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Abstract

In this paper, we study the relative attribute learning problem, which refers to comparing
the strengths of a specific attribute between image pairs, with a new perspective of cross-
image representation learning. In particular, we introduce a deep attentive cross-image
representation learning (DACRL) model, which first extracts single-image representation
with one shared subnetwork, and then learns attentive cross-image representation through
considering the channel-wise attention of concatenated single-image feature maps. Taking
a pair of images as input, DACRL outputs a posterior probability indicating whether the
first image in the pair has a stronger presence of attribute than the second image. The
whole network is jointly optimized via a unified end-to-end deep learning scheme. Extensive
experiments on several benchmark datasets demonstrate the effectiveness of our approach
against the state-of-the-art methods.

1. Introduction

Visual attribute learning has attracted much attention in many real-world applications such
as image searching Chen et al. (2013); Wang et al. (2013); Huang et al. (2014); Zhang et al.
(2013), face verification Kumar et al. (2009), object recognition Wang and Mori (2010);
Branson et al. (2010), video retrieval and recommendation Chen et al. (2014a); Cui et al.
(2014), and zero-shot learning Lampert et al. (2014); Li et al. (2014); Han et al. (2014). It
aims to learn mid-level semantic properties as the abstraction between the low-level features
and the high-level labels. In general, visual attribute learning is considered as binary concept
learning which indicates the presence or absence of certain semantic property.

Further, Parikh and Grauman (2011) introduced relative attribute learning which ex-
tends the traditional binary attribute learning through comparing the relative strengths of
particular attributes. Given a set of manually labeled relative orderings of image pairs,
relative attribute learning considers to learn a global ranking function for each attribute so
that the strengths of each attribute between two images can be compared. Figure 1 shows
some examples of relative attribute learning. Different from the binary attributes, relative
attributes bear more semantic information and have been exploited in many applications
Kovashka et al. (2012); Biswas and Parikh (2013); Shrivastava et al. (2012); O’Donovan
et al. (2014).
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Figure 1: Relative attribute learning. Given the training image pairs for a specific attribute,
the goal is to compare a pair of novel images with respect to the same attribute.

For relative attribute learning, early efforts focus on the learning-to-rank framework such
as RankSVM, which learns a ranking function for each attribute so that the ranking scores of
the two samples can be compared to determine the relative strengths for specific attributes.
Inspired by the success of convolutional neural networks Krizhevsky et al. (2012), recent
works propose to apply the CNN architecture to the task of relative attribute learning.
In particular, single-image representations are first obtained using deep CNN approaches,
and then a ranking measure is utilized to predict the relative strengths of the two images
with respect to specific attributes. For example, Souri et al. (2016) introduced a RankNet
framework which trained a deep ranking network in an end-to-end fashion. Further, Yang
et al. (2016) also proposed to jointly learn visual features and a nonlinear ranking function
in a unified framework and presented a deep relative attribute (DRA) algorithm. While
RankNet and DRA significantly outperform the prior shallow models in relative attribute
prediction due to the incorporation of deep representation learning, they mainly focus on
single-image representation learning and ignore the learning of cross-image representation
which has the ability of capturing deep relationship between the two images.

In this paper, we investigate the relative attribute learning problem with a new perspec-
tive of considering cross-image representation. In particular, we present the deep attentive
cross-image representation learning (DACRL) model, an end-to-end convolutional neural
network which takes a pair of images as input, and outputs a posterior probability that
indicates the relative strengths of a specific attribute, based on cross-image representation
learning. DACRL first learns the respective discriminative representations for each image
with one shared subnetwork and then employs an attentive cross-image convolution mod-
ule to adaptively learn the non-linear cross-image representation, which helps capture the
correspondence among the semantic properties of the two images. Further, a posterior prob-
ability with respect to the specific attribute is predicted based on the learned cross-image
representation. The above processes are jointly optimized via a unified end-to-end deep
learning scheme.

The proposed framework is evaluated on six real-world datasets. Extensive experiments
on these benchmark datasets demonstrate the effectiveness of our approach against the
state-of-the-art methods. The main contributions of this paper are as follows:
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(1) We deal with the problem of relative attribute learning from a new perspective of
considering cross-image representation learning; (2) The proposed framework introduces the
attentive cross-image convolutional strategy to further enhance the learning of cross-image
representation.

2. Related Works

Relative attributes. Since the introduction of relative attributes Parikh and Grauman
(2011), relative attribute learning has attracted the attention of many researchers for its
variety of applications, such as image retrieval Kovashka et al. (2012), zero-shot learning
Parikh and Grauman (2011); Yang et al. (2016); Chen et al. (2014b); Biswas and Parikh
(2013), and font selection O’Donovan et al. (2014).

In Parikh and Grauman (2011), relative attributes are first proposed and the original
approach adopted the learning-to-rank framework. A linear ranking function for each at-
tribute is trained based on the hand-crafted features (GIST and Color). Extended from
this, Li et al. (2012) trained non-linear functions for attribute prediction. To capture the
correlations among multiple attributes, multi-task learning (MTL) is introduced in Chen
et al. (2014b). More recently, Wang et al. (2016b) fused pointwise and pairwise labels to
capture the relations between class labels, tags, and attributes. Yu and Grauman (2014)
proposed a learning-to-rank framework for fine-grained visual comparisons. In another work
Yu and Grauman (2015), Yu and Grauman developed a Bayesian local learning strategy to
infer when images are hardly distinguishable for a given attribute. All the above methods
are based on the hand-crafted features. The success of deep learning has motivated end-
to-end frameworks for learning features and attribute ranking simultaneously Souri et al.
(2016); Yang et al. (2016); Singh and Lee (2016); He et al. (2016b). To overcome the spar-
sity of supervision for visual comparisons, Yu and Grauman (2017) proposed to augment
real training image pairs with synthetic images. However, all the methods simply focus on
the single-image representation learning and ignore the correlation between the cross-image
representation and relative attributes.

Cross-image representation Cross-image representation learning has been explored
in some pairwise comparison tasks, such as person re-identification. Ahmed et al. (2015)
proposed to capture the cross-image representation for person re-identification by comput-
ing the local difference between the features of the two input images. Chen et al. (2016)
simply stitched a pair of input images to learn the joint feature representation through CNN.
Extended from these efforts, Wang et al. (2016a) jointly learned single-image representa-
tion and cross-image representation based on CNN for person re-identification. Mao et al.
(2018) employed multi-rate atrous convolution layers to match the cross-image semantic
components. As far as we know, no existing works capture the cross-image representation
for relative attribute learning. Besides, channel-wise attention is incorporated to enhance
the learning of cross-image representation.

3. Our Approach

As shown in Figure 2, our proposed model consists of three parts, the single-image feature
learning part, the attentive cross-image representation block, and the prediction part. In
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Figure 2: The overall architecture of the proposed deep attentive cross-image representation
learning model. The network consists of three parts, the single-image feature
learning part, the attentive cross-image representation block, and the prediction
part. Pairs of images are fed into the network with their corresponding target
relative strengths for a specific attribute, which is transformed into probability
scores. Cross-entropy loss is computed and back-propagated through the network
to update the weights.

this section, we first introduce the problem description of the relative attribute learning,
and then present the details of the model.

3.1. Problem Formulation

The goal of the relative attribute learning is to learn a function which predicts the relative
strengths of paired images in any attribute. Existing methods are based on the learning-to-
rank framework to learn a ranking function for a specific attribute. Given a set of ordered
image pairs Om = {(xi, xj)} and a set of un-ordered image pairs Um = {(xi, xj)} for any
attribute am, image xi has a stronger presence of attribute am than image xj if image
pair (xi, xj) ∈ Om, and image xi and image xj have similar presence of attribute am if
(xi, xj) ∈ Um. Let fm(x) denote the ranking function corresponding to a specific attribute
am. With these notations, the existing relative attribute learning can be formulated as
learning fm(x) that satisfies the following constraints:

(xi, xj) ∈ Om fm(xi) > fm(xj), (xi, xj) ∈ Um fm(xi) = fm(xj) (1)

Different from the existing methods, our approach explores to make full use of cross-
image representation to perform relative attribute learning. Taking an image pair as input,
we first learn single-image features for each image with one shared subnetwork. Conse-
quently, we perform cross-image representation learning based on the learned features of
the two images. Further, prediction functions are learned with the cross-representations to
output the probability that indicates the relative relationship between the two images. Let
fm(xi, xj) denote the prediction function of a specific attribute am. The relative attribute
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learning is formulated as learning fm(xi, xj) which satisfies the following constraints:

(xi, xj) ∈ Om fm(xi, xj) = 1.0, fm(xj , xi) = 0.0

(xi, xj) ∈ Um fm(xi, xj) = 0.5, fm(xj , xi) = 0.5
(2)

3.2. Singe-image Feature Learning

Inspired by the success of deep learning, we explore a deep convolutional neural network
to learn and extract single-image representation. In particular, VGG-16 Simonyan and
Zisserman (2014) architecture with all fully connected layers removed is employed to capture
the semantic feature maps for each image. As the architecture shown in figure 2, our
approach takes a pair of images as input which is processed with the same deep network
and performs the feature learning part separately. Let fCNN (X, θ1) denote the single-
image feature learning part, which takes X as input and θ1 as parameters. We formulate
the learning process as follows:

{Ri, Rj} = {fCNN (Xi, θ1), fCNN (Xj , θ1)} (3)

where Ri and Rj denote the learned representations of images Xi and Xj respectively, and
θ1 denotes the shared parameters. Consequently, the pair of feature maps (Ri, Rj) would
be fed into the attentive cross-image representation block.

3.3. Attentive Cross-image Representation Learning

With the learned singe-image representation, we introduce the particular cross-image repre-
sentation block for relative attribute learning. While traditional cross-image representation
learning has been exploited in other vision tasks, the existing efforts consider the single-
image feature maps from the two images equally and directly perform joint convolution
on them, which ignores some intrinsic characteristics of those feature maps. For example,
different feature maps may contribute differently to a specific attribute. The features which
attend to the face may have less relevance with the attribute ’Dark-Hair’ than the features
that focus on the hair intuitively.

Based on this assumption, we propose an attentive cross-image representation block
which performs channel-wise attention and assigns different weights to different feature
maps accordingly. As shown in Figure 2, the attention Wij is generated by the channel-wise
attention branch, which consists of a global average layer and two fully connected layers.
Afterwards, the channel-wise multiplication is performed to get attentive feature maps Fij .

With these features Fij , the attentive cross-image representation block would perform
cross-image convolution to fuse the features and learn the cross-image representation. Given
a pair of generated single-image features (Ri, Rj), the block concatenates the feature maps
along the channel axis, generates the channel-wise attention Wij , and performs channel-wise
multiplication between [Ri, Rj ] and Wij . Afterwards, cross-image representation would be
further learned with convolutional operations. The attentive cross-image representation is
formulated as:

Oij = fM (Fij) = fM ([Ri, Rj ]⊗Wij) = fM ([Ri, Rj ]⊗ fW ([Ri, Rj ])) (4)
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where Oij denotes the output of the block, fM (·) is the operation that captures the cross-
image representation implemented as a convolutional network, fW (·) denotes the branch
that generates channel-wise attention, and ⊗ is the channel-wise multiplication.

3.4. Prediction Learning

With the learned cross-image representation, we perform relative attribute learning with a
prediction block. The prediction part consists of two fully connected layers and outputs pij
which indicates the probability of that image Xi exhibits more of the attribute than image
Xj . pij is expected to be larger than 0.5, if image Xi exhibits more of the attribute than
image Xj . Similarly, if image Xi exhibits less of the attribute than image Xj , pij is expected
to be smaller than 0.5, and if it is desired that the two images have the same strength, pij
is expected to be 0.5.

To learn the parameters of our network, we optimize it by minimizing the standard
cross-entropy loss:

Lij = −tij log(pij)− (1− tij) log(1− pij) (5)

where tij is the target probability of the image pair (Xi, Xj). Because of the nature of the
datasets, tij is chosen from set {0, 0.5, 1}, according to the available labels in the dataset.

4. Experiments

To validate our method, we quantitatively compare it with several state-of-the-art methods
on all publicly available benchmark datasets for relative attributes to our knowledge. At the
same time, we analyze the capability and effectiveness of our method through the qualitative
results.

4.1. Datasets

UT-Zap50K Yu and Grauman (2014) dataset is a collection of 50025 images with anno-
tations for relative comparison of 4 attributes collected from Zappos.com. This dataset
contains two collections: Zappos50K-1, in which relative attributes are annotated for
coarse pairs, where the comparisons are relatively easy to interpret, and Zappos50K-2,
where the relative attributes are annotated for fine-grained pairs, for which making the
distinction between them is hard. Zappos50K-1 contains approximately 1500-1800 training
image pairs for each attribute. They are divided into 10 train/test splits which are provided
alongside the dataset and are used in this work. Zappos50K-2 contains a test set of approx-
imately 4300 pairs, while the training set is the combination of the training and testing sets
of Zappos50K-1.

Zappos50K-lexi Yu and Grauman (2017) is an augmented collection of images with
the crowd-mined lexicon for 10 additional attributes based on the UT-Zap50K. It contains
approximately 1300-2100 image pairs for each attribute.

LFW-10 Sandeep et al. (2014) dataset is a subset of the Labeled faces in the wild (LFW)
and contains 2000 images of faces: 1000 for training and 1000 for testing. Annotations for 10
attributes are available. For each attribute, a subset of 500 image pairs have been annotated
for each training and testing set. We use the same train-test splits provided in Sandeep
et al. (2014).
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PubFig Parikh and Grauman (2011) dataset is a subset of the Public Figure Face
Dataset (PubFig) and contains 800 facial images (GIST+Color features) from 8 random
identities. 11 attributes are available. The same train-test splits are used as in Parikh and
Grauman (2011); Singh and Lee (2016).

OSR Parikh and Grauman (2011) dataset contains 2688 images (GIST features) of
outdoor scenes in 8 categories, for which 6 relative attributes are annotated. We use the
same train-test splits as in Parikh and Grauman (2011); Singh and Lee (2016). The ordering
of samples in both PubFig and OSR datasets are annotated in a category level; all images in
a specific category are annotated higher, more equal, and lower than all images in another
category, with respect to an attribute.

4.2. Implementation Details

We train a separate network for each attribute. We implement our proposed model based
on the Lasagne Dieleman et al. (2015) deep learning framework. In all our experiments,
we use the VGG-16 model of Simonyan and Zisserman (2014) and trim out all the fully
connected layers (all the convolutional layers are used) as the single-image feature learning
part. The weights of the model are initialized with a pre-trained model on ILSVRC 2014
Russakovsky et al. (2015) dataset for the task of image classification. While the network
learns to predict the relative attributes, these weights are fine-tuned. The remaining layers
are newly introduced. The dimensions of the fully connected layers in the prediction part
are set to 1024 and 1. All the weights of the attentive cross-image representation block and
prediction part are initialized using the weights sampled from the Gaussian distribution
with a standard deviation of 0.01, and the biases are initialized to 0.01. To prevent the loss
from diverging, we clip the probability pij to be in the range [10−7, 1− 10−7].

For training, we use stochastic gradient descent with RMSProp updates with a mini-
batch size of 48 (24 pairs of image). The learning rate of the single-image feature learning
part is set to 5e-5 and the learning rate of all the other layers is set to 5e-4 initially. For the
sparsity of the supervision, we adopt the learning rate decay and weight decay to prevent
overfitting. In particular, to determine the step of the learning rate decay, we randomly
sample 1/5 of the training set from the Zappos50K-2 as the validation set. A fixed 5e-4
multiplier is used for the weight decay.

According to our model, (Ri, Rj) and (Rj , Ri) are different image pairs. In order to
balance the dataset, we invert the order of images in a pair to get a new pair with an
opposite label. For example, we can get a new pair (Rj , Ri) labeled 1 − tij from the pair
(Ri, Rj) with label tij . After this operation, the composition of the dataset is balanced with
the number of the training image pairs doubled. For Zappos50K and LFW-10 datasets, we
train with 16 epochs and divide the learning rate by 10 at epoch 5 and epoch 12. Due to
the large number of the sample pairs, we train with 2 epochs for PubFig and OSR datasets.

4.3. Baseline

We use the RankNet model proposed in Souri et al. (2016) as our baseline, which is based
on single-image representation learning with the VGG-16 network pre-trained on ILSVRC
2014 as well. With this baseline, we can evaluate the effectiveness of the attentive cross-
image representation for relative attribute learning. In addition, we also include other
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Table 1: Results for the Zaps50K-lexi dataset
Method Comfort Casual Simple Sporty Colorful Durable Supportive Bold Sleek Open Mean
RankSVM 84.03 86.11 86.89 87.27 83.84 85.15 87.75 83.71 86.06 84.41 85.52
DeepSTN 84.95 87.04 89.46 88.79 94.30 83.29 85.75 87.42 85.82 84.68 87.15
Ours-without-attention 90.26 91.05 90.17 93.01 95.23 90.70 91.76 91.12 88.51 87.90 90.97
DACRL(ours) 89.56 91.98 89.23 92.71 94.29 90.70 91.99 91.32 88.51 87.37 90.77
RankNet (224) 90.48 90.43 90.40 93.31 95.43 90.47 91.98 91.53 86.31 82.53 90.29
Ours-without-attention(224) 91.88 94.44 89.93 93.01 97.33 92.65 92.65 91.12 89.24 87.90 92.02
DACRL(ours)(224) 91.88 91.36 90.16 94.22 95.81 92.33 92.65 92.56 90.71 88.98 92.07

Table 2: Results for the PubFig dataset
Method Male White Young Smiling Chubby Forehead Eyebrow Eye Nose Lip Face Mean
FG-LP 91.77 87.43 91.87 87.00 87.37 94.00 89.83 91.40 89.07 90.43 86.70 89.72
RankNet 95.50 94.60 94.33 95.36 92.32 97.28 94.53 93.19 94.24 93.62 94.76 94.42
DRA 90.82 87.12 91.49 92.68 89.30 94.39 90.19 90.60 91.03 90.35 91.99 90.91
Local Global 92.39 90.75 91.10 90.24 93.00 93.00 91.78 87.62 88.38 92.84 93.22 91.30
Ours-without-attention 97.70 97.82 97.10 97.03 97.05 98.30 97.36 97.99 97.26 94.36 98.04 97.27
DACRL(ours) 96.49 97.80 97.96 97.42 97.22 98.05 97.48 96.91 97.74 96.83 96.27 97.29

representative results from recent efforts, such as DeepSTN Singh and Lee (2016), FG-LP
Yu and Grauman (2014), DRA Yang et al. (2016), Local Global He et al. (2016b), Spatial
Extent Xiao and Jae Lee (2015), and RankSVM Parikh and Grauman (2011).

4.4. Quantitative Results

Following Parikh and Grauman (2011); Yu and Grauman (2014); Sandeep et al. (2014); Souri
et al. (2016); Yang et al. (2016); He et al. (2016b); Singh and Lee (2016); Yu and Grauman
(2017), we report the accuracy in terms of the percentage of correctly ordered pairs. In
addition, we have added the results of the proposed model without channel-wise attention
(referred as Ours-without-attention), which only relies on the cross-image convolution, to
further verify the effectiveness of cross-image representation for relative attribute learning.

We first report the results on the Zappos50K-lexi Yu and Grauman (2017) dataset in
Table 1. This is an newly collected dataset with crowd-mined lexicon for 10 attributes.
For an fair comparison, our methods are trained and tested on the same 64 × 64 images
as the methods in Yu and Grauman (2017). As shown in Table 1, our methods achieve
state-of-the-art results on all the attributes. To fully illustrate the capacity of our model,
we train our model on 224× 224 images and compare them with that in Souri et al. (2016).
Our models surpass it by a considerable margin on most of the attributes. Finally we report
the results on the Zappos50K-1 and Zappos50K-2 datasets (Table 4). Our methods show
an excellent capacity on most attributes as well.

Table 3: Results for the OSR dataset
Method Natural Open Perspective Large Size Diag ClsDepth Mean
FG-LP 95.70 94.10 90.43 91.10 92.43 90.47 92.37
RankNet 99.40 97.44 96.88 96.79 98.43 97.65 97.77
DRA 99.47 97.81 97.19 96.88 98.46 97.24 97.84
DeepSTN 98.89 97.20 96.31 95.98 97.64 96.10 97.02
Local Global 98.91 96.32 94.20 94.93 97.01 92.29 95.61
Ours-without-attention 99.43 97.95 97.73 97.07 98.61 98.13 98.15
DACRL(ours) 99.77 98.54 97.56 97.56 98.48 98.62 98.42
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Table 4: Results for the Zappos dataset
Dataset Zappos50K1 Zappos50K2
Method Open Pointy Sporty Comfort Mean Open Pointy Sporty Comfort Mean
RankSVM 87.77 89.37 91.20 89.93 89.57 60.18 59.56 62.70 64.04 61.62
Spatial Extent 95.03 94.80 96.37 95.60 95.45 - - - - -
FG-LP 90.67 90.83 92.67 92.37 91.64 74.91 63.74 64.54 62.51 66.43
RankNet 95.37 94.43 97.30 95.57 95.67 73.45 68.20 73.07 70.31 71.26
DeepSTN 94.87 94.93 97.47 95.87 95.79 - - - - -
Local Global 95.50 95.98 97.56 96.00 96.26 74.10 69.99 71.92 71.34 71.84
Ours-without-attention 96.63 95.07 97.70 96.37 96.44 75.45 69.80 73.78 68.54 71.89
DACRL(ours) 96.07 95.03 97.70 96.23 96.26 75.66 70.65 73.87 69.56 72.44

Table 5: Results for the LFW-10 dataset

Method Bald DkHair Eyes GdLook Mascu Mouth Smile Teeth FrHead Young Mean

Spatial Extent 83.21 88.13 82.71 72.76 93.68 88.26 86.16 86.46 90.23 75.05 84.67
FG-LP 67.90 73.60 49.60 64.70 70.10 53.40 59.70 53.50 65.60 66.20 62.43
RankNet 81.14 88.92 74.44 70.28 98.08 85.46 82.49 82.77 81.90 76.33 82.18
DeepSTN 83.94 92.58 90.23 71.21 96.55 91.28 84.75 89.85 87.89 80.81 86.91
Local Global 83.09 90.01 93.14 75.70 97.93 89.12 89.50 85.89 86.11 75.58 86.61

Ours-without-attention 83.21 91.99 87.97 69.97 97.70 89.93 85.03 88.00 89.45 74.84 85.81
DACRL(ours) 85.04 92.58 90.23 70.28 98.28 91.28 85.03 89.23 90.63 76.55 86.91

Table 2 and Table 3 show our results on the PubFig and OSR datasets respectively.
Our proposed framework outperforms the state-of-the-art methods on all the attributes of
the dataset by a considerable margin. Our methods show outstanding results both on the
low level attributes (Nose, White, ) and generic, high level attributes (Young, Perspective,
). Taking the capacity of the model into account, our models surpass not only the shallower
model Yang et al. (2016) which is based on the AlexNet Krizhevsky et al. (2012) but also
the deeper model He et al. (2016b) which is based on ResNet-34 He et al. (2016a).

Table 5 shows our results on the LFW-10 Sandeep et al. (2014) dataset. Our models
perform competitively with respect to the state-of-the-art methods. Different from the
other datasets, the images in this dataset typically contain a large range of background
while the face area typically only occupies a small portion of an image. The background
part is considered as noise for most of the attributes in this dataset that are highly local,
such as eyes and smile. Therefore, the methods that outperform us for certain attributes
pay much attention to the local region of the images and incorporate local context and
global information.

4.5. Ablation Study

We study the contribution that cross-image representation versus the channel-wise attention
has to the relative attribute prediction performance. For this, we compare three models:
(1) the baseline model (RankNet Souri et al. (2016)) which is based on the VGG-16
architecture with the last fully connected layer replaced with one unit linear layer; (2) the
proposed model (shown in Figure 2) with the channel-wise attention branch (the part in the
red dotted box) removed (Ours-without-attention); and (3) the proposed model which
combines cross-image representation and channel-wise attention (DACRL(ours)).

According to the quantitative results of the three models on the datasets, our models
(with and without attention) can outperform the baseline model by a large margin over most
of the attributes. It demonstrates that cross-image representation contributes to the relative
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LFW - Dark Hair

LFW - Mouth Open

Zappos - Pointy

Zappos - Comfort

Figure 3: Visualized channel-wise attention results for LFW-10 and Zappos dataset. The
first two columns are the original images. The third to seventh columns are the
feature maps assigned largest weights and eighth to twelfth columns are the ones
with smallest weights.

attribute learning. Furthermore, our combined model (DACRL(ours)) outperforms the
model without attention (Ours-without-attention) by a considerable margin on most
attributes, especially on dataset LFW-10. To reveal the effectiveness of the channel-wise
attention, we visualize some results in Figure 3. For attribute ”Mouth open”, the feature
maps which focus on the mouth region get more attention, and features that activate more at
the tiptoe are assigned more weights for attribute ”Pointy”. We find that the channel-wise
attention attends to the features relevant to the specific attribute adaptively. Therefore,
the combined model produces the best accuracy for most of the attributes, which shows
the channel-wise attention and cross-image representation well cooperate complementarily
in relative attribute learning.

4.6. Saliency Maps

According to Simonyan et al. (2013), we compute the derivative of the final output with
respect to the input images. These saliency maps visualize the pixels in the input images
which contribute most to the prediction result. We visualize the saliency maps of 4 datasets
obtained from our model in Figure 4. For most attributes, our method correctly discovers
the relevant image regions: hair for dark hair, plants and road for natural, regions around
eyes for eyebrow, and toe end for pointy. We find that our model can localize easily not
only local attributes such as ”Dark Hair” but also abstract attributes such as ”Natural”.

5. Conclusion

In this paper, we present the deep attentive cross-image representation learning (DACR-
L) model for relative attribute learning, which first extracts single-image representation
with one shared subnetwork, and then learns attentive cross-image representation through
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LFW - Dark Hair OSR - Natural

PubFig - Eyebrow Zappos50K - Pointy

Figure 4: Saliency maps generated by our model. For each dataset, 4 test images and their
overlaid saliency maps are shown (the warmer the color of the overlay image, the
more salient that pixel is). As shown, our model pays attention to the relevant
regions: hair for dark hair, plants and road for natural, regions around eyes for
eyebrow, and toe end for pointy.

considering the channel-wise attention of concatenated single-image feature maps. Taking
a pair of images as input, DACRL outputs a posterior probability indicating the relative
strengths of a specific attribute. Extensive experiments on several benchmark datasets
demonstrate the effectiveness of our approach against the state-of-the-art methods.
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