
Proceedings of Machine Learning Research 95:726-739, 2018 ACML 2018

Boosting Dynamic Programming with Neural Networks for
Solving NP-hard Problems

Feidiao Yang1,2,3 yangfeidiao@ict.ac.cn

Tiancheng Jin4 jintia@umich.edu

Tie-Yan Liu3 tyliu@microsoft.com

Xiaoming Sun1,2 sunxiaoming@ict.ac.cn

Jialin Zhang1,2,� zhangjialin@ict.ac.cn
1Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
2University of Chinese Academy of Sciences, Beijng, China
3Microsft Research Asia, Beijing, China
4University of Michigan, Ann Arbor, MI, USA

Editors: Jun Zhu and Ichiro Takeuchi

Abstract

Dynamic programming is a powerful method for solving combinatorial optimization prob-
lems. However, it does not always work well, particularly for some NP-hard problems
having extremely large state spaces. In this paper, we propose an approach to boost the
capability of dynamic programming with neural networks. First, we replace the conven-
tional tabular method with neural networks of polynomial sizes to approximately represent
dynamic programming functions. And then we design an iterative algorithm to train the
neural network with data generated from a solution reconstruction process. Our method
combines the approximating ability and flexibility of neural networks and the advantage
of dynamic programming in utilizing intrinsic properties of a problem. This approach can
significantly reduce the space complexity and it is flexible in balancing space, running time,
and accuracy. We apply the method to the Travelling Salesman Problem (TSP). The ex-
perimental results show that our approach can solve larger problems that are intractable for
conventional dynamic programming and the performances are near optimal, outperforming
the well-known approximation algorithms.

Keywords: combinatorial optimization, NP-hard, dynamic programming, neural network

1. Introduction

Dynamic programming is a powerful method for solving combinatorial optimization prob-
lems. By utilizing the properties of optimal substructures and overlapping subproblems,
dynamic programming can significantly reduce the search space and efficiently find an opti-
mal solution. A representative example is the chain matrix multiplication problem (Cormen
et al., 2009). The dynamic programming algorithm takes only a polynomial time complexity
of O(n3) while the naive brute-force method takes at least exponential number of enumera-
tions. Dynamic programming can even provide efficient algorithms for NP-hard problems.
For instance, the famous 0-1 knapsack problem can be solved in pseudo-polynomial time
complexity of O(cn) with sophisticated dynamic programming, which is much faster than
the naive enumeration with O(2n) time complexity.

c© 2018 F. Yang, T. Jin, T.-Y. Liu, X. Sun & J. Zhang.



However, dynamic programming does not always work well, since the tabular method,
which will be discussed later, may take exponential space and time for some NP-hard
problems. For example, the Held-Karp algorithm, a dynamic programming algorithm to
solve the Travelling Salesman Problem (TSP) proposed independently by Bellman (Bellman,
1962) and by Held and Karp (Held and Karp, 1962), has the time complexity of O(2nn2)
and space complexity of O(2nn). Although it is faster than the brute-force method that
examines all O(n!) cycles, the algorithm is actually not able to solve relatively large problems
in practice more than 20 points because it still takes exponential time and space.

Recently, with success of deep learning, people consider an interesting idea of integrating
powerful machine learning methods on solving hard combinatorial optimization problems.
Neural network technology may be the most promising one for its powerful approximating
ability and flexibility. Vinyals et al. (Vinyals et al., 2015) designed a new recurrent neural
network (RNN) architecture called Pointer Network to learn a mapping from sequences to
index sequences for learning approximation algorithms to solve combinatorial optimization
problems such as convex hull, Delaunay triangulation, and TSP. Milan et al. (Milan et al.,
2017) further extended the Pointer Network architecture to another long short-term memory
(LSTM) model by considering the original objects. And they applied the method to solve
some NP-hard problems including the quadratic assignment problem and TSP. Their work
showed the interesting and strong capability of deep neural network to learn an algorithm
from input-output data.

However, there are some limitations in these work. First, these approaches do not utilize
the intrinsic properties of the problem, and they use neural network as a black box to learn
from a lot of labelled data generated from an approximation algorithm. That is, the learning
target is approximated solutions rather than optimal solutions and their performance are
reasonably behind the approximation algorithms, let alone the optimal solutions. Second,
because of the learning difficulty, these methods only learn instances of fixed sizes or limited
sizes, for example, TSP instances of 50 points to 100 points. For test cases of larger sizes, the
performance drops dramatically. In addition, the sequence to sequence learning frameworks
can only handle specific problem types. For example, they can only process planar or
Euclidean TSP instances with each element in the sequence being the coordination of a
point in the Euclidean space, rather than general TSP problems.

Another important field in machine learning closely related to dynamic programming
is reinforcement learning. Reinforcement learning is to learn the best interaction with an
environment for getting reward as much as possible. The core problem in reinforcement
learning is to solve a Markov decision process (MDP) and work out the optimal policy (ac-
tion function). The typical way to derive the optimal policy is to learn the value function or
Q-function of the MDP, which look like the dynamic programming function in combinato-
rial optimization. For model-based scenarios (fully known information about the MDP), the
basic method is a recursive and iterative method, which is also called dynamic programming
approach. For model-free problems (unknown MDP), the method is similar with addition-
ally employing Monte-Carlo simulation. In addition, for solving problems with large scale
or even continuous state space or action space, people propose the idea of value function
approximation by replacing the tabular value function representation with other more flex-
ible function representation approaches (Sutton and Barto, 2017). Recently, considering
the universal approximating ability and success of deep neural networks, people propose

727



Yang Jin Liu Sun Zhang

the idea of representing the value function or Q-function with neural networks and design a
series of training algorithms (Sutton and Barto, 2017; Riedmiller, 2005; Mnih et al., 2013,
2015). This emerging direction is called deep reinforcement learning.

Inspired by the previous work, we consider if we can combine the advantages of dynamic
programming that utilizes the intrinsic properties of a problem and the strong approximat-
ing ability and flexibility of neural networks. Comparing with the rigid tabular method,
introducing the neural network technique can let the algorithm be more flexible and pow-
erful. On the other hand, comparing with the previous black box usage of neural network,
utilizing the problem dependent properties can lead to a better performance.

In this paper, we propose an approach to boost the capability of dynamic programming
with neural network technology. This approach approximately represents a dynamic pro-
gramming function with a neural network and it trains the neural network with an iterative
data-driven algorithm. Specifically, the main contributions of this paper are as follows.

• We propose the idea of approximately representing a dynamic programming function
with a neural network of polynomial size instead of the conventional memorization
table that may require exponential space. This method can significantly reduce the
space complexity and it is flexible in balancing the space, running time, and accuracy.

• We design an iterative update algorithm to train the neural network with data gen-
erated from a solution reconstruction process. This algorithm is flexible on running
time control with respect to the accuracy tolerance and an intermediate result can
also provide a fairly good suboptimal solution to the problem.

• We apply the approach to the Held-Karp algorithm to solve TSP and conduct a series
of experiments. The experimental results show that our method can solve larger prob-
lems that are intractable for conventional dynamic programming. The performances
are near optimal, outperforming the well-known approximation algorithms.

We would like to point out that there are differences between dynamic programming for
solving MDP and combinatorial optimization problems. First, in MDP, the state transition
is non-deterministic but the state transition in combinatorial optimization is usually deter-
ministic. Second, though the state transition in MDP is uncertain, but one state can only
jump to another single state with one simulation step. On the contrary, one state may go
to multiple sub-states in combinatorial optimization. For example, in chain matrix multi-
plication problem, the algorithm will face two sub-problems after selecting one split point.
Therefore, our approach has to employ a data structure to organize the state visiting.

Another thing we would like to mention is that the intent of this work is not to challenge
the best solution of TSP. The value of this work is to provide an idea of leveraging the
powerful machine learning methods to solve a new real-world problem in the case that
one can design a dynamic programming but it has an extremely large state space. We
choose TSP as our experimental benchmark for some reasons. First, it is quite simple
to demonstrate our approach so that the readers are easy to follow the key idea but the
complicated business details. Second, TSP is a well-studied problem and the Held-Karp
dynamic programming algorithm is a natural baseline of our experiments.

The rest of this paper is organized as follows. The second section revisits the basic
knowledge of dynamic programming and the Travelling Salesman Problem. The third sec-

728



tion introduces and discusses our approach in detail. Specifically, one subsection proposes
the idea of representing a dynamic programming function with a neural network and the
other subsection introduces the training algorithm. In the fourth section, we apply our
approach to TSP and report the experimental results. In the last section, we summarize
our work and discuss some future exploration.

2. Preliminaries

2.1. Revisiting dynamic programming

To solve a combinatorial optimization problem with dynamic programming, we often con-
sider it as a multi-step decision-making problem. At each step, we face a subproblem and
it turns to some smaller subproblems after making the current decision. Subproblems are
also called states as they actually form a search state space of a simple search algorithm
that inefficiently examines all solutions. One kind of such algorithms is to compute a state
value function f : S → R, in which S is the state set, mapping states to the corresponding
optimal values. This function is also called dynamic programming function in the context
of dynamic programming algorithm design and analysis.

Dynamic programming can be considered as an improvement to the basic search method
under the condition that the search space has the properties of optimal substructures and
overlapping subproblems.

Like the divide-and-conquer method, the optimal substructures property means that the
solution to a problem could be constructed by combining the solutions to its subproblems.
This property gives us a top-down perspective to understand the relationship between a
problem and its subproblems and to formulate a recursive equation connecting the solutions
to a problem and its subproblems. Usually, suppose selecting a decision a for a state s will
turn to a set of sub-states δ(s, a), the dynamic programming equation for a minimization
problem looks like

f(s) = min
a

v(a) +
∑

s′∈δ(s,a)

f(s′)

 , (1)

where a goes over all feasible decisions for state s and v(a) is the value of making this
decision.

Unlike the divide-and-conquer method in which subproblems to a problem are disjoint,
the overlapping subproblems property says that subproblems to a problem share some sub-
subproblems. A simple top-down divide-and-conquer method will cause a lot of unnecessary
computation by repeatedly solving the common subproblems. A key idea of dynamic pro-
gramming is to solve each subproblem only once and then save the answer in a table. We
call such a method tabular method, which significantly reduces the computation time. Al-
though dynamic programming starts from a top-down view, an algorithm often runs in a
bottom-up fashion. That is, the algorithm starts by filling the table with some edge cases
and then fills other cells according to the dynamic programming equation.

After the computation of a dynamic programming function, it is easy to find out an
optimal solution. We start from the state representing the original problem and make
decisions and go through the states with a depth first or breadth first order. At each

729



Yang Jin Liu Sun Zhang

step, we just make the decision that optimizes the current subproblem and turn to the
next corresponding subproblems accordingly. Specifically, for a current state s, we make a
decision a according to the equation

a = arg min
a′

v(a′) +
∑

s′∈δ(s,a′)

f(s′)

 . (2)

Finally, all such decisions form the solution naturally.

2.2. Travelling Salesman Problem and Held-Karp algorithm

Travelling Salesman Problem (TSP) is a well-known combinatorial optimization problem
in computer science and graph theory. The problem is to find a minimum cost cycle in a
complete graph with nonnegative edges, visiting every vertex exactly once (Vazirani, 2001).
It is an important problem closely related to many practical problems.

The most direct solution is to examine all vertex permutations and find out the one
with the shortest length. The running time of this brute-force method is obviously O(n!)
and it is inefficient.

Actually, TSP is NP-hard and a reasonable approach is to find suboptimal solutions
with approximation algorithms. However, generally TSP cannot be approximated unless
P = NP. But for metric and symmetric TSP (with undirected graphs satisfying the triangle
inequality), the Christofides algorithm (Christofides, 1976) can solve it with O(n3) time and
produce a suboptimal solution less than 1.5 times the optimum. This is the best algorithm
with approximation ratio guarantee known so far. Asymmetric TSP is much harder and
the best known approximation ratio is O(log n/ log logn) (Asadpour et al., 2010).

Another early effort of solving TSP with dynamic programming is the Held-Karp algo-
rithm (Bellman, 1962; Held and Karp, 1962). Without loss of generality, assume there are
n vertices and we always start from vertex 1. It is easy to understand that the construction
of a cycle is a multi-step decision-making process. We define a state with a pair (P, c),
in which P is a subset of [n] = {1, . . . , n} denoting the vertices to be visited and c is the
current starting point. Let f(P, c) denote the shortest length of the path visiting all vertices
in P , starting from c and finally returning to vertex 1, as shown in figure 1. The original
problem corresponds to the state that P = [n] and c = 1.

Figure 1: An illustration to the Held-Karp algorithm, where P = {2, 4, 6} and c = 2. The
solid lines denote the visited path and the dashed lines denote a potential path
of visiting all vertices in P , starting from c and returning to vertex 1.

730



Based on the state presentation design, we have the following dynamic programming
equation,

f(P, c) = min
c′∈P ;c′ 6=c

{d(c, c′) + f(P\{c}, c′)}, (3)

where d(c, c′) is the edge cost from c to c′. Because there are n vertices and 2n subsets of
vertex, the total number of possible states is O(2nn), which is the space complexity of the
dynamic programming algorithm. In addition, as it needs to examine all the left vertices
to compute one f(P, c), the time complexity is O(2nn2).

It is easy to construct a solution from a given f . Suppose c1, . . . , ci are the first i vertices
of the solution and initially c1 = 1. The (i+ 1)-th vertex of the solution is as follows except
some edge cases.

ci+1 = arg min
c/∈{c1,...,ci}

{d(ci, c) + f([n]\{c1, . . . , ci}, c)}. (4)

3. Approximating dynamic programming with neural networks

3.1. Approximately representing dynamic programming functions with neural
networks

As discussed in last section, the essence of the tabular method is to use a table to represent
a dynamic programming function. The advantage of this method is that it can precisely
save the information of a function if the state space is finite no matter how complicated
the function is. However, it may cost too much space if the state space is extremely large
though it is finite.

In addition to the tabular method, there are many ways to represent a function. Among
them, neural network is one powerful alternative. According to the universal approximation
theorem (Cybenko, 1989; Hornik, 1991), a feed-forward neural network with a single hidden
layer containing a finite number of neurons can approximate any continuous function on
compact subsets of Rn, under mild assumptions on the activation function (Balázs, 2001).

For representing a dynamic programming function with neural network, we first need
to encode states to numerical feature vectors as we usually do in machine learning. Since
a state may have several components, our idea is to concatenate different parts to form
a vector with each part corresponding to one component. The encoding method for each
component may be different according to its type.

• If the component is a numerical scale, we leave it as it is as a component in the vector;

• If the component is an id or order in a set of size n, the part is a one-hot binary vector
of size n with all 0s but the corresponding element as 1;

• If the component is a subset of a set of size n, the part is a binary vector of size n
having 1 denoting the corresponding element in the subset or 0 otherwise.

For the example in figure 1, the state ({2, 4, 6}, 2) could be encoded as a feature vector
(0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0), with the first part (0, 1, 0, 1, 0, 1) corresponding to the subset
P = {2, 4, 6} and the last part (0, 1, 0, 0, 0, 0) corresponding to the starting vertex c = 2.

731



Yang Jin Liu Sun Zhang

After the quantization of the state (input) space, a dynamic programming function can
in principle be extended to a continuous function with interpolation techniques without
losing any precision though it is discrete. And then we can further approximately represent
the dynamic programming function with a neural network of finite size within any precision.

One may wonder if the size of the neural network will be even larger than the required
size of the tabular method. Despite it being possible, we argue that it is still practicable to
approximate a dynamic programming function with a much smaller neural network. First,
a dynamic programming function does not need to be absolutely precise as it is a tool to
construct the optimal solution whose value could be computed directly. Second, not all
states are equally useful for solving the problem. We may let the useful states to be more
precise than the useless states. That is, the neural network is not necessary to fit all states
uniformly. Third, a suboptimal solution is adequate in practice. It is valuable to find a
suboptimal solution efficiently with an inaccurate dynamic programming function. With
these reasons, the function could be much smoother and could be approximated with a
simple way. Comparing with the rigid tabular method, the neural network method is more
powerful and flexible. A much smaller neural network could approximate a large model
with tolerable accuracy. Certainly, for having a polynomial time algorithm, we employ a
neural network with polynomial size, trading off the space, running time, and accuracy.

3.2. An iterative algorithm and solution reconstruction process to train the
neural network

A conventional way of computing a dynamic programming function is to fill the table in a
specific topological order of states in a bottom-up fashion. However, it is difficult to fill a
value to a neural network without affecting other values as it is a parameterized function of
all states. In addition, it is also impractical to visit all states if the state space is extremely
large. The traditional scheme of training a neural network is supervised learning, which
trains the neural network with a lot of sampled (s, f(s)) pairs and hopes the generalization
works. However, this method is impractical because the computation of even a single exact
f(s) may take exponential time.

Similar to the algorithm of deep Q-learning (Mnih et al., 2013, 2015), we design an iter-
ative algorithm to update the neural network with training data generated from a solution
reconstruction process, as shown in algorithm 1 for a minimization problem.

Rather than fitting the state values directly, we alternatively turn to the idea of making
the model look like a dynamic programming function as much as possible. Specifically,
suppose f(s; θ) is the neural network, where s is the input state vector and θ is the model
parameter. Ideally, if f is exactly the dynamic programming function, equation (1) should
hold for all states. However, there is usually a gap between the left term and the right
term. A natural idea is to make the gaps as close as possible and the learning object is to
minimize the loss function J(θ) defined as

J(θ) =
∑
s∈S

f(s; θ)−min
a

v(a) +
∑

s′∈δ(s,a)

f(s′; θ)


2

, (5)

732



Algorithm 1 Training the neural network with solution reconstruction

1: Initialize neural network f(s; θ) with model parameter θ, maybe with pre-training on
edge cases

2: Initialize the data pool D
3: Initialize the exploration parameter εt = 1.0 and the learning rate ηt appropriately
4: for each iteration t = 1, 2, . . . do
5: Initialize the state list S, the state scheduling data structure Q, and the state visit-

marking data structure V
6: Add the state s0 representing the original problem to Q and V
7: while Q is not empty do
8: s = Q.pop()
9: S.Add(s)

10: With probability εt:
select a random feasible decision a

with probability 1− εt:
select decision a according to equation (2)

11: for each sub-state s′ ∈ δ(s, a) do
12: if cannot find s′ in V then
13: Add s′ to Q and V
14: end if
15: end for
16: end while
17: Generate a mini-batch training data B=S+Sample(D)
18: Preform a gradient descent step on data B to close the gap according to equations

(6) and (7)
19: Add S to D with a weight being the value of the solution
20: Decay εt and ηt if necessary
21: end for

where S in principle is the set of all states. A common solution to the optimization problem
is the gradient descent algorithm. The gradient with respect to θ is

∇J(θ) = 2
∑
s∈S

f(s; θ)−min
a

v(a) +
∑

s′∈δ(s,a)

f(s′; θ)




∇f(s; θ)−∇min
a

v(a) +
∑

s′∈δ(s,a)

f(s′; θ)


 . (6)

In each iteration the model parameter is updated by a gradient descent step with learning
rate ηt as

θt+1 = θt − ηt∇J(θt). (7)

However, it is impractical to calculate the gradient in a single iteration with all states.
Based on the idea of mini-batch technique in stochastic gradient descent, we use a small
sample of states instead to estimate the gradient. In our algorithm, we generate training

733



Yang Jin Liu Sun Zhang

states by an iterative solution reconstruction process. In each iteration, we construct a
solution based on current function f as if it is the correct dynamic programming function,
and we use the collected states as training data. This method has advantages over random
sampling. First, as f gets better and better, the generated states are more likely to be on
the optimal path or near the optimal path. That is, these states have likely more potential.
Second, we can give a weight to such states according to the generated solution. Such
weights could be further utilized for training data sampling, which is different from the
uniform data sampling in (Mnih et al., 2013, 2015).

For avoiding the model falls into local optima too early, particularly in the early stage
that f is inaccurate, we introduce the exploration strategy in solution construction. We
maintain an exploration parameter εt. At each step in iteration t, we make the “optimal”
decision according to equation (2) with probability 1 − εt, or choose a random feasible
decision with probability εt. Parameter εt decay over time, from 100% to a small number
such as 5%.

For collecting more data for training and breaking the correlation of consecutive itera-
tions, we maintain a data pool. In each iteration, we sample moderate data according to
their weights from the pool along with the generated data as a mini-batch to update the
model.

State scheduling is another feature in our algorithm, which is a key difference from the
standard Q-learning. In the process of solution construction, one state may lead to multiple
sub-states, so we need to visit the states in a specific order with the help of some appropriate
data structures. For example, we may visit the states in the depth first order with a stack
or in the breadth first order with a queue. In addition, if sub-states will be overlapped, we
will need an extra data structure such as a hash set or binary set to mark if a state has been
visited otherwise it will cause a lot of unnecessary computation. Certainly, if the states to
a solution just form a chain, it is unnecessary to have such scheduling data structures.

4. Experiments in TSP

4.1. Experimental setting

We choose TSP as the experimental setting for some reasons. On one hand, among the
elegant NP-hard problems such as the satisfiability problem (SAT) and the set cover problem
in theoretical computer science, TSP is the most practical one as many real-world problems
can be modeled with TSP and it is easy to understand with less background knowledge. On
the other hand, among the NP-hard problems in the real world such as the vehicle routing
problem (VRP) and the bin packing problem, TSP is the simplest one and it is easy to
follow, avoiding complicated conditions.

We carry out experiments on a subset of TSPLIB (Reinelt, 1991), a data set of sample in-
stances from real-world problems, including symmetric and asymmetric problems. TSPLIB
provides the best-known solutions to its problems that are from more than ten years’ efforts
of the human.

We implement four algorithms. The first is our approach, named as NNDP, short for
neural network dynamic programming. The second is the Held-Karp algorithm. The third
is the Christofides algorithm. And the last is the nearest neighbour greedy algorithm, which

734



is also a well-known approximation algorithm since it is quite simple, taking only O(n) or
O(n2) time, though it does not have the theoretical guarantee as good as Christofides does.

Following are some experimental details to our algorithm.
For a given instance of TSP with n vertices, we construct the dynamic programming

function as a fully connected feed-forward neural network. The input layer has 2n nodes,
separated into two parts. The first part is a binary vector of size n, corresponding to P ,
denoting the vertex subset to be visited. The other part is a one-hot binary vector of size
n, corresponding to c, denoting the starting vertex. The neural network has two hidden
layers, each having 4n hidden nodes with sigmoid activation function. We choose such a
setting for balancing the training time and the accuracy. And finally the output layer has
only one node and it is a linear combination of the outputs of the previous layer. Therefore,
there are O(n2) parameters in the neural network.

We develop our code based on Theano and run the experiments on a server with Intel
Xeon CPU (E5-2695 v2, 2.40GHz) and 128 GB memory. For each instance, we run the algo-
rithm with 10000 iterations. We maintain the exploration parameter εt with an exponential
decay that εt+1 = max{0.995εt, 0.05}. We keep a small constant learning rate η = 0.001.
The data pool is a limited queue that holds at most 1000 paths and the data too old will
be thrown away. A mini-batch contains 10 paths, with 1 path generated from the current
iteration and 9 ones sampled from the data pool.

4.2. Experimental results

The experimental results are shown in table 1. The number appended to the name of an
instance means the problem size. For example, Gr17 is an instance having 17 vertices. The
first 7 cases are symmetric TSP instances and the last 3 cases are asymmetric TSP instances.
In the table, we show the absolute value to a solution as well as the approximation ratio
over the best-known value for clear comparison.

Seeing from the experimental results, although the Held-Karp algorithm can guarantee
the optimal solution, it cannot extend to relatively large problems due to its space com-
plexity issue. Our algorithm overcomes the space problem and it can solve larger problems
that are intractable for conventional dynamic programming.

Our approach also performs well. The relative errors of our approach are almost within
10%, outperforming the Christofides algorithm and the greedy algorithm. Our approach
even has good performance in asymmetric TSP. We do not directly compare our approach
with previous neural network based method in (Vinyals et al., 2015) and (Milan et al., 2017)
because they can only solve Euclidean TSP. But the instances in TSPLIB are not necessary
in such case. However, the experimental results in these papers show that their methods
do not catch up with the approximation algorithms, Christofides algorithm specifically, so
it is safe to conclude that our approach performs better than the previous work.

The running time depends on the problem size and the training data size. As we design
the neural network with O(n2) parameters, the total time complexity to one iteration is
O(n4). In our server, the running time to one iteration varies from 0.01 seconds to 0.1
seconds, for problems from about 20 vertices to about 100 vertices. Our approach converges
reasonably and it is flexible with respect to accuracy tolerance. Figure 2 illustrates an

735



Yang Jin Liu Sun Zhang

example of the convergence of the case Bayg29. It shows that the algorithm can reach a
nearly optimal solution with about 500 iterations.

Table 1: Experimental results in TSPLIB
Data Best NNDP Held-Karp Christofides Greedy

Gr17 2085 2085 1 2085 1 2287 1.1607 2178 1.0446

Bayg29 1610 1610 1 NA NA 1737 1.0789 1935 1.2019

Dantzig42 699 709 1.0143 NA NA 966 1.382 863 1.2346

HK48 11461 11539 1.0068 NA NA 13182 1.1502 12137 1.059

Att48 10628 10868 1.0226 NA NA 15321 1.4416 12012 1.1302

Eil76 538 585 1.0874 NA NA 651 1.1128 598 1.1115

Rat99 1211 1409 1.1635 NA NA 1665 1.3749 1443 1.1916

Br17 39 39 1 39 1 NA NA 56 1.435

Ftv33 1286 1324 1.0295 NA NA NA NA 1589 1.2002

Ft53 6905 7343 1.0634 NA NA NA NA 8584 1.169

Figure 2: Convergence of the case Bayg29. The function values are the values the model
outputs; the solution values are the exact values of the solutions constructed from
the model.

736



5. Conclusions and future work

Based on the neural network technology and the similar idea from reinforcement learning
method, in this paper we propose an approach to boost the capability of dynamic program-
ming with neural networks for solving NP-hard combinatorial optimization problems. First,
we replace the tabular method with a neural network of polynomial size to approximately
represent a dynamic programming function. And then we design an iterative algorithm
to train the neural network with data generated from a solution reconstruction process.
Our method combines the approximating ability and flexibility of neural networks and the
advantage of dynamic programming in utilizing intrinsic properties of a problem. Our ap-
proach can significantly reduce the required space complexity for some NP-hard problems
and it is flexible in balancing space, running time, and accuracy.

There are differences in our approach from the standard deep reinforcement learning.
First, we aim at solving the NP-hard combinatorial optimization problems while reinforce-
ment learning is to solve MDP. Moreover, we introduce some scheduling data structure
to handle the cases that one state has multiple subsequent substates. Last but not least,
we assign each data point a weight for sampling from the data pool rather than uniform
sampling.

We apply our approach to the Bellman-Held-Karp algorithm, a dynamic programming
algorithm for solving TSP. The experimental results show that our method can handle larger
problems that are intractable for the conventional dynamic programming algorithms. As an
approximation algorithm, our approach also outperforms other well-known approximation
algorithms.

There may be some future work along this direction. First, we may consider applying
this approach to more theoretical problems such as the weighted set cover problem and
practical problems such as the express delivering problem. Second, the neural network
dynamic programming function could be considered as a heuristic function in the search
process. So it is possible to generalize the idea to replace the handcrafted heuristic function
with a neural network and to automatically learn a better heuristic function in search
algorithm design though the search spaces do not have the good properties. In addition, a
possible extension of our approach is to solve combinatorial optimization problems under
non-deterministic environments.

Acknowledgments

We would like to thank Guang Yang from Institute of Computing Technology, Chinese
Academy of Sciences, for his inspirational discussion. We would also like to thank Weidong
Ma from Microsoft Research Asia for his reading through an early draft of this paper and
his helpful advice on polishing the language. We deeply appreciate the valuable comments
from the reviewers, especially the pointing to the valuable reference “Neuro-Dynamic Pro-
gramming” Bertsekas et al. (1997) which we omitted before and should be an important
reference for the future work. This work is supported in part by the National Natural
Science Foundation of China Grant 61433014, 61761136014, 61872334, 61502449, 61602440,
the 973 Program of China Grants No.2016YFB1000201.

737



Yang Jin Liu Sun Zhang

References

Arash Asadpour, Michel X. Goemans, Aleksander Madry, Shayan Oveis Gharan, and Amin
Saberi. An o(log n/ log log n)-approximation algorithm for the asymmetric traveling
salesman problem. In Proceedings of the Twenty-First Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA’10, pages 379–389, 2010.

Csanád Csáji Balázs. Approximation with artificial neural networks. Master’s thesis, Eötvös
Loránd University, 2001.

Richard Bellman. Dynamic programming treatment of the travelling salesman problem. J.
ACM, 9(1):61–63, January 1962. ISSN 0004-5411. doi: 10.1145/321105.321111. URL
http://doi.acm.org/10.1145/321105.321111.

Dimitri P Bertsekas, John N Tsitsiklis, and A Volgenant. Neuro-dynamic programming.
Third World Planning Review, 1997.

Nocos Christofides. Worst-case analysis of a new heuristic for the travelling salesman prob-
lem, 1976.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms, Third Edition. The MIT Press, 2009.

G. Cybenko. Approximations by superpositions of sigmoidal functions. Mathematics of
Control, Signals, and Systems, 2(4):303–314, 1989.

Michael Held and Richard M. Karp. A dynamic programming approach to sequencing
problems. Journal of the Society for Industrial and Applied Mathematics, 10(1):196–210,
1962. doi: 10.1137/0110015. URL http://dx.doi.org/10.1137/0110015.

Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neu-
ral Networks, 4(2):251 – 257, 1991. ISSN 0893-6080. doi: https://doi.org/10.1016/
0893-6080(91)90009-T. URL http://www.sciencedirect.com/science/article/pii/

089360809190009T.

Anton Milan, S. Rezatofighi, Ravi Garg, Anthony Dick, and Ian Reid. Data-driven approx-
imations to np-hard problems. AAAI Conference on Artificial Intelligence, 2017.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou,
Daan Wierstra, and Martin A Riedmiller. Playing atari with deep reinforcement learning.
arXiv: Learning, 2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin A Riedmiller, Andreas K Fidjeland, Georg Ostrovski,
et al. Human-level control through deep reinforcement learning. Nature, 518(7540):
529–533, 2015.

Gerhard Reinelt. Tsplib – a traveling salesman problem library. ORSA Journal on Comput-
ing, 3(4):376–384, 1991. doi: 10.1287/ijoc.3.4.376. URL http://dx.doi.org/10.1287/

ijoc.3.4.376.

738

http://doi.acm.org/10.1145/321105.321111
http://dx.doi.org/10.1137/0110015
http://www.sciencedirect.com/science/article/pii/089360809190009T
http://www.sciencedirect.com/science/article/pii/089360809190009T
http://dx.doi.org/10.1287/ijoc.3.4.376
http://dx.doi.org/10.1287/ijoc.3.4.376


Martin Riedmiller. Neural fitted q iteration-first experiences with a data efficient neural
reinforcement learning method. ECML, 3720, 2005.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction, Second
Edition. The MIT Press, 2017.

Vijay V. Vazirani. Approximation Algorithms. Springer, 2001.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In C. Cortes,
N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural
Information Processing Systems 28, pages 2692–2700. Curran Associates, Inc., 2015. URL
http://papers.nips.cc/paper/5866-pointer-networks.pdf.

739

http://papers.nips.cc/paper/5866-pointer-networks.pdf

	Introduction
	Preliminaries
	Revisiting dynamic programming
	Travelling Salesman Problem and Held-Karp algorithm

	Approximating dynamic programming with neural networks
	Approximately representing dynamic programming functions with neural networks
	An iterative algorithm and solution reconstruction process to train the neural network 

	Experiments in TSP
	Experimental setting
	Experimental results

	Conclusions and future work

