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Abstract

End-to-end optimization of multi-instance learning (MIL) using neural networks is an
important problem with many applications, in which a core issue is how to design a
permutation-invariant pooling function without losing much instance-level information.
Inspired by the dynamic routing in recent capsule networks, we propose a novel dynamic
pooling function for MIL. It is an adaptive scheme for both key instance selection and mod-
eling the contextual information among instances in a bag. The dynamic pooling iteratively
updates the instance contribution to its bag. It is permutation-invariant and can interpret
instance-to-bag relationship. The proposed dynamic pooling based multi-instance neural
network has been validated on many MIL tasks and outperforms other MIL methods.

Keywords: Neural Network, Multi-instance Learning

1. Introduction

Weakly supervised learning (WSL), which aims to significantly reduce human annotation
efforts, is an important problem in machine learning and has many applications in various
domains. Referring to the definition in Zhou (2017), multi-instance learning (MIL) is a
typical WSL, the training data of which are given with only coarse-grained labels. Originally,
MIL was firstly introduced for the task of drug activity prediction (Dietterich et al. (1997)),
and now it has been successfully applied to a wide spectrum of machine learning tasks, such
as object detection (Tang et al. (2018, 2017); Wang et al. (2015); Cao et al. (2017)), semantic
segmentation (Pathak et al. (2015, 2014)), scene classification (Wang et al. (2013)), text
classification (Zafra et al. (2009); Zhou et al. (2009)), and medical diagnosis (Manivannan
et al. (2017); Quellec et al. (2017)).

In MIL, each training sample is in a form of bag that contains a set of instances. Only
bag-level labels are available. The goal of MIL is to train a classifier that predicts the
label of a new bag. In this paper, we emphasize the case of the binary multiple instance
classification (belong to the target class or not). The relationship between instances and
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bags plays a major role in solving MIL problem. There existed different multiple instance
(MI) assumptions that define relationships for various MIL applications. The standard MI
assumption is that a bag is positive only if it contains at least one positive instance and
otherwise is negative. Many methods such as EM-DD (Zhang and Goldman (2002)), mi-
SVM (Andrews et al. (2003)), and VF (Liu et al. (2012)) are under this assumption and
stress on “key instance selection” that triggers the bag label. However, the key-instance
based MI assumption may be inappropriate in some domains. A simple example is given
by Foulds and Frank (2010) as follows. For the beach or non-beach image classification
problem, each image is described as a bag where instances are sand segment, sea segment,
and other segments. If a bag belongs to the class of beach, instances of sand and sea
must co-occur. If only an instance of sand or sea appears in the image, the class is still
of non-beach. In this situation, the methods under the key-instance based MI assumption
fails. Extending to more complex cases, generalized MI assumptions (Foulds and Frank
(2010); Frank and Xu (2003); Li and Vasconcelos (2015) are raised to model the contextual
information among instances for bag labels prediction.

For the sake of end-to-end optimization, neural networks (Ilse et al. (2018); Ramon and
De Raedt (2000); Wang et al. (2018); Zhang and Zhou (2004); Zhou and Zhang (2002))
are effective to solve MIL problems. Ramon and De Raedt (2000) firstly applied neural
networks to estimate instance probabilities and calculated bag probabilities by a log-sum-exp
operator. Zhou and Zhang (2002) proposed a similar network called BP-MIP which replaces
log-sum-exp operator with the max operator. Zhang and Zhou (2004) improved them with
two extensions BP-MIP-DD and BP-MIP-PCA that are combined with Diverse Density
(Maron and Lozano-Pérez (1998)) and PCA (Wold et al. (1987)) respectively. Unlike the
mentioned works that focus on inferring instance labels, the MI-Net (Wang et al. (2018)) was
proposed to pay more attention to learning the bag embedding. Following this pipeline, Ilse
et al. (2018) incorporated an attention mechanism to learn the contribution of each instance
to its bag embedding. As MI data are unordered, MIL methods with neural networks should
be under the fundamental theorem of Permutation-invariant Symmetric Function (Qi et al.
(2017); Zaheer et al. (2017)). In Ilse et al. (2018) and Wang et al. (2018), the whole
process can be decomposed into three steps: (i) learning an instance embedding by the
instance transformer, (ii) performing a permutation-invariant MIL pooling to generate a
bag embedding, (iii) classifying a bag based on the bag embedding.

However, the previous permutation-invariant MIL pooling functions are hard to model
the contextual information in a bag, because they are either predefined (such as max pool-
ing) or ignoring the influence of other instances in the same bag (such as attention-based
pooling). Inspired by the Capsule Networks (Sabour et al. (2017)), a dynamic pooling
scheme is proposed in this paper. It learns the instance-to-bag relationship so as to general-
ize to various MI assumptions and keeps permutation invariance. Specifically, the dynamic
pooling iteratively updates the instance contribution to its bag embedding during each feed
forward time. Based on these instance contributions, the dynamic pooling highlights the key
instance and models the contextual information among instances. The whole multi-instance
neural network is optimized by the margin loss in an end-to-end manner. Therefore, we
name it as the Dynamic Pooling for Multi-Instance Neural Network (DP-MINN).

In summary, we reveal that an adaptive scheme, jointly selecting the key instance and
modeling the contextual information among instances, is helpful for MIL. Toward this end,
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a novel dynamic pooling algorithm motivated by the dynamic routing in the capsule net-
works is designed. Besides the abilities to highlight the key instance and model contextual
information, the dynamic pooling function inherits the merits of permutation invariance
and makes instance-to-bag relationship interpretable. Thanks to the above advantages, our
DP-MINN outperforms other MIL methods on many MIL tasks.

2. Related Work

2.1. Multiple Instance Learning

During the past decade, many MIL methods have been proposed, which can be roughly
divided into three groups as follows Amores (2013): instance-space paradigm, bag-space
paradigm, and embedded-space paradigm. Instance-space paradigm assumes the existence
of hidden instance labels, so it builds a model to predict instance labels and aggregates
them into bag labels under MI assumptions, such as mi-SVM (Andrews et al. (2003)),
EM-DD (Zhang and Goldman (2002)), MIBoosting (Xu and Frank (2004)). Bag-space
paradigm, like MInd (Cheplygina et al. (2015)), and mi-Graph (Zhou et al. (2009)), relies
on the relationship between bags, treats bags as a whole, and then determines bag labels via
nearest neighbor method or SVM to work directly in the original bag space. And embedded-
space paradigm encodes a bag into the vocabulary-based feature and then converts the MIL
problem to standard binary classification problem.

As instance labels are unavailable in MIL problems, MI assumptions are crucial to
defining instance-to-bag relations. In Dietterich et al. (1997), the standard MI assumption
was defined and aimed at picking the key instance which determines its bag label. Under the
standard MI assumption, Zhang and Goldman (2002) improved the original DD algorithm
using the EM approach and Liu et al. (2012) proposed a voting framework solution to predict
bag labels. However, when extending to more complex cases, key instance detection may
fail. So many works concentrate on modeling the contextual information among instances
Zhou et al. (2009) studied inter-correlation of instances and raised two MIL methods, and
Li and Vasconcelos (2015) considered a more general definition of MIL that both positive
and negative bags are under soft constraints.

2.2. Capsule Network

Although convolutional neural networks (CNN) have shown remarkable performance on
many computer vision tasks, it neglects important spatial hierarchies between simple and
complex objects. Recently, Sabour et al. (2017) introduced a new architecture called Cap-
sule Networks. Instead of neurons in CNN, all important information such as pose, de-
formation, and texture is stored in capsules which are described in a form of vectors. It
uses the routing-by-agreement mechanism: the capsule vector is routed by parent capsules
in the layer above and is iteratively updated by the agreement that is the scalar product
of the capsule’s prediction with each parent’s output. The whole procedure is called the
dynamic routing. Then Hinton et al. (2018) proposed a new type of capsule system that
each capsule is represented by a 4 x 4 matrix and routing algorithm is replaced with EM
algorithm. Besides these works, Jaiswal et al. (2018) raised CapsuleGAN as a framework
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Figure 1: The architecture of Dynamic pooling for Multi-Instance Neural Network.

that incorporates capsules within GAN, and LaLonde and Bagci (2018) extended capsule
networks to object segmentation.

Motivated by the routing-by-agreement idea, we proposed a dynamic pooling scheme via
pooling-by-agreement which fully utilizes the instance-to-bag relationship. The differences
between the dynamic routing and the dynamic pooling will be illustrated in Sec 3.5.

3. Dynamic pooling for multi-instance neural network

In this section, we firstly review the formulation of MIL, then introduce our DP-MINN,
and lastly give a further discussion about it. Figure 1 gives the overall architecture of the
DP-MINN.

3.1. Multiple instance learning

Problem formulation. MIL concentrates on handling the complex data in the form
that each bag X = {z1,z9,...,xx} is associated with multiple instances, where z; is a d-
dimensional feature vector and represents the i-th instance of the bag. The bag size K is
various to different bags. Unlike the supervised learning, only bag label Y € {0,1} is at
hand, whereas the individual labels for instances are never reported. MIL aims to train a
bag classifier to predict the label of a new bag. As introduced in Sec 1, instance-to-bag
relationships are various under different MI assumptions. Hence, we do not represent a fixed
MI assumption between instance labels and bag labels as previous MIL works. Instead, we
stress to build a MIL model to predict bag labels.

Permutation invariance. Unlike pixels themselves having the spatial relation, in MIL,
instances of a bag are a set of features without a specific order. Therefore, one important
property of MI data is the invariance to input permutation. Under the fundamental theorem
of symmetric functions (Zaheer et al. (2017); Qi et al. (2017)), any permutation-invariant
symmetric functions M can be decomposed in the following form:

M(X)=p()_ é(@)). (1)

zeX
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where p and ¢ are suitable transformations.

MIL with neural networks. Both the MI-Net (Wang et al. (2018)) and the Attention
Net (Ilse et al. (2018)) contain three steps: (i) learning an instance embedding by the
instance transformer; (ii) performing a permutation-invariant MIL pooling to generate a
bag embedding; (iii) classifying a bag based on the bag embedding. Each step has the
permutation-invariant property following the fundamental theorem of symmetric functions
(Zaheer et al. (2017); Qi et al. (2017)). The permutation-invariant MIL pooling is the key
step because it bridges the instance space and the bag space. And it keeps the permutation
invariance at the same time. The MI-Net (Wang et al. (2018)) proposes three predefined
pooling functions (max pooling, mean pooling, and log-sum-exp pooling), and the Attention
Net raises two flexible pooling functions (attention pooling and gated-attention pooling)
based on attention mechanism.

3.2. Dynamic pooling

However, in the previous MIL pooling methods, it is hard to model the contextual informa-
tion between the instances in a bag, since the pooling functions are feed-forward processes
and the instance weights are computed individually. Motivated by the routing-by-agreement
idea in the capsule networks, we propose a pooling-by-agreement scheme which is called dy-
namic pooling.

To illustrate clearly, we denote the instance transformer f(-) and instance embeddings
f(X) ={f(z1), f(z2),..., f(xx)} corresponding to the bag X. Our dynamic pooling can be
expressed as a form of weighted-sum pooling as follows:

K
o(X) =) cif (i), (2)
i=1

where the instance weight ¢; is a scalar which describes the contribution of the i-th instance
to its bag embedding. Based on these weights, we follow Eq. (2) to aggregate instance
embeddings into a bag embedding in a weighted-sum pooling fashion and use a non-linear
“squashing” function above the bag embedding. The squashing function can be presented
as Eq. (3), which ensures that short vectors get shrunk to almost zero length and long
vectors get shrunk to a length slightly below 1.

le(XII?  _o(X)

) = T e O )T ®)

Different from previous MIL pooling functions, our instance weight ¢; is calculated in a
dynamic fashion. To describe the dynamic pooling process, we define a temporary instance
weight denoted as b;. Then, the instance weight c¢; is determined by a simple softmax

function as follows. ()
€xXp0;
CG = —=——""—. (4)
Zj exp(b;)

For clarify, the superscript ¢ represents in the t-th iteration. Initially (¢ = 1), b} =0
means each instance contributes equally to the bag embedding. Then, the instance weights
are iteratively updated by considering their similarities to the latest bag embedding. The
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Algorithm 1 Dynamic Pooling

Require: For each bag, instance embedding {f(x;)}, and iteration times 7'
Ensure: Bag embedding s(X)

1: for all instances: weight b} 0

2: fort=1to 7 do

3 Vie[l,K],c + softmax(bf)

o of(X) e X, fa)

5. s'(X) + squash(c?(X))

6: Vi€ [l,K],b bt 4 fa) - sH(X)

7: end for

8: return s’ (X)

scalar product is used to calculate their similarities. Concretely, in the t-th iteration, we
have the bag embedding s'(X); then the temporary instance weight b} is updated as follows:

b = bf + fla) - s'(X). ()

Different from the previous feed-forward pooling functions, in the dynamic pooling pro-
cedure, the bag embedding which is an integration of multiple instances can backward induce
the instance weights. In addition, the softmaz function Eq. (4) enforces instances compete
to each other. In this way, the contextual information between bags can be modeled. The
overall dynamic pooling procedure for T times is illustrated in Algorithm 1.

3.3. Optimization

After each feed forward, we can obtain the bag embedding s”(X). And we do ¢? norm
over sT(X) to represent the probability of positive bag and denote it as ||s||. In order to
optimize our DP-MINN, we use the margin loss during training phase:

L(X) = Y max(0,m™ — ||s]|)? + (1 — Y) max(0, ||s|| — m™)?, (6)

where m™ = 0.9, m~ = 0.1, and Y is determined by the bag label. Besides, this network is
optimized by the Adam (Kingma and Ba (2014)).

3.4. Permutation-invariant property of dynamic pooling

As mentioned in the Sec 3.1, any permutation-invariant symmetric function M (X) can
be composed as p(}_,cx ¢(x)). In order to prove the permutation-invariant property of
our dynamic pooling, we will illustrate that our pooling process fulfills the requirements
of permutation-invariant symmetric function. The essence of our dynamic pooling is to do
weighted-sum pooling. Different from the Attention Net (Ilse et al. (2018)) that weight is
learned based on the instance itself, our weight considers other instances belonging to the
same bag and its final value is determined by T times iterations.
At the initial time (¢ = 1), dynamic pooling begins with mean pooling:

ol(X) = z;c}fm), where Vi € [1,K] ¢} = = (7)
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Clearly, mean pooling is a typical symmetric function. In the ¢-th iteration (¢ > 1), pooling
function is as

o' (X) =) - flai) =) softmax(D  flwi)- s (X)) f(wi). (8)
i i t>1

And s'(X) is the bag embedding at the ¢-th iteration, which is an output of the symmetric

function and keeps the permutation-invariant property. Based on the decomposed form the

symmetric function in Eq. (1), we can regard the dynamic process is part of ¢. Then ¢2 norm

which represents the position of p computes the length of bag X as the bag probability.

3.5. Difference with the dynamic routing in Capsule network

Both the dynamic pooling and the dynamic routing consider the part-to-whole relationship.
They learn weights processed by the softmax function and then perform the weighted-sum
pooling. However, it is worth to note that the meaning of weights is different. That is to
say, the role of the softmaz function is not the same. In the dynamic routing, the softmax
function is applied to weights of all parent capsules to one of the child capsules. So each
weight means that the ratio of the corresponding capsule in the layer above is sent to the
child capsule. But in the dynamic pooling, the weight describes the instance contribution
to the bag embedding. The softmax function is performed over all instance contributions
of the same bag and lets them interact.

4. Experiment

In this section, we evaluate our DP-MINN on various MIL tasks, including drug activity
prediction, localized content-based image retrieval, text categorization, and medical diag-
nosis.

4.1. Datasets
MUSK1 and MUSK2 (Dietterich et al. (1997)) are typical MIL datasets for drug

activation prediction. We regard molecules and their different conformations as bags and
instances, respectively. Each conformation is described as a 166-dimensional feature vector.
In MUSK1, there are 47 positive bags and 45 negative bags; MUSK2 is much bigger including
49 positive bags and 63 negative bags.

Fox, Tiger, and Elephant (Andrews et al. (2003)) are other widely used MIL bench-
marks to identify whether a given image contains target animal or not. Bags are images
and instances are corresponding image segments. Positive bags are composed of the target
animal class, and negative bags are randomly chosen from other animal classes. Moreover,
each instance is described as a 230-dimensional feature containing color, texture, and shape
information of associative image segment.

20 Newsgroups (Zhou et al. (2009)) is a text-categorization dataset of 20 different
news groups. As news articles contain multiple paragraphs of different topics, we can
naturally regard the text categorization problem as a MIL problem. Bags are articles and
instances are paragraphs which are preprocessed by TF-IDF. Each category is composed
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Table 1: Comparison results (meantstandard deviations of mean) of different methods for
bag classification on MUSK1, MUSK2, Fox, Tiger, and Elephant datasets (task:

drug activation prediction and localized content-based image retrieval).

Dataset | MUSK1 MUSK2 Fox Tiger Elephant
mi-SVM 0874+ N/A 0836+ N/A 0582+ N/A 0784+ N/A 0822+ N/A
MI-SVM 0779+ N/A 0843+ N/A 0578+ N/A 0840+ N/A 0843+ N/A
MI-Kernel 0.880+0.031  0.893+0.015  0.603+0.028  0.842+0.010  0.843 +0.016
EM-DD 0.849+0.044  0.86940.048  0.609+0.045 0.730+0.043  0.771 +0.043
mi-Graph 0.889+0.033  0.903+ 0.039  0.62040.044  0.860 + 0.037 0.869 + 0.035
miVLAD 0.8714£0.043  0.87240.042 0.620+0.044 0.811+0.039  0.850 +0.036
miFV 0.909 4+ 0.040 0.884+£0.042 0.621+0.049  0.813£0.037  0.852 £ 0.036
MI-Net 0.887£0.041  0.85940.046 0.622 + 0.038 0.830+0.032  0.862 + 0.034
Att. Net 0.892+0.040  0.858 +0.048  0.615+0.043  0.839+0.022  0.868 + 0.022
Gated Att. Net || 0.900 £0.050  0.863£0.042  0.603+0.029  0.84540.018  0.857 4 0.027
DP-MINN 0.907 + 0.036 0.926 +0.043 0.655+ 0.052 0.897 + 0.028 0.894 + 0.030

of 50 positive bags and 50 negative bags. And each positive bag contains 3% posts from
the target news groups, whereas negative bags choose their instances randomly from other
news groups.

UCSB breast (Kandemir et al. (2014)) and Messidor (Decenciére et al. (2014);
Kandemir and Hamprecht (2014)) are two widely used datasets in computer-aided
medical diagnosis. UCSB breast dataset is taken from 32 benign (negative) and 26 malignant
(positive) breast cancer patients. Bags are the whole cancer images, and instance are
708-dimensional features processed by histogram, LBP, SIFT descriptor in 7 x 7 patches.
Messidor contains 1,200 eye fundus images from 654 diabetes (positive) and 546 healthy
patients. Similarly, bags are whole image and instances are 100-dimensional features reduced
by PCA (Wold et al. (1987)).

More detailed information about these MIL datasets is summarized in the supplementary
material.

4.2. Experimental Setup

In our experiments, we follow the MI-Net (Wang et al. (2018)) and use the same architecture.
Our network is composed of three fully connected layers with 256, 128, 64 neurons and a
dynamic pooling function. Weights of fully connected layers are initialized by a truncated
normal distribution and biases are initialized to be 0. And iteration times T" of the dynamic
pooling is assigned to 3. We adopt the Adam (Kingma and Ba (2014)) to optimize our
network. Detailed hyper-parameters of the optimization process such as learning rate,
weight decay and decay scheme are listed in the supplementary material. We run 5 times
10-fold cross validation independently and report average results as final results. Our code
is written in Python, based on TensorFlow (Abadi et al. (2015)). Experiments are run on
a PC with Inter(R) i7-4790K CPU (4.00GHZ) and 32GB RAM.
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Table 2: Comparison results (meantstandard deviations of mean) of different methods for
bag classification on 20 Newsgroups (task: text categorization).

Dataset | MI-Kernel mi-Graph miFV MI-Net Att. Net  Gated Att. Net ~ DP-MINN
alt.atheism 0.602+0.039 0.655+0.040 0.848 £ 0.053 0.776+£0.045 0.784+£0.084  0.780+£0.074  0.896 +0.041
comp.graphics 0470£0.033 0.778+0.016  0.594+0.063  0.826 + 0.060 0.774£0.081  0.764+£0.073  0.858 +0.048

comp.win.misc 0.510 £0.052 0.631 £0.015 0.615+0.077  0.678 £0.045  0.686+0.088  0.700 £ 0.080 0.794 £+ 0.051
comp.ibm.pc.hw 0.469 +0.036  0.696 £ 0.027  0.665 £0.066 0.778 £0.058 0.632 £ 0.087 0.640 £0.080  0.770 &£ 0.071
comp.sys.mac.hw | 0.44540.032 0.617+0.048 0.660 +0.070  0.792 + 0.051  0.744 £ 0.084 0.754 £0.082  0.860 +0.058

comp.win.x 0.508 £ 0.043 0.698 £0.021  0.768 £0.069  0.786 &= 0.050  0.766 & 0.093 0.780 £0.075  0.878 +0.051
misc.forsale 0.518 £0.025 0.698 £0.021  0.565+0.065  0.652 £0.057 0.706 £ 0.076  0.674 £0.072  0.787 £ 0.061
rec.autos 0.529 £0.033 0.720 £0.037 0.667+0.074  0.774 £0.054 0.762 % 0.081 0.724 £0.091  0.838 +0.045

rec.motorcycle 0.506 +0.035 0.640 £0.028 0.802+0.064  0.762+£0.052  0.750 +£0.097  0.814 £ 0.066 0.890 + 0.050
rec.sport.baseball || 0.517+0.028 0.647£0.031 0.779 £0.066 0.856 +0.051  0.774 £ 0.080 0.790 £0.078  0.856 +0.047
rec.sport.hockey 0.513+£0.034 0.850£0.025 0.823 £0.061  0.862+0.038 0.936 +0.041 0.932 £ 0.045 0.929 & 0.040

sci.crypt 0.563 £0.036  0.696 £0.039 0.760+0.065  0.694 £0.064 0.804 & 0.063  0.748 £0.088  0.854 +0.047
sci.electron 0.506 +0.020 0.871£0.017  0.555£0.070  0.950 = 0.040  0.854 £ 0.053 0.828 +0.064  0.932 4 0.036
sci.med 0.506 £0.019 0.621 £0.039 0.783+0.056  0.818 £ 0.047 0.772 4 0.090 0.742+£0.101  0.846 +0.052
sci.space 0.547+£0.025 0.757£0.034 0.818 £0.059  0.752+£0.050  0.888+£0.062  0.894 £ 0.065 0.908 + 0.047
soc.religion.chri 0.492£0.034 0.590 £0.047 0.814 £ 0.062  0.782 £0.051 0.726 £ 0.088 0.708 £0.100  0.840 £+ 0.052
talk.polit.guns 0.477+£0.038 0.585+£0.060 0.747 £ 0.067 0.652+0.052  0.714 £ 0.074 0.708 £0.078  0.822 4 0.049
talk.polit.mideast || 0.559 +0.028 0.736 £0.026  0.793 £0.060  0.794 = 0.057  0.750 £ 0.084 0.784 £0.064  0.830 +0.047
talk.polit.misc 0.5154+0.037 0.704 £0.036  0.697 £0.068  0.654 £0.060  0.788+0.091  0.806 £ 0.078 0.822+0.051
talk.religion.misc || 0.554 +0.043 0.633£0.035 0.739£0.068  0.700 &+ 0.051 0.738+£0.074  0.746 £ 0.082 0.814+0.045
average H 0.515 0.679 0.726 0.820 0.767 0.766 0.851

4.3. Experimental results

Drug Activation Prediction. Table 1 presents the results (mean accuracies and the
standard deviation of mean) of our method and other competing MIL methods. Due to
the lack of standard deviation from mi-SVM (Andrews et al. (2003)), and MI-Kernel (Zhou
et al. (2009)), we use N/A to represent the absence. We highlight the top two best results
in bold and italic respectively. From the Table 1, miFV (Wei et al. (2017)) goes to the
best accuracy 90.9% and Gated-attention Net also reaches around 90.9% on MUSK1. Our
DP-MINN achieves the second best result 90.7% which is slightly lower than miFV. But it
outperforms Attention Net (Ilse et al. (2018)) and MI-Net (Wang et al. (2018)) by around
1.7% and 2.3%. On MUSK2, the efficacy of our DP-MIINN is proved further. Our method
gets the best accuracy 92.6%. Compared to other MIL methods with neural networks
(MI-Net, Attention Net, and Gated-attention Net), our DP-MINN acts much more stable.
Therefore, it indicates the performance of our dynamic pooling.

Localized Content-based Image Retrieval. In the localized content-based image re-
trieval task, we conduct experiments on three animal MIL datasets (Fox, Tiger, and Ele-
phant). Results are in the last three columns of the table 1 and shows the state-of-the-art
results on these MIL datasets. Mean accuracies has been improved at least 3.7%, in contrast
to other MIL methods with neural networks.

Text Categorization. In the task of text classification on the 20 Newsgroups dataset,
our DP-MINN also outperforms the other methods by a large margin. Table 2 lists the
average accuracies, from which we can find that our method wins over the competitors
for all the cases except for the comp.ibm.pc.hardware and rec.sport.hockey. Although for
comp.ibm.pc.hardware and rec.sport.hockey datasets, our DP-MINN achieves the competing
result 77.0% and 92.9%, respectively. And the average accuracies of all 20 MIL datasets
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Table 3: Comparison results (meantstandard deviations of mean) of different methods for
bag classification on UCSB breast and Messidor dataset (task: medical diagnosis).

Methods H MI-SVM miFV MI-Net Att. Net Gated Att. Net DP-MINN
UCSB breast ‘ 0.911 £ 0.016 0.870 £ 0.050  0.806 = 0.104  0.883 £0.062  0.887 £0.066  0.927 &+ 0.070

Messidor 0.640 £0.050 0.715£0.047 0.731 £0.018 0.703+£0.041  0.698+0.048  0.740 + 0.020

indicate that our method and MI-Net outperforms others, including MI-Kernel, mi-Graph
(Zhou et al. (2009)), miFV (Wei et al. (2017)), Attention Net, Gated-attention net (Ilse
et al. (2018)), with about 10% improvement in performance. Besides, the average accuracy
of our DP-MINN is better than MI-Net by 3.7%, respectively.

Medical Diagnosis. Here we present our results for medical diagnosis which is another hot
MIL application recently. The UCSB breast dataset and Messidor dataset are two public
computer-aided medical diagnosis dataset. In Table 3, it shows that our DP-MINN obtains
the best results on both the UCSB breast dataset and the Messidor dataset compared to
other MIL methods. Besides, the results show that the original MI-Net does not work well
in this task. Especially, on the UCSB breast dataset, MI-Net works much worse than the
traditional miFV and MI-SVM methods. The attention mechanism helps to improve the
results of MI-Net. However, the improvement of attention network is not consistent; the
same phenomenon can also be observed from Table 2. DP-MINN consistently improve the
results of MI-Net which confirms the effectiveness of the proposed dynamic pooling.

5. Ablation Study and Discussion

In this section, we carry out some ablation studies about the influence of the iteration times
T and loss functions to our DP-MINN over MUSK1, MUSK2, Fox, Tiger, and Elephant
datasets.

Different iteration times 7. As mentioned in Sec 3, the dynamic pooling learns the
instance contribution to its bag embedding by updating it for T times during each feed
forward. When T = 1, the dynamic pooling degenerates to the mean pooling. With T
increasing, instance contribution is changed considering the contextual information among
instances in a bag. So we perform comparison experiments to study the influence of dif-
ferent iteration times. In Figure 2, we highlight results over different MIL datasets with
various markers. And we also present the average results of all these datasets to reveal that
performance of T" = 3 is slightly better than other iteration times. Thus we recommend
updating three times in the dynamic pooling.

Different loss functions. In previous MIL methods with neural networks, the cross
entropy loss is one of the most popular loss functions. Instead, Our DP-MINN uses the
margin loss during training. To discuss about the impact of different loss functions, we
perform detailed comparison between the margin loss and the cross entropy loss. To build
our DP-MINN with the cross entropy loss, we change the architecture by applying the bag
embedding which is before the squash function to a bag label predictor and then outputting
the bag probability, following the MI-Net (Wang et al. (2018)). The bag label predictor is a
new fully connected layer with only one neuron and sigmoid activation. Finally, combining
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Figure 2: Comparisons of different iteration Figure 3: Comparisons of margin loss and
times T' on five MIL benchmarks. cross entropy loss on five MIL
benchmarks.

the bag label with the bag probability, we can calculate the cross entropy loss. Figure 3
indicates that on Tiger and Fox datasets the results based on the margin loss are better with
a large margin and on other three datasets results still have slight improvement. Therefore,
it proves the effectiveness of the margin loss to our DP-MINN.

6. Conclusion

In this paper, we propose a novel pooling function for multiple instance neural networks.
The pooling function jointly selects the key instance and models the contextual information
in a bag. Different from the dynamic routing method, our dynamic pooling method learns
the instance-to-bag relation rather than capsule-to-capsule information. In addition, the
dynamic pooling function is also permutation-invariant to the unordered instances in a bag.
In the experiments, various MIL tasks, including image classification, text classification,
and medical diagnose, have been investigated. The results show that the proposed DP-
MINN outperforms other MIL methods, including the recent attentive pooling methods for
multiple instance neural networks.

As stressed in capsule networks, the pooling function is an important part in neural
network. However, traditional max pooling may lose lots of useful information of input
examples. The routing mechanisms in capsule networks are designed to preserve more
information. In this work, though we focus on the multiple instance neural network, the
results show that a dynamic pooling-by-agreement method can significantly improve the
performance. The result confirms the necessity of developing more comprehensive pooling
function for neural networks. In the future, we would like to explore dynamic pooling
function more neural network in different applications.
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Appendix A. Additional Experiments

This is the supplementary material to the paper “Deep Multi-instance Learning with Dy-
namic Pooling”. Here we provide a detailed MIL dataset description, hyper-parameters of
the optimization, and results of ablation study.

Dataset description In Table 4, we give a general description of all MIL datasets used
in the experiments.

Table 4: Detailed Characteristics of the MIL datasets. ”# positive” (”#negative”) presents
the number of positive(negative) bags used in each round. For Text category
dataset, because it contains 20 sub-datasets, we present one of them in it.

Dataset # attribute 7+ bag # instance
positive negative total

MUSK1 166 47 45 92 476
MUSK2 166 39 63 102 6598
Elephant 230 100 100 200 1391
Fox 230 100 100 200 1320
Tiger 230 100 100 200 1220
alt.atheism 200 50 50 100 5443
UCSB breast 708 26 32 58 2002
Messidor 687 654 546 1200 12352

Additional details of optimization The hyper-parameters of the optimization proce-
dure including learning rate, weight decay, max iterations, and decay step, are listed in
Table 5. We adopt Adam with the exponential decay scheme in our training progresses.
Concretely, for 20 Newsgroups datasets, learning rate is decayed every 64 iterations with
a base of 0.96 and terminates at 5,000 iterations; for other MIL datasets, learning rate is
decayed every 250 iterations with the same base and terminates at 10,000 iterations. The
hyper-parameters we provide are determined by the model selection procedure for which
the highest validation performance was achieved.

Additional results of ablation study We represent the results of ablation study over
MUSK1, MUSK2, Fox, Tiger, and Elephant datasets. Table 6, we show the comparison

676



DP-MINN

Table 5: The hyper-parameters of the optimization procedure

Dataset Learning rate Weight decay Iterations decay steps
MUSK1 0.0005 0.005 10,000 250
MUSK?2 0.0005 0.005 10,000 250
Fox 0.001 0.01 10,000 250
Tiger 0.001 0.005 10,000 250
Elephant 0.001 0.005 10, 000 250
20 Newsgroups 0.001 0.001 5,000 64
UCSB breast 0.0001 0.0001 10,000 250
Messidor 0.0005 0.001 10,000 250

results when the iteration times T' =1, 2, ..., 5. Besides, we highlight the top two best results
in bold and italic, respectively. And results of our network with the margin loss and the
cross entropy loss are listed in the Table 7.

Table 6: Comparison results (meantstandard deviations of mean) of different iteration
times T for bag classification on MUSK1, MUSK2, Fox, Tiger, and Elephant

datasets.

Iteration times MUSK1 MUSK2 Fox Tiger Elephant
T=1 0.907 £ 0.033 0.888£0.048 0.617+0.047 0.880+0.030  0.880 £ 0.032
T=2 0.887£0.042 0.907£0.045 0.642+£0.042 0.891+£0.029 0.886 + 0.036
T=3 0.907+0.036 0.926 +£0.043 0.655 + 0.052 0.897+ 0.028 0.894 + 0.030
T=4 0.920+0.030 0.876 +0.058 0.659 +£0.047 0.899+0.030 0.886 + 0.035
T=5 0.887 +£0.035  0.905+0.040 0.652+0.042 0.890+0.034  0.885+0.032

Table 7: Comparison results (mean+tstandard deviations of mean) of different loss function
for bag classification on MUSK1, MUSK2, Fox, Tiger, and Elephant datasets.

Loss function MUSK1 MUSK?2 Fox Tiger Elephant

Margin 0.907 £0.040 0.926 +0.043 0.655+0.052 0.897+0.028 0.894+0.030
Cross entropy  0.894+0.060  0.903 £0.044  0.580 £0.058  0.855+0.042  0.887 £ 0.048
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