-NMT makes the
optimization easier and has several advantages compared with these methods. First, the
reward learned by our adversary D provides rich and global information to evaluate the
translation quality, which goes beyond the BLEU’s simple low-level n-gram matching crite-
ria. Acting in this way provides much smoother objective compared with BLEU since the
latter is highly sensitive (i.e., slight translation difference at word or phrase level is probably
to induce significant BLEU variation). Second, the NMT model G and the adversary D in
Adversarial-NMT co-evolve. The dynamics of adversary D makes NMT model G grows in
an adaptive way rather than controlled by a fixed evaluation metric such as BLEU. Given
the above two reasons, Adversarial-NMT makes the optimization process towards sequence
level objectives more robust and better controlled, which is further verified by its superior
performances to the aforementioned methods as reported in Section 4.

4. Experiments

4.1. Settings

We evaluate our model on two translation tasks: English→French translation (En→Fr for
short) and German→English translation (De→En for short).

Dataset: For En→Fr translation, for the sake of fair comparison with previous works,
we use the same dataset as (Bahdanau et al., 2015). The dataset is composed of a subset of
WMT 2014 training corpus as training set, the combination of news-test 2012 and news-test
2013 as dev set and news-test 2014 as test set, which respectively contains roughly 12M , 6k
and 3k sentence pairs. The maximal sentence length is 50. We use top 30k most frequent
English and French words as vocabulary and replace the other words as ‘UNK’ token.

For De→En translation, following previous works (Bahdanau et al., 2017; Ranzato et al.,
2016), the dataset is from IWSLT 2014 evaluation campaign (Cettolo et al., 2014), consisting
of training/dev/test corpus with approximately 153k, 7k and 6.5k bilingual sentence pairs
respectively. The maximal sentence length is also set as 50. The vocabulary for English
and German corpus respectively include 22, 822 and 32, 009 most frequent words (Bahdanau
et al., 2017), with other words replaced as a special token ‘UNK’.

Models: In Adversarial-NMT, for the NMT model G, we use the same model structure
as RNNSearch model (Bahdanau et al., 2015), an RNN based encoder-decoder framework
with attention mechanism. A bidirectional GRU layer acts as the encoder and a unidirec-
tional GRU layer acts as the decoder. Following the common practice in NMT (Jean et al.,
2015), for En→Fr translation, the dimensions of word embedding and GRU hidden state
are 620 and 1000 respectively, and for De→En translation they are both 256.
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The adversary D is a CNN architecture starting with two convolution layers, where each
one has 20 filters of size 3 × 3 and each one is followed by a max-pooling layer with filter
size 2×2. After the convolution and pooling layers, one MLP layer is added with 20 hidden
nodes, and eventually sigmoid activation is used to give the probability. The dimension of
word embedding used in adversary D is the same as that for the corresponding G.

Training Procedure: To stabilize the training process, following (Shen et al., 2016;
Tu et al., 2016), we first pre-train the NMT model G and obtain a warm-start model for
Adversarial-NMT1. Then, the CNN adversary model D is also pre-trained using the data
(x, y′) where y′ is sampled from this well-trained NMT model G, as well as the the ground-
truth data (x, y).

Next, we use the warm-start NMT modelG and adversaryD to initialize our Adversarial-
NMT and jointly train the two models. We optimize the NMT model G using vanilla SGD
with mini-batch size 80 for En→Fr and 32 for De→En translation. Gradient clipping is used
with clipping value 1 for En→Fr and 10 for De→En. The initial learning rate is chosen
from cross-validation on dev set (0.02 for En→Fr, 0.001 for De→En) and we halve it every
80k iterations. For the adversary D, it is optimized using Nesterov SGD (Nesterov, 1983)
with batch size 80 for En→Fr and 32 for De→En. The initial learning rate is 0.002 for
En→Fr, 0.001 for De→En, both chosen according to the accuracy on the dev set. We fix
the word embeddings of D during training. Batch normalization (Ioffe and Szegedy, 2015)
is observed to significantly improve D’s performance. Considering efficiency, the negative
training data (x, y′) used in D’s training are generated using beam search with width 4. We
terminate the training when the performance of NMT model G is not improved on dev set.

A key factor we find in successfully training G is that the combination of adversarial
objective and MLE objective. That is, for any mini-batch, with equal probability, G is opti-
mized by adversarial objective or MLE objective. Acting in this way significantly improves
the stability in model training, which is also reported in other tasks such as language mod-
el (Lamb et al., 2016) and dialogue generation (Li et al., 2017). We conjecture the reason is
that MLE acts as a regularizer to guarantee smooth model update, alleviating the negative
effects brought by high gradient estimation variance of the one-step Monte-Carlo sample in
REINFORCE.

All our models are implemented with Theano and trained on NVIDIA K40 GPU. For
En→Fr translation tasks, it takes about one week; for De→En, it roughly takes 20 hours.

In generating translation results for evaluation, we set beam width as 4 for En→Fr, and
12 for De→En. The translation quality is measured by tokenized case-sensitive BLEU (Pa-
pineni et al., 2002) score2.

4.2. Result on En→Fr translation

In Table 1 we provide the En→Fr translation result of Adversarial-NMT, together with
several strong NMT baselines, such as the well representative attention-based NMT model
RNNSearch (Bahdanau et al., 2015). In addition, to make our comparison comprehensive,
we would like to cover several well acknowledged techniques whose effectiveness has been

1. The well-trained RNNSearch models serve as baselines and the BLEU scores are 29.92 for En→Fr and
23.70 for De→En. Those numbers are close to the ones reported in (Jean et al., 2015) and (Wiseman
and Rush, 2016), as shown in Table 1 and 3 with symbol ∗.

2. https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
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Table 1: Different NMT systems’ performances on En→Fr translation. The default setting
is single layer GRU with MLE training, and 30k word vocabulary, trained with
no monolingual data, i.e., the RNNSearch model proposed by (Bahdanau et al.,
2015). ∗: our warm-start RNNSearch baseline model. †: significantly better than
(Shen et al., 2016) (ρ < 0.05).

System System Configurations BLEU

Representative end-to-end NMT systems
Sutskever et al. (2014) LSTM with 4 layers + 80k word vocabulary 30.59
Bahdanau et al. (2015) RNNSearch∗ 29.97a

Jean et al. (2015) RNNSearch + UNK Replace 33.08
Jean et al. (2015) RNNSearch + 500k word vocabulary + UNK Replace 34.11
Luong et al. (2015) LSTM with 4 layers + 40k word vocabulary 29.50
Luong et al. (2015) LSTM with 4 layers + 40k word vocabulary + PosUnk 31.80
Shen et al. (2016) RNNSearch +Minimum Risk Training 31.30
Sennrich et al. (2016) RNNSearch +Monolingual Data 30.40b

He et al. (2016) RNNSearch+ Monolingual Data + Dual Learning 32.06
Adversarial-NMT

this work RNNSearch + Adversarial Training 31.91†
RNNSearch + Adversarial Training + UNK Replace 34.78

a. Reported in Jean et al. (2015).
b. Reported in He et al. (2016).

verified to improve En→Fr translation by previously published works, including the leverage
of 1) Using large vocabulary to handle rare words (Jean et al., 2015; Luong et al., 2015);
2) Different training objectives (Bahdanau et al., 2017; Ranzato et al., 2016; Shen et al.,
2016) such as minimum risk training (MRT) to directly optimize evaluation measure (Shen
et al., 2016), and dual learning to enhance both primal and dual tasks (e.g., En→Fr and
Fr→En) (He et al., 2016); 3) Improved inference process such as beam search optimiza-
tion (Wiseman and Rush, 2016) and postprocessing UNK (Jean et al., 2015; Luong et al.,
2015); 4) Leveraging additional monolingual data (He et al., 2016; Sennrich et al., 2016).

From the table, we can clearly observe that Adversarial-NMT obtains satisfactory trans-
lation quality against baseline systems. In particular, it even surpasses the performances
of other models with much larger vocabularies (Jean et al., 2015), deeper layers (Luong
et al., 2015), much larger monolingual training corpus (Sennrich et al., 2016), and the goal
of directly maximizing BLEU (Shen et al., 2016). In fact, as far as we know, Adversarial-
NMT achieves state-of-the-art result (34.78) on En→Fr translation for single-layer GRU
sequence-to-sequence models trained with only supervised bilingual corpus on news-test
2014 test set.

Human Evaluation: Apart from the comparison based on the objective BLEU score,
to better appraise the performance of our model, we also involve human judgments as a sub-
jective measure. Specifically, we generate the translation results for 500 randomly selected
English sentences from En→Fr news-test 2014 set using both MRT and our Adversarial-
NMT. Here MRT is chosen since it is the well representative of previous NMT methods
which maximize sequence level objectives, achieving satisfactory results among all single
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layer models (i.e., 31.30 in Table 1). Afterwards, we ask three human evaluators to choose
the better one from the two versions of translated sentences. The evaluation process is con-
ducted on Amazon mechanical turk3 with all the evaluators to be native French speakers
and familiar with English.

Table 2: Human evaluations for Adversarial-NMT and MRT on En→Fr translation. “286
(57.2%)” means that evaluator 1 made a decision that 286 (57.2%) out of 500
translations generated by Adversarial-NMT were better than MRT.

Adversarial-NMT MRT

evaluator 1 286 (57.2%) 214 (42.8%)
evaluator 2 310 (62.0%) 190 (38.0%)
evaluator 3 295 (59.0%) 205 (41.0%)

Overall 891 (59.4%) 609 (40.6%)

Result in Table 2 shows that 59.4% sentences are better translated by our Adversarial-
NMT, compared with MRT. Such human evaluation further demonstrates the effectiveness
of our model and matches the expectation that Adversarial-NMT provides more human
desired translation.

Adversarial Training: Slow or Fast: We further analyze how to set the pace for
training the NMT model G and adversary D, to make them combatting effectively. Specifi-
cally, for En→Fr translation, we inspect how dev set BLEU varies along adversarial training
process with different initial learning rates for G (shown in 3(a)) and for D (shown in 3(b)),
conditioned on the other one fixed.

Overall speaking, these two figures show that Adversarial-NMT is much more robust
with regard to the pace of D making progress than that of G, since the three curves in 3(b)
grow in a similar pattern while curves in 3(a) drastically differ with each other. We conjec-
ture the reason is that in Adversarial-NMT, CNN based D is powerful in classification tasks,
especially when it is warm started with sampled data from RNNSearch. As a comparison,
the translation model G is relatively weak in providing qualified translations. Therefore,
training G needs careful configurations of learning rate: small value (e.g., 0.002) leads to
slower convergence (blue line in 3(a)), while large value (e.g., 0.2) brings un-stability (green
line in 3(a)). The proper learning rate (e.g. 0.02) induces G to make fast, meanwhile stable
progress along training.

4.3. Result on De→En translation

In Table 3 we provide the De→En translation result of Adversarial-NMT, compared with
some strong baselines such as RNNSearch (Bahdanau et al., 2015) and MRT (Shen et al.,
2016).

Again, we can see that Adversarial-NMT performs best against other models from Table
3, achieves 27.94 BLEU score.

3. https://www.mturk.com
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Figure 3: Dev set BLEUs during En→Fr Adversarial-NMT training process, with same
learning rates for D, different learning rates for G in left 3(a), and same learning
rates for G and different learning rates for D in right 3(b).

Table 3: Different NMT systems’ performances on De→En translation. The default set-
ting is single layer GRU encoder-decoder model with MLE training, i.e., the
RNNSearch model proposed by (Bahdanau et al., 2015). ∗: our warm-start
RNNSearch baseline model. †: significantly better than (Shen et al., 2016) (ρ <
0.05).

System System Configurations BLEU

Representative end-to-end NMT systems
Bahdanau et al. (2015) RNNSearch∗ 23.87a

Ranzato et al. (2016) CNN encoder + Sequence level REINFORCE 21.83
Bahdanau et al. (2017) CNN encoder + Sequence level Actor-Critic 22.45
Wiseman and Rush (2016) RNNSearch + Beam search optimization 25.48
Shen et al. (2016) RNNSearch + Minimum Risk Training 25.84b

Adversarial-NMT
this work RNNSearch + Adversarial Training 26.98†

RNNSearch + Adversarial Training + UNK Replace 27.94

a. Reported in (Wiseman and Rush, 2016).
b. Result from our implementation, and we reproduced their reported En→Fr result.

Effect of Adversarial Training: To better visualize and understand the advantages
of adversarial training brought by Adversarial-NMT, we show several translation cases in
Table 4. Concretely speaking, we give two De→En translation examples, including the
source language sentence x, the ground-truth translation sentence y, and two NMT model
translation sentences, respectively out from RNNSearch and Adversarial-NMT (trained
after 20 epochs) and emphasize on their different parts by bold fonts which lead to different

545



Wu Xia Tian Zhao Qin Lai Liu

Table 4: Cases-studies to demonstrate the translation quality improvement brought by
Adversarial-NMT. We provide two De→En translation examples, with the source
German sentence, ground-truth (reference) English sentence, and two transla-
tion results respectively provided by RNNSearch and Adversarial-NMT (A-NMT).
D(x, y′) is the probability of model translation y′ being ground-truth translation
of x, calculated from the adversary D. Here BLEU is the sentence level transla-
tion bleu score. ?: BLEU score is based on 1-gram, 2-gram, 3-gram, 4-gram match
together, for this specific sentence, BLEU score is 0 since there is no 4-gram match.

Source x
ich weiß, dass wir es können , und soweit es mich betrifft
ist das etwas ,was die welt jetzt braucht . D(x, y′) BLEU

Reference y
i know that we can , and as far as i &apos;m concerned ,
that &apos;s something the world needs right now .

RNNSearch y′
i know we can do it , and as far as it &apos;s in time ,
what the world needs now .

0.14 27.26

A-NMT y′
i know that we can , and as far as it is to be
something that the world needs now .

0.67 50.28

Source x
wir müssen verhindern , dass die menschen kenntnis
erlangen von dingen , vor allem dann , wenn sie wahr sind . D(x, y′) BLEU

Reference y
we have to prevent people from finding about things ,
especially when they are true .

RNNSearch y′
we need to prevent people who are able to know
that people have to do , especially if they are true .

0.15 0.00?

A-NMT y′
we need to prevent people who are able to know
about things , especially if they are true .

0.93 25.45

translation quality. For each model translation y′, we also list D(x, y′) in the third column,
i.e., the probability that the adversary D regards y′ as ground-truth, and the sentence level
BLEU score of y′ in the last column.

Since RNNSearch model acts as the warm start for training Adversarial-NMT, its trans-
lation could be viewed as the result of Adversarial-NMT at its initial phase. Therefore, from
Table 4, we can observe:

• With adversarial training goes on, the quality of translation sentence output by G
gets improved, both in terms of subjective feelings and BLEU score as a quantitative
measure.

• Correspondingly, the translation quality growth makes the adversary D deteriorated,
as shown by D’s successful recognition of y′ by RNNSearch as translated from model,
whereas D makes mistakes in classifying y′ out from Adversarial-NMT as ground-truth
(by human).

Compare to other works: In Table 3, we compare our work with existing highly
acknowledged works. We can see that our proposed method significantly outperforms the
above baselines, which demonstrates the effectiveness of our Adversarial-NMT. Besides, we
also compare our approach with Yang et al. (2018) in De→En translation task, which is
in parallel to our work. As discussed before, they adopt two separate and independent
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CNNs as discriminator to model the source sentence and target sentence representations.
Different from their ways, we directly apply a 2D CNN to model the interaction between
source and target sentences. In this way, the two sentences meet before their own high-
level representations, while still retaining the individual abstract space of each sentence.
Therefore the relationship between the source and target sentences is better modeled, which
is more helpful for our adversary to classify whether a sentence is a nature one. The eventual
translation quality benefits from the 2D CNN: Yang et al. (2018) achieves 26.57 4 BLEU
score while our approach achieves 26.98 BLEU score. On the other hand, in terms of
the time efficiency, their method adopts the Monte-Carlo search in each step to get the
intermediate score, and the experiment roughly takes about 26 hours. We only use one
sample from a trajectory to train the model, together with using a moving average of the
historical reward values to set as a reward baseline. Our experiment only takes about 20
hours. By showing the better accuracy and less training cost, we successfully demonstrate
the effectiveness and efficiency of our Adversarial-NMT structure.

5. Conclusion

We in this paper propose a novel and intuitive training objective for NMT, that is to force
the translation results to be as similar as ground-truth translations generated by human.
Such an objective is achieved via an adversarial training framework called Adversarial-NMT
which complements the original NMT model with a CNN based adversary. Adversarial-
NMT adopts both new network architectures to reflect the mapping within (source, target)
sentence, and an efficient policy gradient algorithm to tackle the optimization difficulty
brought by the discrete nature of machine translation. The experiments on English→French
andp German→English translation tasks clearly demonstrate the effectiveness of such ad-
versarial training method for NMT.

As to future works, with the hope of achieving new state-of-the-art performance for
NMT system, we plan to fully exploit the potential of Adversarial-NMT by combining
it with other powerful methods listed in Subsection 4.2, such as training with a larger
vocabulary, minimum risk training principle, and deep structures. We additionally would
like to emphasize and explore the feasibility of adversarial training to other text processing
tasks, such as image caption, dependency parsing, and sentiment classification.
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