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Abstract

Recently, progress in learning-by-synthesis has proposed training models on synthetic im-
ages, which can effectively reduce the cost of manpower and material resources. However,
learning from synthetic images still fails to achieve the desired performance compared to
naturalistic images due to the different distribution of synthetic images. In an attempt
to address this issue, previous methods were to improve the realism of synthetic images
by learning a model. However, the disadvantage of the method is that the distortion has
not been improved and the authenticity level is unstable. To solve this problem, we put
forward a new structure to improve synthetic images, via the reference to the idea of style
transformation, through which we can efficiently reduce the distortion of pictures and min-
imize the need of real data annotation. We estimate that this enables generation of highly
realistic images, which we demonstrate both qualitatively and with a user study. We quan-
titatively evaluate the generated images by training models for gaze estimation. We show
a significant improvement over using synthetic images, and achieve state-of-the-art results
on various datasets including MPIIGaze dataset.
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1. Introduction

There is no denying that appearance-based gaze estimation has been enjoying its unique and
significant role in facial information gathering via mass of labeled training datasets, which
are gaining importance with the recent rise in high capacity deep convolution networks.
However, due to the high cost of time and bankroll, solutions are required to tackle these
problems. When it comes to this matter, human give priority to the synthetic image because
the annotations are automatically available. However, due to the gap between synthetic
and naturalistic image distributions, learning the misleading synthetic images can result
in synthetic data not being a true reflection of realism, and the details represented may
confuse the network and render it fail to complete the mission.

As such, one solution is to improve the simulator. But increasing the authenticity is
computationally expensive, designing a renderer is a heavy workload, and the top renderer
may still be difficult to model all the features of the naturalistic image. This may make the
model over fitting in the "unreal” details of the synthetic image. The other solution is to
improve the distribution of synthetic images and make them closer to the real pictures. The
current method of state-of-the-art is Shrivastava et al. (2016). We adopt a neural network
model similar to Generative Adversarial Networks (GAN). The main use of GAN was to
train computers to generate some emanational pictures. To be graphic, it used a synthetic-
image-producing network to be against another dataset that produced naturalistic images,
and then distinguished it with a separate distinction network. On the basis of GAN, they
made some big difference on models. For example, they input synthetic images instead of
random vectors and proposed a learning model called Simulated + Unsupervised ultimately.

The contribution of this paper to computer vision, in addition to a new learning model,
also includes using the model successfully train an optimized network (Refiner) on the
premise of no artificial annotation and rendering computers generate more real synthetic
images. However, the disadvantage of the method is that the distortion is not improved and
the authenticity level is not stable. So, to solve this problem, we put forward a new structure,
which can improve synthetic images, via the reference to the idea of style transformation to
efficiently reduce the distortion of pictures and minimize the need of real data annotation.
The reason why real data needs a small part of the annotation is that it needs its semantic
information to make the synthetic data more authentic, while one of the great benefits
of synthetic data is that its semantic information is clearer. For example, data sets such
as unity of human eyes can use existing information to achieve accurate segmentation of
pupil and iris. The advantage of applying this segmentation result to simulation data
synthesis is that the addition of semantic information will make the distributed learning
more apposite compared to holistic image synthesis and, in result, avoid the edge and pattern
distortion caused by holistic learning. The same as general GAN structure, our framework
also includes the generation network G and the distinction network D. We improve the
structure of the image generation part and change the input from the random vector to the
content of naturalistic image distribution and the simulation picture together. It will make
the generation more stable, avoiding the randomness of distribution. It will also achieve a
stable distribution in a short time. We modify the way of loss evaluating of the distinction
network and add regular items to ensure the authenticity of the pictures.
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We prove that the structure can generate highly realistic images steadily by qualitative
and user research. Meanwhile, the training model of gaze estimation is used to evaluate pro-
duced images quantificationally. Compared with the synthetic images used, we implemented
the best results on multiple datasets.

In summary, our contributions are five-fold:

1. We propose a new structure, which can improve synthetic images, via the reference to
the idea of style transformation to efficiently reduce the distortion of pictures and minimize
the need of real data annotation.

2. One of the great benefits of synthetic data is that its semantic information is clearer.
The advantage of applying this segmentation result to simulation data synthesis is that the
addition of semantic information will make the distributed learning more apposite compared
to holistic image synthesis and, in result, avoid the edge and pattern distortion caused by
holistic learning.

3. We improve the structure of the image generation part and change the input from the
random vector to the content of naturalistic image distribution and the simulation picture
together. It will make the generation more stable, avoiding the randomness of distribution.
It will also achieve a stable distribution in a short time.

4. We modify the way of loss evaluating of the distinction network and add regular
items to ensure the authenticity of the pictures.

5. We prove that the structure can generate highly realistic images steadily by qual-
itative and user research. Meanwhile, the training model of gaze estimation is used to
evaluate produced images quantificationally. Compared with the synthetic images used, we
implemented the best results on multiple datasets.

2. Proposed Method

Generator
(€] -
Discriminator
D

Figure 1: The overview of proposed methods. The proposed network can be divided into
three parts: coarse segmentation network, Generator and Discriminator.

Semantic

segmentation

Our proposed network (As Fig. 1) takes two images with their mask: the reference
style image which is a set of naturalistic eye image from video of driving environment or
naturalistic eye image dataset. A stylized and retouched image referred as the input image
from synthetic image dataset. We use this to train the gaze estimation, as we seek to transfer
the style of the reference to the input while keeping the content and spatial information
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due to its importance in appearance-based gaze estimation. The proposed network can be
divided into three parts: coarse segmentation network, Generator and Discriminator.

2.1. semantic segmentation

We train the semantic segmentation network which builds upon an efficient redesign of
convolutional blocks with residual connections to segment, according to the line of gaze
estimation for the naturalistic image. One of the great benefits of synthetic data is that
its semantic information is clearer. Thus the challenge is mainly on segment naturalistic
image. Residual connections can avoid the degradation problem with a large amount of
stacked layers. Our architecture is fully depicted in fig.2. Number of feature maps at
layers @ output resolution is shown under each block.

Nl

Output
1024x<1024

Input

102451024 16@512>612 64@256>256 128@128x128 64@256>256 16@512>612

Downsampler block Residual block _

Figure 2: The overview of semantic segmentation network. Number of feature maps at
layers @ output resolution is shown under each block. The network has three
kinds of block. We follow an encoder-decoder architecture to avoid the need of
using skip layers to refine the output. Furthermore, in consideration of simplifying
the task, we only mark two kinds of information on the naturalistic image: the
pupil and the iris.

As we know, Residual block consist of many stacked Residual Units and each unit
can be expressed in a general form as y; = h(x;) + F(x;, Wi,x101 = f(y;) where x; and
x14+1 are input and output of the [ — th unit, and F is a residual function. In y; = h(x;) +
F(x;,Wi,x131 = f(y1), h(x;) = x; is an identity mapping and f is a ReLU function. We try to
change the residual network structure makes the association between features stronger. By
design the Residual block, we found the impact of our Residual block is twofold. First, the
optimization is further eased (comparing with the baseline ResNet) because f is an identity
mapping. Second, using BN as pre-activation improves regularization of the models. We
follow an encoder-decoder architecture to avoid the need of using skip layers to refine the
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output. Furthermore, in consideration of simplifying the task, we only mark two kinds of
information on the naturalistic image: the pupil and the iris. However, many naturalistic
images are influenced by light and other factors, and sometimes the pupil and the iris
cannot be completely separated, to avoid ”orphan semantic labels” that are only present in
the input image, which the ”orphan labels” usually are pupil region because of the outdoor
illumination effect, we constrain the pupil semantic region to be set as the center of iris
region. We have also observed that the segmentation does not need to be pixel accurate
since eventually, the output is constrained by feature extraction network.

2.2. Generator G

We decompose the generator into two-subnetworks:G1 and G2. We term G1 as the global
generator network and G2 as the local enhancer network. The generator is then given by
the tuple G = G1, G2 as visualized in Fig. 4. The global generator network operates at a
resolution of 297 x 297, and the local enhancer network outputs an image with a semantic
layouts that is the output of the previous semantic segmentation network.

Our global generator is built on the architecture proposed by Johnson et al. [22], which
has been proven successful for neural style transfer on images. It consists of 3 components: a
convolutional front-end G1(F), a set of residual blocks G1(R) and a transposed convolutional
back-end G1(B).

The local enhancer network also consists of 3 components: a convolutional front-end
G2(F) , a set of residual blocks G2(R), and a transposed convolutional back-end G2(B).
Different from the global generator network, a semantic label map is passed through the
3 components sequentially to output an image with instance segmentation informantion
and the input to the residual block G2(R) is the element-wise sum of two feature maps:
the output feature map of G2(F) , and the last feature map of the back-end of the global
generator network G1(B). This helps integrating the global information from G1 to G2.

During training, we first train the global generator and then train the local enhancer
in the order of their scale. We then jointly fine-tune all the networks together. We use
this generator design to effectively aggregate global and local information for the image
synthesis task.

2.3. Discriminator D

Realistic image synthesis poses a great challenge to the GAN discriminator design. To
differentiate distribution naturalistic and synthesized images, the discriminator needs to
have a large receptive field with instance segmentation information on global and local
images. This would require either a deeper network or larger convolutional kernels. As
both choices lead to an increased network capacity, overfitting would become more of a
concern. Meanwhile, both choices require a larger memory footprint for training, which
is already a scarce resource for realistic image generation. Inspired by Style Transfer, we
proposed Discriminator D with novel loss function which is a pretrained VGG-19 (Simonyan
and Zisserman (2014)) network and made some key modifications to the standard perception
losses to keep the distribution of the naturalistic images and content of the synthetic images
to the fullest extent. As Fig. 4 shows that instead of taking only RGB color channels into
consideration, our network utilizes the representations of both color and semantic features
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Residual blocks

Residual blocks

Figure 3: Network architecture of our generator. We first train a residual network G1 on
global raw images. Then, another residual network G2 is appended to G1 and
the two networks are trained jointly on local raw images with semantic layouts.

for style transfer. With the semantic features, we can address the spatial arrangement
information and avoid the spatial configuration of the image being disrupted because of the
style transformation.

2.3.1. STYLE RECONSTRUCTION LOSS

Feature Gram matrices are effective at representing texture, because they capture global
statistics across the image due to spatial averaging. Since textures are static, averaging
over positions is required and makes Gram matrices fully blind to the global arrangement of
objects inside the reference naturalistic image. So if we want to keep the global arrangement
of objects, make the gram matrices more controllable to compute over the exact region of
entire image, we need to add some texture information to the image. Luan et al. (2017)
presented a method which added the masks to the input image as additional channels and
augmented the neural style algorithm by concatenating the segmentation channels. Inspired
by them, mask is added as the texture information to compute over the exact region of entire
image. Thus the style loss can be denoted as:

elstyle - )‘gei)s + )‘lds (1)
¢ 1
te=>" IN? 2 > (Gi[O] - Gi[S))3; (2)
C=1 l,C l,C 'L]
c
b= 3 (GrelO] - Gil8) (3)
T AN M, T e
C:1 ,C ,C Zj
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where C is the number of channels in the semantic segmentation mask and [/ indicates
the [-th convolutional layer of the deep convolutional neural network. Each layer with IV,
distinct filters has N; feature maps each of size M;, where M; is the height times the width
of the feature map. So the responses in each layer I can be stored in a matrix F[-] € RN>*M
where F'[-];; is the activation of the ith filter at position j in each layer .

Fl,c[O] = [ ]Sl C[I] (4)
Fl,c[S] = [ ]Sl C[S] (5)
Gl,cH = Fl,c[']Fl,c[']T (6)

Sic[] is the segmentation mask in each layer [ with the channel c. A, is the weight to
configure layer preferences of global losses £,s which calculated between raw input image
and features which was extracted by feature extraction network.); is the weight to configure
layer preferences of local losses ¢;5 which calculated between input segmentation image and
features which was extracted by feature extraction network with the input of segmentation
image.

We formulate the style transfer objective as follows:

L
Ltotal = Z Blelstyle (7)
=1

where L is the total number of convolutional layers and [ indicates the I-th convolutional
layer of the deep convolutional neural network. [; is the weight to configure layer prefer-
ences. gy is the style loss(Eq.(4)). The advantage of this solution is that the requirement
for mask is not too precise. It can not only retain the desired structural features, but also
enhance the estimation of the pupil and iris information during the reconstruction of the
naturalistic image style.

We now describe how we regularize this optimization scheme to preserve the structure of
the input image and produce realistic but no distorted outputs. Our strategy is to express
this constraint not on the output image directly but on the transformation that is applied
to the input image. We name V¢[O] the vectorized version (N x 1) of the output image
O in channel ¢ and define the following regularization term that penalizes outputs that are
not well explained by a locally affine transform:

3
b =Y _Ve[O]"V[O] (8)

c=1
We formulate the realistic but no distorted style transfer objective by combining all com-

ponents together:
L

Ltotal =1 Z ﬁlgityle + ﬁgm (9)
=1

where n = 1029 = 10*
Our full objective combines both GAN loss ¢G4y and style tranfer loss Dy as:

ming(Y_ Laan(G ) + XY Liotal) (10)

where A controls the importance of the two terms.
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Figure 4: Coarse segmentation on MPIIGaze dataset.(a) represents images which come from
training dataset and (b) represents images which come from testing dataset.Pupil
region is labelled on white and iris region is red. We can observe that although
testing dataset are influenced by light and other factors, the pupil and the iris
can not be completely separated, proposed network can label the center of iris
region to avoid ”orphan semantic labels”.

Figure 5: Coarse segmentation on LPW dataset.(a) represents images which come from
training dataset and (b) represents images which come from testing dataset. For
training coarse segmentation network, training dataset consists of 500 images from
LPW datset and 1500 images from MPIIGaze datset which labelled on pupil and
iris. Pupil region is labelled on white and iris region is red. we can observe that
although the testing dataset under different illumination condition with training
dataset, proposed network can achieve good results without ”orphan semantic
labels”.
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3. Experimental Results

3.1. Coarse Segmentation

Synthetic images can be segment easier than naturalistic images, thus we label the natu-
ralistic image dataset for training a model which can segment pupil region and iris region
effectively from naturalistic and synthetic image datasets.

Fig. 4 and Fig. 5 show the result of our coarse segmentation network on MPIIGaze
dataset and LPW dataset respectively. (a) represents images which come from training
dataset and (b) represents images which come from testing dataset. For training coarse
segmentation network, training dataset consists of 500 images from LPW datset and 1500
images from MPIIGaze datset which labelled on pupil and iris. Pupil region is labelled on
white and iris region is red. In the main paper we generate all comparison results using
automatic coarse segmentation network.

From Fig. 5 we can observe that although the testing dataset under different illumination
condition with training dataset, proposed network can achieve good results without ”orphan
semantic labels”. Further more, we can observe that although testing dataset are influenced
by light and other factors, the pupil and the iris can not be completely separated, proposed
network can label the center of iris region to avoid ”orphan semantic labels”.

=™ &

Original
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Lo ol = =
| -y | |
- - 1 ]
Gatys et al. Feifei Li et al.
N ] i ;
Lo =0 ST = =
| --------------------------------- i | P
Without modify generator Without modify discriminator
T éi;nméAN_ ------- Proposed

Figure 6: Example output of proposed method for UnityEyes gaze estimation dataset. The
skin texture and the iris region in the refined synthetic images are qualitatively
significantly more similar to the naturalistic images than to the synthetic images.
What’s more, comparing with generator and discriminator without modification
, the distribution of pupil and iris regions are dramatically clear.
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3.2. Qualitative Results

Besides that, we show the result of generator without modification and discriminator with-
out modification. With all these five baseline methods, we show the result of two different
datasets which are UnityEyes (Wood et al. (2016)) and SynthesEyes (Wood et al. (2015)).

Original

e B 3 ‘ _____ | Y i L
| 44 I < .
I - . 1 P

Gatys et al. Feifei Li et al.
e — 1 <
P S S S e
S o= | : : :

Without modify generator Without modify discriminator
SimpleGAN Proposed

Figure 7: Example output of proposed method for SynthesEyes gaze estimation dataset.
The skin texture and the iris region in the refined synthetic images are qualita-
tively significantly more similar to the naturalistic images than to the synthetic
images. What’s more, comparing with generator and discriminator without mod-
ification, the distribution of pupil and iris regions are dramatically clear.

As Fig.6 and Fig.7 we can see that if closely observed, it can be seen that none of these
styles has similar gaze angle with naturalistic images. The skin texture and the iris region
in the refined synthetic images are qualitatively significantly more similar to the naturalistic
images than to the synthetic images. It can be observed that the proposed method is more
similar with real conditions by light and achieves outstanding results above Gatys et al.
(2015) and Feifei Li et al. Johnson et al. (2016). What’s more, comparing with generator
without modification and discriminator without modification, the distribution of pupil and
iris regions are dramatically clear.

In order to validate the effectiveness of the proposed method, we compared it with
available methods for several iterations in Fig.8 and Fig.9 on different datasets. ”Iter”
means the number of iteration. Because Shrivastava et al. (2016) is not stable so we only
compare our method with Gatys et al. (2015) and Feifei Li et al. Johnson et al. (2016),
we can see that after iteration for serval iterations, proposed method can achieve stable
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distribution with less distortion, thus our result can be used to train a stable gaze estimator.

Inter 100 Inter 200 Inter 400 Inter 800 Inter 1000

Gatys et al.

Feifei Li et al.

Without modlfy |
generator i

Without modify
discriminator

Figure 8: Example output of proposed method for UnityEyes gaze estimation dataset for
several iterations. In order to validate the effectiveness of the proposed method,
we compared it with available methods for several iterations. ”Iter” means the
number of iteration. Comparing our method with Gatys et al. (2015) and Feifei
Li et al. Johnson et al. (2016), we can see that after iteration for serval iterations,
proposed method can achieve stable distribution with less distortion.

3.3. Visual Turing Test

The most reliable known methodology for evaluating the realism of synthesized images is
perceptual experiments with human observers. Such experiments yield quantitative result-
s. There have also been attempted to design automatic measures that evaluate realism
without humans in the loop. For example, Salimans et al. (2016) ran a pretrained image
classification network on synthesized images and analyzed its predictions. We experimented
with such automatic measures (for example using pretrained semantic segmentation net-
works) and found that they can all be fooled by augmenting any baseline to also optimize
for the evaluated measure; the resulting images are not more realistic but score very highly
(Salimans et al. (2016) Goodfellow et al. (2014)). Well-designed perceptual experiments
with human observers are more reliable. We therefore use carefully designed perceptual
experiments for quantitative evaluation.
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Figure 9: Example output of proposed method for SynthesEyes gaze estimation dataset for
several iterations. In order to validate the effectiveness of the proposed method,
we compared it with available methods for several iterations. ”Iter” means the
number of iteration. Comparing our method with Gatys et al. (2015) and Feifei
Li et al. Johnson et al. (2016), we can see that after iteration for serval iterations,
proposed method can achieve stable distribution with less distortion.
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To quantitatively evaluate the visual quality of the refined images, we designed a user
study where subjects were asked to classify images as naturalistic or refined synthetic.
Each subject was shown a random selection of 200 naturalistic images and 200 refined
images which were refined by proposed method in a random order, and was asked to label
the images as either real or refined. The subjects found it very hard to tell the difference
between the naturalistic images and the refined images. Table 1 shows the confusion matrix.
In contrast, when testing on refined synthetic images which refined by Shrivastava et al.
(2016) vs naturalistic images, we showed 50 naturalistic and 50 synthetic images per subject,
and the subjects chose correctly 72 times out of 100 trials, which is significantly higher than
ours.

Table 1: Results of the Visual Turing test user study for classifying real vs refined images
by proposed method. Subjects were asked to distinguish between refined synthet-
ic images (output from our method) and naturalistic images (from MPIIGaze).
The average human classification accuracy was 50.6%, demonstrating that the au-
tomatically generated refined images are visually very hard to distinguish from
naturalistic images.

selected as real | selected as synthetic
real 1023 977
synthetic 1001 999

3.4. Appearance-based Gaze Estimation

To verify the effectiveness of the proposed method, we perform experiments to assess both
the quality of our refined images and their suitability for appearance-based gaze estimation.
We use COCO dataset to train the coarse model net. And few of images from MPIIGaze
dataset are chosen as target images. The gaze estimation dataset consists of 28,332 synthetic
images from eye gaze synthesizer UnityEyes-fine dataset, six subjects of UTview datset and
350,428 naturalistic images from the MPIIGaze dataset. For UTview Zhang et al. (2015),
the data of subjects SO, S2, S3, S4, S6 and S8 in UTView are used as subject 1-6 in our
dataset. In total, there are 144 (head pose) x 160 (gaze directions) x 6 (subjects) = 138,240
training samples and 8 (head pose) x 160 (gaze directions) x 6 (subjects) = 7680 testing
samples.

We evaluate the ability of our method for appearance-based gaze estimation from nat-
uralistic dataset and synthetic image dataset. ALR Lu et al. (2014), SVR Schneider et al.
(2014), RF Sugano et al. (2014), convolution neural network Wood et al. (2015) and KNN
Wood et al. (2015) are compared with our method as baseline methods. Similar to Wood
et al. (2016), we train a convolution neural network (CNN) to predict the eye gaze direction.
For RF training, pixel-wise data is employed to represent the original eye image by convert-
ing it to column vector, the number of trees during training is set to 20. For K-NN with
UnityEyes refined images or UTview naturalistic images, considering that the computation
cost increases with neighbor samples number, it can be found that a high-quality gaze es-
timator is obtained when the neighbor samples number is set to 50, which costs a shorter
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operating time. A comparison to the state-of-the-art can be shown in Table.1. Training
the CNN on the refined images outperforms the state-of-the-art on the part of MPIIGaze
dataset. We observe that there is a large improvement in performance from training on the
refined images and an significant improvement compared to the state-of-the-art.

Table 2: Comparison of our method to the state-of-the-art on the part of MPIIGaze dataset
of real eyes which contains 350,428 images and UnityEyes dataset of synthetic
images which contains 28,332 images of UnityEyes-fine dataset . The third column
indicates whether the methods are trained on Real/Synthetic data. The error
means eye gaze estimation error in degrees.

Method Error | R/S
ALR Lu et al. (2014) 16.7 | R
SVR Schneider et al. (2014) 16.6 | R
RF Sugano et al. (2014) 154 | R
ONN with UT Zhang et al. (2015) 132 | R
K-NN with UT (ours) 8.9 R
CNN with UT (ours) 102 | R
K-NN with Refined UnityEyes Wood et al. (2015) 10.2 S
CNN with Refined UnityEyes Wood et al. (2015) 11.5 S
CNN with Refined UnityEyes(SimGANs Shrivastava et al. (2016)) | 8.0 S
K-NN with Refined UnityEyes(ours) 8.3 S
CNN with Refined UnityEyes(ours) 7.7 S

4. Conclusion

We propose a coarse-to-fine eye synthesis method through adversarial training to speed up
refining synthetic images with less unlabeled real data. We make several key modifications to
the GANSs to make the net become an efficient refine model net to improve the suitability of
gaze estimation and make the image not distorted. We quantitatively evaluate the generated
images by training models for gaze estimation. Comparing with the baseline methods, a
large improvement in performance from training on the refined images is observed and the
quantity of real data reduces by more than one order of magnitude.
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