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Abstract

For many clustering applications, Multi-view data sets are very common. Multi-view clus-
tering aims to exploit information across views instead of individual views, which is promis-
ing to improve clustering performance. Note that a high-dimensional data set usually dis-
tributes on certain low-dimensional subspace. Thus, many multi-view subspace clustering
algorithms have been developed. However, existing multi-view subspace clustering meth-
ods rarely perform clustering on the subspace representation of each view simultaneously as
well as keep the indicator consistency among the representations, i.e., the same data point
in different views should be assigned to the same cluster. In this paper, we propose a novel
multi-view subspace clustering method. In our method, we use the indicator matrix to
ensure that we perform clustering on the subspace representation of each view simultane-
ously. And at the same time, a co-regularized term is added to guarantee the consistency of
the indicator matrices. Experiments on several real-world multi-view datasets demonstrate
the effectiveness and superiority of our proposed method.

Keywords: Co-regularized, Multi-view Clustering, Subspace Clustering

1. Introduction

Clustering is a popular unsupervised learning technique in data mining. Traditional clus-
tering aims to identify groups of ”similar behavior” in single view data. As the real-world
data are always captured from multiple sources or represented by several distinct feature
views, multi-view data are very common in many real-world applications. Different views of
data describe different features of data. For example, in the field of computer vision, images
and videos can be represented by different types of features, such as color and texture in-
formation. In natural language processing tasks, the same document or corpus is available
in multiple languages. Each language version can be used as a view. Web pages can also
be represented using multi-view features based on text and hyperlinks. Each view may pro-
vide complementary information that other views do not have. Therefore, clustering with
complementary information provided by multiple views would obtain better results than
clustering only on a single view. The main obstacle of multi-view clustering is how to inte-
grate the information provided by multiple views to achieve the purpose of improving the
clustering performance. Many researches have been conducted to develop effective multi-
view algorithms and significant results have been achieved (Kumar et al. (2011); Kumar
and III (2011); Liu et al. (2013); Guo (2013); Cao et al. (2015); Nie et al. (2017)). Those
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methods usually focus on integrating multiple views into a low-dimensional representation
and then performing spectral clustering on this low-dimensional representation.

Although a number of existing multi-view clustering methods have achieved consider-
able performance, these methods generally ignore the priori information of the dataset. For
example, in face of clustering, many high-dimensional data are supposed to drawn from mul-
tiple low-dimensional subspaces, which means the intrinsic dimension of data is much lower
than the original dimension, with the characteristics of sparse or low-rank. Taking these pri-
ori information into consideration will hopefully improve the clustering performance. In the
past several years, subspace clustering has received extensive attention and a great number
of algorithms have been proposed. Such as subspace clustering via least squares regression
(LSR)(Lu et al. (2012); Shao et al. (2015)), sparse subspace clustering(SSC) (Elhamifar and
Vidal (2013)), and subspace clustering based on low-rank representation (LRR) (Liu et al.
(2010a); Li et al. (2016); Zhao et al. (2016)).

Some multi-view subspace clustering algorithms have also been proposed and made
great progress. Yin et al. (2015) proposed a multi-view clustering method via pairwise
sparse subspace representation, which consists of a weakly semi-supervised link constrained
multi-view clustering and a special co-regularization based multi-view clustering method.
The latter method tries to find a unified subspace representation. However, in theory, this
method doesn’t work well. Because although the data block structures in different subspace
representations are similar, the magnitude of element values in them can be dramatically
different. Gao et al. (2015) proposed a novel multi-view subspace clustering. Instead of
computing a common subspace representation to unify subspace representation of each view,
they proposed to integrate the clustering results using different subspace representations.
Meanwhile, a separated spectral clustering post-processing step is been induced in order
to achieve sub-optimal results. Cao et al. (2015) proposed a diversity-induced multi-view
subspace clustering method utilizing the Hilbert Schmidt Independence Criterion to explore
the complementarity of multi-view representations. In general, these approaches tend to
obtain the subspace representation of each view firstly, then get the affinity matrix of the
data set, and perform spectral clustering on the affinity matrix to obtain clustering results
finally.

In this paper, we propose a novel multi-view subspace clustering method. Instead of sep-
arately obtaining subspace representation for each view and then merging them to perform
clustering, we perform clustering on the subspace representation of each view simultaneous-
ly. And a pairwise co-regularization is developed to keep the consistency across the views.
More specifically, we use an indicator matrix to learn the embedded consensus information
of each view synthetically. In addition, a pairwise co-regularization constraint on indica-
tor matrix is utilized to capture the interaction between the correlated clustering indicator
matrices. We also develop an iterative optimization algorithm to solve the proposed frame-
work. At last, extensive experiments on several real-world multi-view data sets demonstrate
the effectiveness of our method.

In summary, the main contributions of our work include:

e We propose a novel multi-view subspace clustering method based on pairwise co-
regularization to guarantees the consistency across views, considering the same data
point in different views should have the same membership.
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e Instead of learning subspace representations of each view first, then applying spectral
clustering to subspace representations, we integrate learning representation and the
preceding-step of spectral clustering into the objective equation. In other words, we
use an indicator matrix to performing clustering on the subspace representation of
each view simultaneously.

o We verify the effectiveness of our proposed method. Experimental results on six real-
world datasets show our method outperforms other baseline algorithms.

The rest of this paper is organized as follows. In Section 2, we introduce subspace clus-
tering and multi-view subspace clustering briefly. In Section 3, we describe the proposed
co-regularized multi-view subspace clustering method in detail. Section 4 shows the opti-
mization of our algorithm. Extensive experimental results and analysis are given in Section
5. Finally, we conclude this paper in section 6.

2. Related Work

In this section, we will introduce subspace clustering and multi-view clustering briefly.

2.1. Subspace Clustering

Subspace clustering naturally arises with the appearance of high-dimensional data. It is now
widely known that many high dimensional data can be modelled as samples drawn from
the union of multiple low-dimensional subspaces (Li and Vidal (2015); Gao et al. (2015)).
Thus, the data points can be represented by a low-dimension subspace. Subspace clustering
aims to allocate data in the same subspace into the same cluster according to the subspace
structure of data (Liu et al. (2010Db)).

Consider n data points X = {x1,22,...,x,} € R¥>"  where each column represents a
data vector, d denotes the feature dimension. The subspace clustering is based on the self-
representation property (Elhamifar and Vidal (2013)). That is, each data point in the space
can be represented by other points in the same subspace. The matrix form is written as:

X=XZ+E (1)

where Z € R™ " is the subspace representation matrix, each column of 7 is a reconstruction
coefficients of the original data point. £ € R*" is the error matrix resulting from the
possible corruptions in the representations. In order to make the presentation error as
small as possible, the subspace clustering aims to find the self-representation by solving the
following optimization problem:

mbinHE’Hl st. X=XZ+FE Z(i,i)=0,1<i<n (2)
where || - [|1 is ¢1-norm, and the constraint Z(i,i) = 0 is to prevent the data point from

expressing itself. After solving the problem (2), we can get the subspace representation
matrix Z. The similarity matrix S can be constructed as:

S=(1Z1+121")/2 3)
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where | - | is the absolute operator. Afterwards, we can perform spectral clustering on such
subspace similarity matrix to obtain the final clustering results:

min Tr(FI'(D—-S)F) stF'F=1 (4)

Where F € R"*F is the cluster indicator matrix, which can be given to the k-means al-
gorithm to obtain cluster memberships. And k is the number of clusters. D € R™" is
a diagonal matrix whose diagonal elements are defined as d; = Zj sij, where s;; is the
element of the i-th row and the j-th column of S.

2.2. Multi-view Subspace Clustering

The main challenge of multi-view subspace clustering is to integrate the features of individ-
ual views through subspace representations. Note that Z, is the subspace representation
of v-th view, where v = 1,2,...,1, and [ is the number of views. In order to combine the
multi-view subspace learning results, existing methods prefer to learn the subspace repre-
sentation of each view first, then obtain an affinity matrix by using either one of Z, or the
average of all |Z,|. Finally, performing spectral clustering on such affinity matrix. The
process of learning subspace representation and clustering are carried out separately (Yin
et al. (2015); Wang et al. (2016)).

Instead of considering integrate the features of each view by adding various regular
constraints to Z,. We propose to perform clustering on the subspace representation of
each view simultaneously. Specifically, a cluster indicator matrix F, € R™** is propose to
learn the subspace features of each view( with i-th row of F, mapping the original ’th
sample to the k£ dimensional embedding space). Thus we can define K, = F,F! as the
similarity matrix of F,. According to the the fact that the membership of a data point
should be the same across all the views, the indicator matrices of pairwise views should be
as similar as possible. Therefore we use the inner product of indicator matrices to measure
the disagreement between clustering of two views:

Ky Ky

D(Fy, Fy) = || -
KR KR

1% ()

where |- || r is the Frobenius norm. Since ||K,||% = k and || K, ||% = k. Ignoring the constant
k, we can get:

D(F,,F,) = —Tr(F,F] F,F}) (6)
where T'r(-) is the trace of a matrix.

3. Co-regularized Multi-view Subspace Clustering

Based on the above, we leverage the self-representation of data to get the subspace rep-
resentation, graph regularization to extracting local manifold structure and pariwise co-
regularization of similarity between F, and F}, to keep the consistency across views. There-
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by, our co-regularization multi-view subspace clustering method can be expressed as follows:
nin Y IXy = XoZollF + M D Tr(F (Dy = So)Fy) = A Y Tr(FF) FuFy))
: : o ™)
st. Zy(i,i) =0,FIF,=11<i<n,1<v<I
In real applications, the data tend to be corrupted by noise. In order to improve the

robustness of our method, we take outlying entries matrix F, into consideration. With the
combination above, our final object function can be rewritten as follows:

min > [|X, — Xy Z, — Ey|[3+ M Y Tr(E (Dy — S,)F,)
v v

Zy By, Fy
Subspace representation Graph re;;larization
— XY Tr(E,FIF,FL) + A3 > |IEu|s (®)
vFEW v
|

Pairwise co—regularization Noise robustness

sit. Zy(i,i) =0,FIFy,=11<i<n,1<v<I
T

Where S, = %, Z, is the subspace representation matrix of the v-th view, D, is a
diagonal matrix whose diagonal element are defined as d;; = > j Sijs and the rows of matrix
F, are the embeddings of the data points that can be given to the k-means algorithm to
obtain cluster memberships.

4. Optimization Algorithm

The goal of optimization is to minimize Eq. (8). It is difficult to optimize Eq. (8) directly
because Eq. (8) is non-convex. In this paper, we employ the alternative optimization to
solve Eq. (8) by iteratively optimizing one variable with others fixed.

4.1. Update F},
Fixing Z,, F,, update F,.
min Ay > Tr(F](Dy = Su)Fy) = Ao Y Tr(F,F] FuFy)
v

vFw 9)
s.t. Zy(i,i) =0, FTF,=11<i<n,1<v<I

We have

A
minTr§ I | (Dy — S,) — (52) Y FuFL | F,
Y AL vFwW

sit. Zy(iyi)=0,FTF,=11<i<n,1<v<I

(10)

Such a problem (10) is a standard spectral clustering object on view v with graph Laplacian

matrix (D, — S,) — (ﬁ—f) 3 F,FI, whose solution are the eigenvectors corresponding to
vFEwW

the smallest k eigenvalue of the Laplacian matrix.
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4.2. Update 7,
Fixing F,, F,, update Z,. We have

Z Z,|T
i| ’U|+| U| )Fv>

r%g)n; Xy = XoZ0 — By} m;ﬂ <FT (D, 2

(11)

st. Zy(i,i)=0,FIF,=11<i<n,1<v<I

there is a basic but significantly important equation in spectral analysis (Belkin and Niyogi
(2002))

1
Tr(FTLF) = S Tr(SY) (12)
where Y;; = || f* — f7]], f* is the i-th row of matrix F. So we have

A
min | X — XZ — E|[} + éTT(lZ\TY)

(13)
sit. Zy(i,i) =0,1<i<n,1<wv<lI
When all rows except the i-th row fixed, updating the i-the row of Z:
min [ X, — 223 + 12l
z 2 (14)

st.z;=0,1<1<n

where 27 is the i-th row of Z, and y is the i-th column of Y, and X; = X — (X Z —x27) - E.
Eq. (14) differs Eq. (15) only by a constant.

A
. T, T T+T LT
2 TXT p a4+ 2L
minzrz’z =22 X7 +2 |z|"y (15)
st.zi=0,1<1<n
Also, Eq. (15) differs the follow problem only by a constant:
A
. o2 AT
min |z — o3 + 321"y .

st.zi=0,1<1<n

where v = f;; Thus Eq. (14) has the same solution with Eq. (16). In detail, if & = 4,
then 2z = 0. If k # i,we have :

1 A
min §(zk — Vk)2 + ﬂ]zk] (17)

2K 4

Finally we have:

A1 . A1
I/k—)\4yk, zfl//rg>—/\4y’C
S T A (18)
0, otherwise
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4.3. Update F,
Fixing F,, Z,, update E,. We have

min X, - X, Z, —Ev||%+A3§v:IIEvH1 (19)

For convenience, we ignore the subscript as follows:

1 2 )\3
mE1n§||E—(X—XZ)\IFJr?HEHl (20)
We solve the i-th column of E:
o1 A3
rrgnﬁnei—(X—XZ)iH%“‘?HeiHl (21)

Finally we have:

(X = XZ)ij =%, if (X =X2)i;> %
Eij=q (X =XZ)ij+ %, if (X-X2); <% (22)
0, otherwise

According to the functions above, we can iteratively update the Z,, E,, F, until con-
vergence. Finally applying k-means to the indicator matrix F,, to get the final clustering
result. The whole algorithm is summarized in Algorithm 1.

Algorithm 1 Co-regularized Multi-view Subspace Clustering.

Input: Unlabeled multi-view data D = {X1, Xo, ..., X;,}, parameters A1, A2, As.
Output: Clustering result C.

1 Initialize Z, = 0, E, = 0, F is initialized to the result of spectral clustering.
2 while not converge do

w

© 0w N O o

10
11
12

Update the i-th row of Z, :
if kK =i then
‘ z = 0.
end
if k # i then
‘ Update the i-th row of Z, by Eq. (18).
end
Update the E, by Eq. (22).
Update the F, by Eq. (10).
end
Apply k-means to F,. if the j-th row of F,, is assigned to cluster ¢, example j is assigned

to cluster c.

5. Experiment

In this section, experiments on several real-world multi-view datasets are conducted to
demonstrate the effectiveness and superiority of our proposed method.
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5.1. Datasets

We evaluate our method on six benchmark datasets. The information of these datasets is

summarized in Tab. 1.

e Cora:' Tt contains 2708 documents over 7 labels. It is made of 4 views (content,

YU ZHANG LiaN CAI

Table 1: Information of the multi-view datasets.

Datasets | Samples | Views | Clusters
Cora 2708 2 7
WebKB 307 3 4
3-source 169 3 6
ALOI 1080 4 10
Reuters 1200 5 6
NUS 900 5 6

inbound, outbound, cites) on the same documents. We consider the following two
views in our experiments: number of citations between documents and the term-
document matrix.

WebKB:? Tt consists of webpages collected from four universities: Texas, Cornell,
Washington and Wisconsin. The web pages are classified into 7 categories. Here, we
choose four most populous categories (course, faculty, project,student) for clustering.
And a web page is made of three views: the text on it, the anchor text on the
hyperlinks pointing to it and the text in its title.

3-sources:> It is a text dataset collected form three online news sources: BBC, Reuters,
and the Guardian. It contains a total of 948 news articles covering 416 distinct news
stories. Among them, there are 169 articles reported in all three sources. Each story is
correspond to one or more of six topical labels. We use all 169 news in our experiments,
while each source is taken as one independent view of the story.

ALOI:* Tt is a collection of 110250 images of 1000 small objects. We select 1080
samples on 10 classes with four views: RGB color histograms, HSB color histograms,
color similarity and haralick features.

Reuters:® Tt contains 1200 documents and each document is translated into five lan-
guages (English, French, German, Spanish and Italian). Each language version can
be as a view. And it has six classes.

NUS: It is a web image dataset of National University of Singapore. The dataset
contains 30000 images in 31 categories. Each picture can be represented by five

U W N

. http://lig-membres.imag.fr/grimal/data.html
. http://membres-liglab.imag.fr/grimal/data.html
. http://mlg.ucd.ie/datasets/3sources.html
. http://elki.dbs.ifi.1lmu.de/wiki/DataSets/MultiView
. http://membres-liglab.imag.fr/grimal/data.html

. http://1lms.comp.nus.edu.sg/research/NUS-WIDE.htm
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views: color histogram(CH), color correlation(CoRR), edge estimation(EDH), wavelet
texture(WT) and block-wise color moment (CM). In our experiments, we use 900
samples with five views.

5.2. Experimental Settings

To evaluate the performance of our method, we compare our method with the following
algorithms.

PairwiseSC : Kumar et al. proposed the multi-view spectral clustering method to co-
regularize pairwise eigenvectors of all views’ Laplacian matrices and achieve consensus
clusters across views (Kumar et al. (2011)). In our experiments, we set the parameter
of this methond to 0.01 as the author suggested.

CentroidSC : Kumar proposed the multi-view spectral clustering method to regularize
each view-specific set of eigenvectors towards a common centroid eigenvector (Kumar
et al. (2011)). The value of the parameter is the same as PairwiseSC.

Co_training : According to the idea of co-training, learning the clustering in one view
and use it to "label” the data in other views so as to modify the graph structure. And
iterating this process until convergence (Kumar and IIT (2011)). In our experiments,
we set the parameter of this methond to 1.5 as the author suggested.

Multi_ NMF : Gao et al. proposed a NMF-based multi-view clustering algorithm by
searching for a factorization that gives compatible clustering solutions across multiple
views (Gao et al. (2013)). The parameter of this method is set to 0.01 as authors
suggested.

RMSC : A robust multi-view spectral clustering method, which learns the shared
transition probability matrices and their respective error matrices from each view.
And then use the shared transition probability matrix as the input matrix of Markov
chain (Xia et al. (2014)). As the author claims that when setting the parameter of
this methond to 0.005, it work well in all of the datasets. So we also use the same
value in our experiments..

MVSC : A multi-view subspace clustering method, which performs clustering on the
subspace representation of each view simultaneously (Gao et al. (2015)). Because the
author did not give a suggestion of parameter settings in the paper, we adjusted the
parameters and set the two parameters to 1.5 and 0.5 finally, which works better.

In this paper, for all comparison experiments, we use the source codes provided by
the corresponding paper authors and follow the suggestions the authors have given. Each
experiment is repeated 10 times and the average value are reported. For our method, we
set parameters Ay = 0.5, Ao=0.5 and A3 = 0.05, because the experimental results prove that
they work well on all datasets. To measure the performance of our proposed algorithm, we
use three widely used clustering metrics: clustering accuracy (ACC), normalized mutual
information(NMI) and Purity. ACC measures the proportion of correct clustering. The
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definition of ACC is as follows:
| N
ACC(yi,yi) = N 2 Wy =vi} (23)

where IV is the number of samples. ¢; is the predicted result of the i-th sample and y; is
the ground truth classification. 1{x} is the indicator equation, when the predicted result is
exactly the same as the true result, the value of the equation is 1, otherwise it is 0.

The definition of NMI is as follows:

MI(yi,y:)
H(y:)H (i)

where M (-) denotes the mutual information between g; and y;. H(-) denotes their entropy.

Purity is a simple and transparent evaluation measure. It only need to calculate the
proportion of the number of correct clustering to the total number of samples. Given some
set of clusters M = {mi,ma,...,mg}, a set of classes D = {d;,da,...,d;}, and N data
points, purity can be defined as:

NMI(yi,yi) = (24)

1
Purity = — max |mg N d; 25
=g S e (25)

where my, indicates the set of samples in the k-th cluster and d; indicates the set of samples
in the j-th class. The advantage of the purity method is that it is easy to calculate and the
value is between 0 and 1.

5.3. Experimental Results

The experimental results in terms of ACC, NMI and Purity on six real-world datasets are
reported in Tab. 2, Tab. 3 and Tab. 4. The larger value of the three metrics, the better
clustering performance we get. From Tab. 2, Tab. 3 and Tab. 4, we can observe that our
method outperforms other algorithms.

Table 2: Clustering results in terms of ACC(%) on five datasets.

Methods Cora | WebKB | 3-source | ALOI | Reuters | NUS
PairwiseSC 37.03 70.39 54.67 80.43 50.01 26.93
CentroidSC 32.17 72.08 54.79 80.95 50.35 34.57
Co_training 52.60 57.65 54.69 80.94 43.96 32.66
Multi NMF 41.36 68.70 47.93 83.72 49.14 34.53
MVSC 48.24 80.90 57.52 52.27 37.36 29.78
RMSC 38.82 64.46 48.58 71.65 53.47 36.52
Co_MVSC 58.12 85.49 62.37 85.91 56.16 58.12

PairwiseSC, CentroidSC , Co_training are three classic multi-view clustering algorithms.
RMSC is a multi-view spectral clustering method. They all focus on how to integrate the
feature information of multiple views without considering the priori information of the
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Table 3: Clustering results in terms of NMI(%) on five datasets.

Methods Cora | WebKB | 3-source | ALOI | Reuters | NUS
PairwiseSC 17.14 29.29 44.81 80.95 31.24 6.23
CentroidSC 16.24 57.81 47.64 80.65 30.81 13.68
Co_training 32.15 47.99 55.41 79.81 27.12 11.67
Multi NMF 28.75 51.81 47.92 81.11 29.91 12.17
MVSC 22.53 55.45 43.66 50.54 17.26 12.53
RMSC 15.75 41.74 45.08 66.42 35.08 14.55
Co_MVSC 35.27 62.92 57.93 81.12 35.23 13.74

dataset. The clustering results are good, but they do not consider the priori information
of the datasets. Our proposed method Co_MVSC not only keeps the the consistency across
views, but also considers the priori subspace information. MVSC is a multi-view subspace
algorithm. From the results in the tables, we find this method is not very stable. It could
get good results on some datasets, such as Cora, WebKB, 3-source, while does not work
well on others like ALOI, Reuters and NUS, which have more views. Although MVSC uses
the information of the data distributed in a certain low-dimensional subspace, it dose not
fully exploit the complementary information across the views. This leads to more views not
necessarily guaranteeing better clustering performance. Our Co-.MVSC method uses a pair
co-regularization to explore the complementary information embedded in the multi-view
data. And the results show that the performance of our method generally outperforms
other algorithms.

Table 4: Clustering results in terms of Purity(%) on five datasets.

Methods Cora | WebKB | 3-source | ALOI | Reuters | NUS
PairwiseSC 42.79 71.30 65.80 83.44 50.82 27.48
CentroidSC 40.30 83.26 67.92 82.93 50.97 36.59
Co_training 57.34 78.86 72.38 83.58 44.77 33.98
Multi NMF 50.43 79.69 66.98 85.15 50.03 36.12
MVSC 48.86 82.57 63.91 53.69 38.75 31.22
RMSC 40.22 76.06 71.85 72.43 56.12 38.01
Co_MVSC 60.71 85.49 74.91 87.68 57.07 38.19

In order to show how the performance of our algorithm changes with the increase of the
number of views, we apply our method to increasing-view features on the ALOI data set.
The results are shown in Tab. 5. From the results, we can observe that with the increase
of views, the value of ACC, NMI and Purity increase, which indicates that the clustering
performance of combining features of multiple views is better than only relying on a single
view. And the more views means the more complementary information is provided, thus
the better clustering performance will be obtained.
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Table 5: Increasing views on ALOI dataset.

No.of views | ACC | NMI | Purity
One 57.69 | 52.88 | 59.64
Two 66.46 | 63.40 | 69.96
Three 76.95 | 73.77 | 78.62
Four 85.91 | 81.12 | 87.68

5.4. Parameter Selection

In our proposed co-regularized multi-view subspace clustering method, there are three pa-
rameters A1, Ao, and A3. Among them, A\; controls the graph regularization term to charac-
terize the local manifold structure. Ao controls the pairwise co-regularization of similarities
between two views. A3 controls the possible noise contained by the datasets.

WebKB WebKB WebKB

‘WebKB ‘WebKB WebKB

Figure 1: Parameters study of our proposed method on WebKB dataset. (a) ACC, NMI
and Purity against parameters A\; and A2. (b) ACC, NMI and Purity against
parameters A; and A3
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In order to determine the range of parameters, we first test a relatively large interval
[0.001,10]. Firstly, we fix the value of A3 with any value in the interval [0.001, 10], then test
the change of each metric with the varying of A; and A2 on WebKB. From Fig. 1(a), we
have the following observations. When A; it too small, the graph regularization term will
lose its effect. When A; it too big, the effect of other regular terms will be weakened, which
will affect the clustering result. And so does Ay . Therefore according to the experimental
results, we choose A; and Ay form the interval [0.05,1]. Secondly, we fix the value Ay to a
suitable and increase the value of A\; and A3z in order to determine the range of A3. From
Fig. 1(b), we can see the value of A3 should not be too large. This shows that noise has an
impact on clustering, but it is not a major factor. So in our experiments, A3 is chosen from
the interval [0.001,0.1].

In order to further prove the correctness of our analysis, we do the same experiments
on the dataset 3-source. From Fig. 2, it can be seen that the value ranges of \;, A9, A3 are
feasible. Finally, we set Ay = 0.5, Ao = 0.5, A3 = 0.05 in our experiments , because they
work well on all datasets.

3-source 3-source 3-source

Purity(%)

3-source 3-source

Figure 2: Parameters study of our proposed method on 3-source dataset. (a) ACC, NMI
and Purity against parameters A\; and A\y. (b) ACC, NMI and Purity against
parameters A\; and As

29



YU ZHANG LiaN CAI

5.5. Convergence analysis
In our experiments, the stop criteria is defined as follows:
7040 — )

f®

where f(*) denotes the objective value of the t-th iteration. Fig. 3 shows the change in
objective value with each iteration. Fig. 3, we can see that our proposed method converges
quickly.

<1071 (26)

5 WebKB 5 3-source
55 210 4 £10
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Iteration Iteration
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Figure 3: The convergence curve of our proposed method

6. Conclusion

In this paper, we propose a novel multi-view subspace clustering method. Instead of learn-
ing subspace representations of each view first, then applying spectral clustering to subspace
representations, we integrate learning representation and the preceding-step of spectral clus-
tering into the objective equation. In other words, we use an indicator matrix to performing
clustering on the subspace representation of each view simultaneously. And at the same
time a co-regularized term is utilized to guarantee the consistency of the indicator matri-
ces. Comparative experiments with six state-of-art algorithms on six multi-view datasests
demonstrate the effectiveness of our algorithm.

Acknowledgments

Research reported in this publication was supported by the National Natural Science Foun-
dation of China(61602081) and Natural Science Foundation of Liaoning Province(201602180).

References

Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps and spectral techniques for em-
bedding and clustering. In Advances in neural information processing systems, pages
585-591, 2002.

30



CO-REGULARIZED MVSC

Xiaochun Cao, Changqing Zhang, Huazhu Fu, Si Liu, and Hua Zhang. Diversity-induced
multi-view subspace clustering. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 586-594, 2015.

Ehsan Elhamifar and Rene Vidal. Sparse subspace clustering: Algorithm, theory, and
applications. IEEE transactions on pattern analysis and machine intelligence, 35(11):
2765-2781, 2013.

Hongchang Gao, Feiping Nie, Xuelong Li, and Heng Huang. Multi-view subspace clustering.
In Proceedings of the IEEE international conference on computer vision, pages 4238-4246,
2015.

Jing Gao, Jiawei Han, Jialu Liu, and Chi Wang. Multi-view clustering via joint nonnegative
matrix factorization. In Proceedings of the 13th SIAM International Conference on Data
Mining, May 2-4, 2013. Austin, Texas, USA., pages 252-260, 2013.

Yuhong Guo. Convex subspace representation learning from multi-view data. In Proceedings
of the Twenty-Seventh AAAI Conference on Artificial Intelligence, July 14-18, 20183,
Bellevue, Washington, USA., 2013.

Abhishek Kumar and Hal Daume III. A co-training approach for multi-view spectral clus-
tering. In International Conference on International Conference on Machine Learning,
pages 393-400, 2011.

Abhishek Kumar, Piyush Rai, and Hal Daume. Co-regularized multi-view spectral cluster-
ing. In Advances in neural information processing systems, pages 1413-1421, 2011.

Chun Guang Li and Ren Vidal. Structured sparse subspace clustering: A unified optimiza-
tion framework. In Computer Vision and Pattern Recognition, pages 277-286, 2015.

Jun Li, Yu Kong, Handong Zhao, Jian Yang, and Yun Fu. Learning fast low-rank projection
for image classification. IEEE Transactions on Image Processing, 25(10):4803-4814, 2016.

Guangcan Liu, Zhouchen Lin, Shuicheng Yan, Ju Sun, Yong Yu, and Yi Ma. Robust recovery
of subspace structures by low-rank representation. arXiv preprint arXiv:1010.2955, 2010a.

Guangcan Liu, Zhouchen Lin, and Yong Yu. Robust subspace segmentation by low-rank
representation. In Proceedings of the 27th International Conference on Machine Learning
(ICML-10), pages 663-670, 2010b.

Jialu Liu, Chi Wang, Jing Gao, and Jiawei Han. Multi-view clustering via joint nonnegative
matrix factorization. In Proceedings of the 2013 SIAM International Conference on Data
Mining, pages 252-260. STAM, 2013.

Can-Yi Lu, Hai Min, Zhong-Qiu Zhao, Lin Zhu, De-Shuang Huang, and Shuicheng Yan.
Robust and efficient subspace segmentation via least squares regression. In Furopean
conference on computer vision, pages 347-360. Springer, 2012.

Feiping Nie, Guohao Cai, and Xuelong Li. Multi-view clustering and semi-supervised clas-
sification with adaptive neighbours. In AAAI pages 2408-2414, 2017.

31



YU ZHANG LiaN CAI

Ming Shao, Sheng Li, Zhengming Ding, and Yun Fu. Deep linear coding for fast graph
clustering. In International Conference on Artificial Intelligence, pages 3798-3804, 2015.

Yang Wang, Wenjie Zhang, Lin Wu, Xuemin Lin, Meng Fang, and Shirui Pan. Iterative
views agreement: An iterative low-rank based structured optimization method to multi-
view spectral clustering. arXiv preprint arXiv:1608.05560, 2016.

Rongkai Xia, Yan Pan, Lei Du, and Jian Yin. Robust multi-view spectral clustering via
low-rank and sparse decomposition. In Twenty-FEighth AAAI Conference on Artificial
Intelligence, pages 2149-2155, 2014.

Qiyue Yin, Shu Wu, Ran He, Liang Wang, et al. Multi-view clustering via pairwise sparse
subspace representation. neurocomputing. 2015.

Handong Zhao, Zhengming Ding, and Yun Fu. Pose-dependent low-rank embedding for
head pose estimation. In Thirtieth AAAI Conference on Artificial Intelligence, pages
1422-1428, 2016.

32



	 Introduction
	Related Work
	Subspace Clustering
	Multi-view Subspace Clustering

	Co-regularized Multi-view Subspace Clustering
	Optimization Algorithm
	Update Fv
	Update Zv
	Update Ev

	Experiment
	Datasets
	Experimental Settings
	Experimental Results
	Parameter Selection
	Convergence analysis

	 Conclusion

