Representation and Evaluation of Security Policies
for Distributed System Services

Tatyana Ryutov and Clifford Neuman
Information Sciences Institute
University of Southern California
4676 Admiralty Way suite 1001
Marinadel Rey, CA 90292
{tryutov, bcen} @isi.edu
(310)822-1511 (voice) (310)823-6714 (fax)

Abstract

We present a new model for authorization that inte-
grates both local and distributed access control policies
and that is extensible across applications and administra-
tive domains. We introduce a general mechanism that is
capable of implementing several security policies includ-
ing role-based access control, Clark-Wilson, ACLs, capa-
bilities, and lattice-based access controls. The Generic
Authorization and Access-control APl (GAA API) provides
a generic framework by which applications facilitate ac-
cess control decisions and request authorization informa-
tion about a particular resource. We have integrated our
systemwiththe Prospero Resource Manager and GlobusSe-
curity Infrastructure.

1 Introduction

The conventiona concept of an Access Control List
(ACL) isthearchitectural foundation of many authorization
mechanisms. A typical ACL isassociated with an object to
be protected and enumerates thelist of authorized users and
their rights to access the object. Access rights are selected
fromapredefined fixed set built into the authorization mech-
anism. Specification of the subjectsisbound to the particu-
lar security mechanism employed by the system. Thelimita-
tions of the traditional access control model become appar-
ent when it is applied in a heterogeneous, administratively
decentralized, distributed environment.

Thevariety of servicesavailableonthelnternet continues
toincrease and new classes of applicationsare evolving, in-

%1n Proceedings of the DARPA Information Survivability Conference
Exposition, January 2000. Hilton Head, South Carolina.
00-7695-0490-6/99 $10.00 ©1999 | EEE

cluding metacomputing, remote printing, and video confer-
encing. These applicationswill requireinteractionsbetween
entitiesin autonomous security domains. The generic tradi-
tional access rights may not be sufficient for some applica-
tionsto express authorization requirements. For example, a
site might be willing to make its resources avail able to oth-
ers, but limited to maximum CPU and memory utilization or
based on arequirement for payment. It isdifficult to specify
such security policiesin terms of conventional ACLSs.
Specification of security policiesfor principa sfrommul-
tiple admini strative domains poses additiona problems:

¢ Inamultipolicy environment, policy integration should
incorporate the diverse authorization models that can
coexist in adistributed system.

¢ The implementation will require integration of differ-
ent sets of policiesassociated with the domain provid-
ing resources, the domain requesting resources and the
individual users within each domain.

e There are multiple mechanisms for authentication of
usersin different domains. Therefore, there may be no
single syntax for specification of principals.

e Administrators of each domain might use domain-
specific policy syntax and heterogeneous implementa-
tions of the policies. Generdizing the way that appli-
cations define their security requirements providesthe
means for integration and trandation of security poli-
cies across multiple authorization models.

This paper describes an authorization framework de-
signed to meet these needs. Our framework isapplicablefor
awide range of systems and applications.

It includes a flexible mechanism for security policy rep-
resentation and provides the integration of loca and dis-

tributed security policies. The system supports the com-
mon authorization requirements and provides the means for
defining and integrating application or organi zation specific
policies as well. We show how this mechanism can imple-
ment role-based access control, Clark-Wilson model, and
lattice-based policies.

Our framework consistsof two components, apolicy lan-
guage and the Generic Authorization and Access-control
API.

e Policy language

The language allows us to represent existing access
control models (e.g. ACL, capability, lattice-based ac-
cess controls) in auniformand consistent manner. Au-
thorization restrictions allow the administrator to de-
finewhich operationsare alowed, and under what con-
ditions (e.g., user identity, group membership, or time
of day). These restrictionsmay implement application-
specific policies.

Generic Authorization and Access-control API

A common access control AP facilitates the appli-
cation integration of authentication and authorization.
This API alows applicationsto request the authoriza-
tion policy information for a particul ar resource and to
evaluate this policy against credentias carried in the
security context for the current connections. Applica-
tionsinvoke the GAA API functionsto determine if a
requested operation or set of operationswas authorized
or if additional checks are necessary.

Related Work

There has been recent work el sewhere on access control
models for Internet user agents [7], [8]. These models ap-
ply to the Javakey utility as an authentication mechanism
and use public key digital signatures. Our modd is gen-
eral enough to use a variety of security mechanisms based
on public or secret key cryptosystems. Also, our modedl is
application-independent whereas the models in [7] and [8]
apply primarily for browser-like applications.

The Generalized Access Control List (GACL) frame-
work described by Woo and Lam [3] presents a language-
based approach for specifying authorization policies. The
main goa of the GACL framework ismerging policiesasso-
ciated with different objects and to resolve complex depen-
dencies. GACL dlowsspecification of theinheritancerules;
access rightscan be propagated from one obj ect to the other.
A gacl may reference other gacls in its entries. The bene-
fit of the GACL approach is the ability to omit redundant
information but it may require the retrieval and evaluation
of morethen onegacl. Specification of policy dependencies

173

withinheritanceiserror-proneand may resultin circular de-
pendency of the policies and inconsistency may result.

Moreimportantly, the expressive power of GACL islim-
ited to that of ACL-based schemes and provides no sup-
port for capabilities and multi-level security systems. The
GACL modd supportsonly system state-related conditions
withinwhich rightsare granted, such as current system load
and maximum number of copies of a program to be run con-
currently. Thismay not be sufficient for distributed applica-
tions. Our mode allows fine-grained control over the con-
ditions.

Policy management issues were addressed by Blaze, et.
al. [9] with aclaim that using PolicyMaker strengthens se-
curity. Because PolicyMaker credentials bind granted rights
to publickeys, instead of identities, thiseliminatesonelevel
of indirection. Unfortunately, this binding complicates au-
thorization management, and as applied in cases where a
system uses X.509 or PGP certificates, thisbindingisdepen-
dent on the application which trandates credentials to the
PolicyMaker format.

Policiesin the PolicyMaker format are easily expressed
in our framework. We treat security policies as a set of op-
erationsthat subjects are alowed to perform on the targeted
objects, and optional constraints are placed on the granted
operations. The basic question of access control is whether
asubject is alowed to perform arequested operation. The
GAA API providesacommon interfacefor asking thisques-
tion. In contrast, to use PolicyMaker an application devel-
oper must define an application-specific language describ-
ing the requested operation. This language might not be
reusable across different application domains.

The related work described so far presents static policy
evaluation mechanisms. Decisions are based on a set of
policies and credential s presented at the time of the request.
In contrast, our framework allows dynamic policy evalua
tion where credentias can be requested from the client or
from third parties during recursive evauation of policies
withinthe API.

3 Overview of the Framework

Our framework isapplied to distributed systemsthat span
multi pleautonomous admi ni strati ve domai nswithout a cen-
tral management authority. Applications may impose their
own security policies and use different authentication ser-
vices, eg. Kerberos, DCE or X.509 certificates. We assume
that within adistributed system, multipleindependent appli-
cations coexist.

Theindividual security requirements of each application
are reflected in application-specific security policies. There
might exist common ACL sthat apply to setsof applications.
Therefore, we designed a flexible and expressive mecha-
nism for representing and eval uating authorization policies.

It is general enough to support avariety of security mecha
nisms based on public or secret key cryptosystems, and itis
usable by multiple applications supporting different opera-
tionsand different kinds of protected objects.

The major components of the architecture are;

¢ Authentication mechanisms perform authentication of
users and supply credentials.

¢ A group server maintains group membership informa-
tion.

The GAA API; Applications cal GAA API routines
to check authorization against an authorization model.
The API routines obtain policies from local files, dis-
tributed authorization servers, and from credentias
provided by the user. They combine local and dis-
tributed authorization information under a single AP
based on therequirements of the application and appli-
cable policies.

Delegation issupported by del egation credentia's, such
as restricted proxies [1], or through other delegation
methods.

3.1 Policy Language

The security policy associated with a protected resource
consists of a set of allowed operations, a set of approved
principas, and optional operation constraints. For exam-
ple, asystem administrator can define the foll owing security
policy to govern access to a printer: ”Joe Smith and mem-
bers of Departmentl are allowed to print documents Mon-
day through Friday, from 9:00AM to 6:00PM”. This pol-
icy can be described by an ACL mechanism, where for each
resource, a list of valid entities is granted a set of access
rights. The same policy can beimplemented using acapabil -
ity mechanism. However, to do so, traditional ACL and ca
pability abstractions must be extended to allow conditional
restrictions on access rights. Therefore, in implementing a
policy, it should be possibleto define:

1) access identity

2) grantor identity

3) aset of access rights

4) a set of conditions

The policy language represents a sequence of tokens. Each
token consists of:

e Token Type
Defines the type of the token. Tokens of the same type
have the same authorization semantics.

e Defining Authority

Indicates the authority responsible for defining the
value within the token type.

174

¢ Val ue

The value of the token. Its syntax and semantics are
determined by the token type. The name space for
the value is defined by the Def i ni ng Aut hority
field.

The rest of this section describes the user-level representa
tion of the policy language tokens, which can be used to im-
plement both ACLs and capabilities. More precise syntax is
given inthe Appendix.

3.1.1 Specification of Access | dentity

The access identity represents an identity to be used for ac-
cess control purposes. The authorization framework sup-
ports the following types of access identity: USER, HOST,
APPLI CATI ON, CA (Certification Authority), GROUP and
ANYBODY. Where ANYBODY represents any entity regard-
less of authentication. Thismay be useful for setting thede-
fault policies. The type of access identity isuseful in deter-
mining which additional credentials are needed (see section
3.3). Principals can be aggregated into a single entry when
the same set of access rightsand conditionsappliesto dl of
them.

Our framework supportsmultipleexisting principal nam-
ing methods. Different administrative domains might use
different authentication mechanisms, each having a par-
ticular syntax for specification of principals. Therefore,
Defi ni ng Aut hori ty for access identity indicates the
underlying authentication mechanism used to provide the
principa identity. Value represents the particular principal
identity.

3.1.2 Specification of Grantor Identity

The grantor identity represents an identity used to specify
the grantor of a capability or a delegated credentid. Its
structureissimilar to theone of theaccess identity described
in the previous subsection.

3.1.3 Specification of Access Rights

It must be possible to specify which principalsor groups of
principals are authorized for specific operations, as well as
who isexplicitly denied authorizations, therefore we define
positive and negative access rights.

All operations defined on the object are grouped by type
of accessto theobject they represent, and named using atag.
For example, thefollowing operations are defined for afile:

Token Type: pos.access rights
Defini ng Authority: loca_manager
Val ue: FILE:read,writeexecute

However, in abank application, an object might bea cus-
tomer account, and the following set of operations might be

defined:
Token Type: pos.access rights

Defini ng Authority: loca_manager
Val ue: ACCOUNT:deposit,withdraw;transfer

3.1.4 Specification of Conditions

Conditionsspecify thetype-specific policiesunder whichan
operation can be performed on an object. A conditionisin-
terpreted according to its type. Conditions can be catego-
rized as generic or specific. Generic conditions are evalu-
ated within the access control API; specific conditions are
application-dependent and usually are evaluated by the ap-
plication. These are several of the more useful generic con-
ditions[1].

e time

Time periods for which access is granted.

location

Location of the principal. Authorization is granted to
the principals residing on specific hosts, domains, or
networks.

message protection

Required confidentiality/integrity message protection.
Thiscondition specifiesalevel or mechanism that must
be used for confidentiality or integrity if accessisto be
granted.

privilege constraints

Specifies well-formed transactions and separation of
duty constraints. For more details see Section 8.
multi-level security constraints

Specifies mandatory confidentiality and integrity con-
straints. For more information see Section 9.

payment

Specifies a currency and an amount that must be paid
prior to accessing an object.

guota

Specifies a currency and alimit. It [imits the quantity
of aresource that can be consumed or obtained.
strength of authentication

Specifies the authentication mechanism or set of suit-
able mechanisms, for authentication.

175

e trust constraints

Specifies restrictions placed on security credentials.
For more information see Section 6.

o attributesof subjects

Defines a set of attributes that must be possessed by
subjectsin order to get access to the object, e.g. secu-
rity label.

If generic conditions are not sufficient for expressing
application-specific security policies, applications specify
their own conditions. Anything that can be expressed as
an a phanumeric string can be a condition. The application
must provide evauation rules for the application-specific
conditions, or be prepared to eval uate the condition once the
authorization call completes.

3.15 Extended Access Control Lists(EACLYS)

Extended Access Control Lists(EACLS) extend the conven-
tional ACL concept by alowing one to specify conditional
authorization policies. These areimplemented as conditions
on authentication and authorization credentials. An EACL
isassociated with an object and liststhe subjectsallowed to
access this object and the type of granted access. For ex-
ample, the following EACL implements policy stating that
anyone authenticated by Kerberos.V5 has read access to the
targeted resource and any member of group 15 connecting
from the USC. EDU domain has read and write access to the
object.

Token Type: access.id ANYBODY

Defi ni ng Authority: none

Val ue: none

Token Type: pos.access rights
Defini ng Authority: loca_manager
Val ue: FILE:rread

Token Type: authentication-mechanism
Defini ng Authority: system_manager
Val ue: kerberos.V5

Token Type: access.id GROUP
Defining Authority: DCE
Val ue: 15

Token Type: pos.access rights
Defini ng Authority: loca_manager
Val ue: FILE:read FILE:write

Token Type: location
Defini ng Authority: system_manager
Val ue: *.USC.EDU

The framework supports various strengths of user au-
thentication. A user may be granted adifferent set of rights,
depending on the strength of the authenti cation method used
for identification. Specification of weaker authentication
methods including network address or username will allow
the GAA API to be used with existing applications that do
not have support for strong authentication.

Objects that need to be protected include files, directo-
ries, network connections, hosts, and auxiliary devices, e.g.
printers and faxes. Our authorization mechanism supports
these different kinds of objects in a uniform manner. The
same EACL structure can be used to specify access policies
for different kinds of objects. Object names are drawn from
the application-specific name space and are opague to the
authorization mechanism.

When a protected object is created, an EACL is associ-
ated with the object. The management of EACLSs, including
giving authority to modify an EACL, is supported through
inclusion of entries specifying which principals are allowed
to modify the EACL. The control permissions comprise a
separate set of access rightsnamed with thetag MANA GE-
MENT. To restrict theability to pass the control permissions
to others a condition no_delegation may be specified asso-
ciated with such entries.

3.1.6 Capabilities

Here we present an implementation of a capability. The ex-
ample states that the capability granted by the group admin
permits read access if the capability is presented during the
specified time period.

Token Type: grantor_.id-GROUP
Defining Authority: kerberosV5
Val ue: admin@USC.EDU

Token Type: pos.access rights
Defini ng Authority: loca_manager
Val ue: FILE:rread

Token Type: timewindow
Defini ng Authority: eastern_timezone
Val ue: 8:00AM-5:00PM

3.2 EACL evaluation

The policy language we presented supportsauthorization
model sbased on the closed world model, when all rightsare
implicitly denied. Authorizationsare granted by an explicit
listing of positive access rights. Restrictions placed on pos-
itive access rights have the goal of restricting the granted
rights. The meaning of conditions on negative (denied) ac-
cess rights is unclear. We intend to investigate this issue,
however, for the time being, we require that:

176

1) A single EACL entry must not specify both positive
and negativerights.

2) If an EACL entry specifies negative rights, it must not
have any conditions. If both negative and positive autho-
rizations are dlowed in individual or group entries, incon-
sistencies must be resolved according to resolution rules.
The design approach we adopted alows the ordered inter-
pretation[11] of EACLSs. Evaluation of ordered EACL starts
from the first to the last in the list of EACL entries. The
resolution of inconsistent authorization is based on order-
ing. The authorizations that already have been examined
take precedence over new authorizations. Other interpreta-
tions were possible, but we found that for many such poli-
cies, resolution of inconsistencies was either NP-Complete
or undecidable.

There may be interactionswhen independent credentials
are used, e.g., one set of credentials causes denia, but the
other causes accept. A user may chose to withhold creden-
tialsthat it believes may result in adenial. The administra-
tor must deal with these issues by carefully setting policies
inan EACL. Conflictsmay arise when more then one entry
applies. For example, one matching entry specifies individ-
ual subject (user, host or application), and another matching
entry specifies acertain group name. In thiscase, wewould
require the entry for the individual subject to be placed be-
fore the entry for the group (assuming the policy expressed
for theindividual subject entry isan exception to the policy
expressed for the group entry). When several EACL entries
with different conditionsapply, entriesfor which conditions
are not satisfied will not affect the outcome of the authoriza-
tion function.

An ordered evaluation approach iseasier toimplement as
it allows only partial evaluation of an EACL and resolves
the authorization conflicts. The problem with this approach
is that it requires total ordering among authorizations. It
requires careful writing of the EACL by the security ad-
ministrator and is error-prone. An improper order of the
EACL entries may result in discrepancies between the in-
tended policy and the one that resultsfrom evaluation of the
EACL. It might be useful to have aseparate module[4], [9],
that would help verify and debug the EACL to assure that it
expresses the desired policy.

3.3 Credential evaluation

Credentia saretrand atedtothe GAA API internal format
and placed into the GAA API security context. When evalu-
ating an EACL, the security context is searched for the nec-
essary credentials. Assumethat filedoc.txt hasthefollowing
EACL shownin Table 1. stored in the authorization data
base:

IDENTITY ACCESSRIGHTS
TOKEN TYPE access_id_USER pos_access rights
#1| DEF. AUTHORITY KerberosvV5s local_manager
VALUE tom@ORG.EDU FILE : read

IDENTITY ACCESSRIGHTS
TOKEN TYPE access id_GROUP pos_access rights
#2| DEF. AUTHORITY KerberosV5 local_manager
VALUE admin@ORG.EDU FILE : read,write

,,

IDENTITY ACCESSRIGHTS
TOKEN TYPE access id USER pos_access _rights
43| DEF. AUTHORITY Kerberosv5 local_manager
VALUE joe@ORG.EDU FILE : write
o
Table 1.

Credentia smay have optiona conditionsassociated with
the granted rights. Assume the following credentials are
stored in the security context associated with the user Tom.

| dentity credentidl:

access.id_USER kerberos.v5 tom@ORG.EDU
condi ti on: timewindow pacific_tzone 6am-7pm

Group membership credentid:

access.id_GROUP kerberosV'5 admin@ORG.EDU
condi tion: privilegerestricted

Delegation credential:

grant or: grantor-id_USER kerberosV'5 joe@ORG.EDU
gr ant ee: accessid_USER kerberosV5 tom@ORG.EDU
obj ect s: doc.txt

rights: pos.accessrightslocal_manager FIL E:write
condi ti on: location local_manager *.org.edu

Let'sconsider arequest from auser Tom who is connect-
ing from the ORG.EDU domain to writeto thefile doc.txt at
5pm.

In evaluating the EACL, the first entry does not grant
the requested operation, however the second entry grants
it. The evaluation function will then check the security
context for the group admi n membership credentia. The
proper credentia is found, however, there is a condition
privilege:restricted. This means that Tom can
usethisprivilegeonly if logged in asan administrator. Eval-
uation continues. Thethirdentry grantsthe requested opera-
tion. The evaluation function will look for a delegation cre-
dentia fort oma@DRG EDUissued by j oe @RG EDU. The
appropriate del egation credential isfound. The conditionon
location* or g. edu issatisfied, so therequested access will

be granted.

34 Generic Authorization and Access-control
API (GAA API)

In this section we provideadescription of the main GAA
API routines.

341 GAA API functions

The gaa_get _obj ect _pol i cy. nf o functioniscaled
to obtain the security policy associated with the object.

e Input:

— Reference to the object to be accessed. The
identifier for the object is from an application-
dependent name space, it can be represented as
unigue object identifier, or symbolic name local
to the application.

— Pointer to application specific Authorization
Database.

— Upcall functionfor theretrieval of the object pol-
icy. The application maintains authorization in-
formation in a form understood by the applica
tion. It can be stored in afile, database, directory
service or in some other way. The upcall function
provided for the GAA API retrievesthisinforma-
tion and trandates it into the internal representa-
tion understood by the GAA API.

e Output:
— Object policy handle

The gaa_check_aut hori zat i on function tells the
application server whether the requested operations are au-
thorized, or if additional application-specific checks arere-
quired.

e Input:

— Object policy handle, returned by
gaa_get _obj ect policy.info

— Principal’s security context (see section 3.5.1)

— Operations for authorization. This argument in-
dicates requested operations.

e Output:

— YES (indicating authorization) is returned if al
requested operations are authorized.

— NO(indicatingdenia of authorization) isreturned
if at least one operation is not authorized.

— MAYBE (indicating aneed for application-specific
checks) isreturned if there are some uneval uated
conditions and additional application-specific
checks are needed, or if continuous eval uation of
conditionsis required.

— detailed answer contains:

* Authorization valid time period. The time
period during which the authoriza-
tionisgranted is returned as condition to be
checked by the application.

Expiration time is calculated by the GAA
AP, based on:
1. Timerelated conditions in the object
policy, eg. EACL matching entries.
2. Restrictions in the authentication and
authorization credentials.

* The requested operations are returned
marked as granted or denied along with alist
of corresponding conditions, if any. Each
conditionismarked as evaluated or not eval-
uated, and if evaluated marked as met, not
met or further evaluation or enforcement is
required. This tells the application which
policies must be enforced.

* Information about additional security at-
tributes required. Additiona credentials
might be required from clients to perform
certain operations, eg. group membership
or delegated credentials.

e gaa.i nquire_obj ect policy.nfo
Thisfunction allowsthe application to discover access
control policies associated with the targeted object ap-
plied to aparticular principd. It returnsalist of rights
that the principal is authorized for and corresponding
conditions, if any. The applicationmust understand the
conditionsthat are returned unevaluated, or it must re-
ject the request. If understood, the application checks
the conditions against information about the request,
thetarget object, or environmental conditionsto deter-
mine whether the conditionsare met. Actua enforce-
ment of policiesexpressed through application specific
conditionsistheresponsibility of theapplicationandis
outside of the scope of this paper.

342 GAA API Security Context

The security context isa GAA API data structure. It stores
information relevant to access control. Some of its con-
stituents are listed here;

Identity Verified authentication information, such as prin-
cipa ID for aparticular security mechanism. To deter-
mine which entries apply, the GAA API checks if the

178

specified principa 1D appearsin an EACL entry that is
paired with aprivilegefor thetype of access requested.

Authorization Attributes Verified authorization
credentials, such as group membership, group non-
membership, del egation credentia s, and capabilities.

Evaluation and Retrieval Functionsfor Upcalls These
functions are called to evauate application-specific
conditions, to request additional credentials, andtover-
ify them.

4 Creation of the GAA API security context

Prior to callingthegaa_check_aut hori zat i on
function, the application must obtain the authenticated prin-
cipal’s identity and store it in the security context. This
context may be constructed from credentials obtained from
different mechanisms, eg. GSS API, Kerberos, or others.
This scenario places a heavy burden on the application pro-
grammer to provide the integration of the security mecha-
nism with the application. A second scenario is to obtain
the authentication credentials from a transport protocol that
aready has the security context integrated with it. For ex-
ample, the application can call SSL or authenticated RPC.
Inthiscase, itistheimplementation of the transport mecha-
nism (usually written by someone other than the application
programmer) which calls the security API reguesting prin-
cipa’sidentity.

The principa’s authentication information is placed into
thesecurity context and passed to the GAA API. When addi-
tional security attributesare required for the requested oper-
ation, thelist of required attributesisreturned to the applica
tion, which may request them. Through the security context,
the application may provide the GAA APl with an upcall
function for requesting required additional credentials. The
credentialspulled by the GAA API areverified and added to
the security context by the upcall function.

5 An Extended Example

To illustrate our approach we describe a simple Printer
Manager application, where protected objects are printers.
The Printer Manager accepts requests from users to access
printers and invokes the GAA API routines to make autho-
rization decisions, under the assumption that theadministra-
tor of the resources has specified the local policy regarding
the use of theresources by means of EACL files. Thesefiles
are stored in an authorization database, maintained by the
Printer Manager.

5.1 Conditions

Administrators will be more willing to grant access to
the printersif they can restrict the access to the resources
to only users and organizations they trust. Further, the ad-
ministrators may need to specify time availability, restric-
tions on resources consumed by the clients and accounting
for the consumed resources. To specify these limits, the
Printer Manager uses generic conditions, such astime, loca-
tion, payment and quota. Asan exampleof Printer Manager-
specific condition, consider printer load, expressed as max-
imum number of jobs that may be in the queue.

5.2 Authorization Walk-through

Herewe present an authorization scenario to demonstrate
the use of the authorization framework for the case of print-
ing a document. Assume Kerberos V5 isused for principal
authentication. Assumethat printer psl2a hasthefollowing
ordered EACL showninTable2. storedinthePrinter Man-
ager authorization database.

IDENTITY ACCESSRIGHTS CONDITIONS
TOKEN TYPE access id_USER | pos access rights time window | printer_load
#1| DEF. AUTHORITY | Kerberosv5 local_manager pacific_tzone | local_manager
VALUE j0e@ORG.EDU| PRINTER : submit_print_job 6AM-8PM 20%
IDENTITY ACCESSRIGHTS

TOKEN TYPE access identity GROUP | positive_access rights positive_access rights

DEF. AUTHORITY Kerberosvs local_manager local_manager
| » VALUE operator @ORG.EDU PRINTER: * DEVICE : power_down
| TOKEN TYPE access identity USER

DEF. AUTHORITY Kerberosvs

VALUE tom@ORG.EDU

IDENTITY ACCESSRIGHTS CONDITIONS

TOKEN TYPE access id_ANYBOD pos_access rights time_day time_ window | |
! | #3 | DEF. AUTHORITY none local_manager local_manager | pacific_tzone |

VALUE none PRINTER:view_printer_c sat-sun 6AM-8PM

Table2.

Let’s consider arequest from user Tom who is connect-
ing from the ORG. EDU domain to print a document on the
printer psl2aat 7:30 PM.

When aclient process running on behalf of the user con-
tacts the Printer Manager with the request
tosubmi t pri nt j ob to printer psl2a, the Printer Man-
ager first calls gaa_get _obj ect _pol i cyd nf o to ob-
tainahandleto the EACL of printer psl2a. Theupcdl func-
tionfor retrievingthe EACL for the specified object fromthe
Authorization Database system is passed to the GAA API
andiscaledby gaa_get _obj ect _pol i cy i nf o,which
returnsthe EACL handle.

The Printer Manager must place the principal’s authen-
ticated identity in the security context to pass into the
gaa_check_aut hori zati on function. This context
may be constructed according to thefirst or second scenario,
described in Section 8. If Tom is authenticated success-
fully, then verified identity credentials are placed into the

179

security context, specifying Tom as the Kerberos principal
t om@RG. EDU.

Next, the Printer Manager callsthe
gaa_check_aut hori zati on function. In evaluating
the EACL, thefirst entry applies. It grantsthe requested op-
eration, but there are two conditionsthat must be eval uated.

Thefirst conditionisgeneric and isevaluated directly by
the GAA API. Since, therequest wasissued at 7:30 PM this
condition is satisfied. The second condition is specific. If
the security context defined a condition eva uation function
for upcdl, then this function is invoked and if this condi-
tion is met then the find answer is YES (authorized) and
detailed answer contains an authorization expiration time :
8PM (assume that authentication credentia has expiration
time 9PM), allowed operation submi t pri nt j ob and
two conditions. Both conditions are marked as evaluated
and met. During the execution of the task the Printer Man-
ager is enforcing the limitsimposed on the loca resources
and authorization time.

If the corresponding upcall functionwas not passed to the
GAA API, the answer isMAYBE and the second conditionis
marked as not eval uated and must be checked by the Printer
Manager.

When additional credentials are needed, if the security
context defines a credential retrieval function for the upcal,
itisinvoked. If therequested credential isobtained, then the
final answer is YES. If the upcall function was not passed to
the GAA API, theanswer is NO.

6 Integration with alternative authentication

mechanisms

Our mode is designed for a system that spans multiple
administrative domains where each domain can impose its
own security policies. Itisstill necessary that acommon au-
thenti cation mechanism be supported between two commu-
nicating systems. The model we present enabl es the syntac-
tic specification of multiple authentication policies and the
unambiguousidentification of principalsin each, but it does
not trand ate between heterogeneous authenti cation mecha
nisms.

We have integrated our distributed model for authoriza-
tion with the Prospero Resource Manager (PRM), a meta-
computing resource alocation system developed at USC.
PRM uses Kerberos [2] to achieve strong authentication.
PRM uses calsto the AsynchronousReliable Delivery Pro-
tocol (ARDP) [16], a communication protocol which han-
dies a set of security services, such as authentication, in-
tegrity and payment. ARDP calls the Kerberos library
through a security API, requesting the principal’s authenti-
cation informeation.

In addition, we have integrated the framework with the
Globus Security Infrastructure (GSl), a component of the

Globus metacomputing Toolkit [18]. GSl is implemented
on top of the GSS-API which allows the integration of dif-
ferent underlying security mechanisms. Currently, GSI im-
plementation uses SSL authentication protocol with X.509
certificates.

Public key authentication requires consideration of the
trustworthiness of the certifying authoritiesfor the purpose
of public key certification. Authentication is not based on
the public key a one, since anybody can issueavalid certifi-
cate.

Certificates can comprise a chain, where each certificate
(except thelast one) isfollowed by a certificate of itsissuer.
Reliable authentication of a public key must be based on a
complete chain of certificates which starts at an end-entity
(eg. user) certificate, includes zero or more Certification
Authorities (CA) certificates and ends at a self-signed root
certificate. A policy must be specified to validate the |l egiti-
meacy of thereceived certificate chain and the authenticity of
thespecified keys. Thefollowingisan exampleof an EACL
used for describing the Globus policy for what CAs are a-
lowed to sign which certificates. The Globus CA can sign
certificatesfor Globusor the Alliance. The Alliance CA can
sign certificates for the Alliance.

Token Type: access.id_-CA
Defining Authority: X509
Val ue: /C=USO=Globus/CN=GlobusCA

Token Type: pos.access rights
Defi ning Aut hority: globus
Val ue: CA:sign

Token Type: cond_subjects
Defini ng Authority: globus
Val ue: /C=us/O=Globus/* /C=us/O=Alliance/*

Groupsand Roles

A group isaconvenient method to associate aname with
aset of subjects and to use this group name for access con-
trol purposes. Thekind of subject (individual user, host, ap-
plication or other group) composing the group is opaque to
the authorization mechanism. A group server issues group
membership and non-membership certificates.

In general, a principal may be a member of several
groups. By default, a principa operates with the union of
privilegesof all groupsto which it belongs, aswell asall of
hisindividua privileges.

Some applications adopt role-based access control. The
concept of rolesis not consistent across different systems.
Severa definitions of roles are present in the literature. In
general, aroleis named collection of privileges needed to
perform specific tasksin the system. Role properties[4] in-
clude:

180

A user can be amember of several roles

Role can be activated and deactivated by users at their
discretion.

Authorizationsgivento aroleare applicable only when
that roleis activated.

There may be various constraints placed on the use of
roles, eg. auser can activate just onerole at atime.

Shandu et. al. [10] view roles as a policy and groups as
a mechanism for role implementation. We adopt this point
of view. In our framework we implement different flavors
of rolesusing the notion of group and a set of restrictionson
granted privileges. Consider arole-based policy, which as-
signsusers. Tom, Joe, and Ken role Bank _Tel | er. This
role allows a legitimate user to perform deposit and with-
draw operations on objects account_1 and account 2. This
policy may be easily expressed by our EACL framework:

1. Group Bank_Tel | er is defined which will include
Tom, Joe, and Ken

2. The EACLs for objects account_1 and account_2 will
contain the following entry:

Token Type: access.idGROUP
Defining Authority: X.509
Val ue: /C=USO=Globus/CN=Bank Tdler

Token Type: pos.access rights
Defini ng Authority: pasfic_coast_bank
Val ue: ACCOUNT:deposit,withdraw

In expressing role-based policy using groups, theissue of
constraints on role activation and use should be addressed.

8 Clark-Wilson

The Clark-Wilson modd [12] was developed to address
security issues in commercial environments. The model
usestwo categoriesof mechanismstorealizeintegrity: well-
formed transactions and separation of duty.

Our framework is designed to handle the Clark-Wilson
integrity model. A possible way to represent a constraint
that only certain trusted programs can modify objects is
using appl i cati on: checksum condition, where the
checksum ensures authenticity of the application. An-
other way isusingappl i cat i on: endor ser condition,
whichindicatesthat avalid certificate, stating that the appli-
cation has been endorsed by the specified endorser, must be
presented.

Static separation of duty is enforced by the security ad-
ministrator when assigning group membership. Dynamic

separation of duty enforces control over how permissions
are used at the accesstime[6]. Here are examples of EACL
conditions specific to the Dynamic separation of duty:

e privilege:restricted Makes subject operate
with the privilege of only one group at atime.

e privil ege: set _of groups Makes subject oper-
atewiththe privilegeof only specified groupsat atime.

e endorsenent: i st _of endorsers
Concurrence of severa subjects to perform some op-
eration.

9 Lattice-based Policies

Our framework allowsincorporation of Mandatory Con-
fidentiality [14], Mandatory Integrity [15] models and their
combination.

Mandatory policies govern access on the basis of classi-
fication of subjects and objects in the system. Objects and
subjects are assigned security labels:

1. Confidentiality labels, e.g. Top_Secret/NASA, Sensi-
tive/Department?2

2. Integrity labels, eg. High.integrity, Low_integrity

3. Single security labels for both confidentiality and in-
tegrity, eg. Top_Secret/NASA, Unclassified. Assume
that thefirst label denotes high integrity level, whereas
the second one denotes low integrity level.

To prove digibility to access an object, a subject has to
present avalid credential, stating subject’s security label.

All access rights are divided into read-class and write-
class. Appropriaterules are applied to each class.

Generic conditionsfor read-class access rights:

a) conf _read_equal : cofidentialitylabel

This condition specifies that a subject, wishing to get
read-class access to the obj ect has to have security clearance
equa to the one, specified in the cofidentiality 1abel field.

b) conf read_bel ow. cofi dentialitylabel

This conditionisused to enforcer ead down
mandatory confidentiality rule. It specifies that a sub-
ject, wishing to get read-class access to the object has to
have security clearance no less the one, specified in the
cofidentialitylabel fied.

C)i ntegr read_equal :integrity.label

This condition specifies that a subject, wishing to get
read-class access to the obj ect has to have security clearance
equal totheone, specifiedinthei nt egri ty | abel field.

d)i nt egr read_above:integritylabel

This condition is used to enforcer ead up mandatory
integrity rule. 1t specifies that a subject, wishing to get read-
class access to the abject hasto have integrity clearance less

181

or equal to the one, specified inthei ntegrity. abel
field.

Similarly we define generic conditionsfor write-class
access rights. Assume file doc.txt has classification
Sensitive/Departmenl and integrity label Medium, then
EACL for thisfile can be specified as:

IDENTITY
access_id_ANIBOD’

ACCESSRIGHTS|
pos_access rights
system_manager
FILE : write
pos_access rights
system_manager
FILE : read

Table 3.

CONDITIONS
conf_write_above
system_manager
Sensitive/Deprtl
conf_read_below
system_manager
Sensitive/Deprtl

TOKEN TYPE
DEF. AUTHORITY
VALUE

integr_write_below
system_manager
Medium

*
&

none

none

Note that in the example above, everybody in the dis-
tributed system can get read or write access to the file if
avalid credentiad stating the appropriate security label at-
tributeis presented. This poses a requirement that security
[abel sbe uniqueacross different security domains. Thismay
not be easily satisfied.

A possibleway to restrict the scope of security labelstoa
particular administrative domain isto specify an additional
condition such as location.

10 Conclusions

In this paper we presented a generic authorization mech-
anism that supportsa variety of security mechanisms based
on public or secret key cryptography. The mechanism is
extensible across multiple applications supporting different
operations and different kinds of protected objects. Alter-
native implementations may be chosen for underling secu-
rity services that support the API. By extending the tradi-
tional ACLs and capabilities with conditions on authorized
rights we are able to support a flexible distributed autho-
rization mechanism, allowing applications and users to de-
fine their own access control policies either independently
or in conjunction with centralized authorization and group
servers. The problem of policy trandation is addressed by
using generic or application-specific evaluation functions.
We are goingto investigatethe request and eval uation of ad-
ditiona credentials. The assumption that al relevant cre-
dentials are passed for evaluation contradicts privacy re-
quirements. It might not be alwaysdesirableto reved group
membership and principa attributesup front. We haveinte-
grated our model with several applications.

11 Appendix

We use the Backus-Naur Form to denote the el ements of
our policy language. Square brackets, [] , denote optional
items and curly brackets, {}, surround items that can repesat

zeroor moretimes. A vertical line, | , separates aternatives.
Itemsinside double quotes are the terminal symbols.
AN EACL is specified according to the following format:
eacl ::= {eacl_entry}
eacl _entry ::=
access.id {access.id} pos.access.rights {condition}

{pos_access rights {condition}} |
access.id {accessid} neg_access.rights

accessid =
access.id_type def_authority value

accessid_type ::=
"accessid_-HOST” |
"accessid_-USER” |
"accessid_GROUP” |
"accessid_CA” |
" accessid_APPLICATION” |
"accessid_ ANYBODY”

A capability is defined according to thefollowingformat:

capability ::=
grantor_id pos_access.rights {condition}
{pos_access rights {condiction} }

grantor_id ::=
grantor_id_type def_authority value

grantor_id_type ::=
"grantor_id_HOST" |
"grantor_id_USER” |
"grantor_id_GROUP” |
"grantor_id_CA” |
"grantor_id_APPLICATION” |
"grantor_id_ ANYBODY”

pos_access rights ::=
" pos_access rights’ def _authority value
{” pos.access.rights’ def_authority value}

neg-accessrights ::=
"neg_accessrights’ def_authority value
{"neg_accessrights’ def_authority value}

condition ::=
condition_type def _authority value

condition_type ::= alphanumeric_string
def_authority ::= alphanumeric_string

value ::= alphanumeric_string

182

12 Acknowledgments

This research was supported in part by the Informa-
tion Technology Office of the Defense Advanced Research
Projects Agency (DoD) under the Scalable Computing In-
frastructure (SCOPE) Project, Contract No. DABT63-95-
C-0095, Security Infrastructure for Large Distributed Sys-
tems (SILDS) Project, Contract No. DABT63-94-C-0034,
Globa Operating Systems Technology (GOST) Project,
Contract No. JFBI-95-204, Diplomat, Project Depart-
ment of Energy Cooperative Agreement No. DE-FCO3-
99ER25397 and by a grant from Xerox Corporation. The
views and conclusions contained in thisdocument are those
of the authors and should not be interpreted as representing
theofficial policies, either expressed or implied, of the U.S.
Army Intelligence Center and Fort Huachuca Directorate
of Contracting, the Defense Advanced Research Projects
Agency, the U.S. Government, or Xerox Corporation.

References

[1] C. Neuman. Proxy-based authorization and accounting for
distributed systems. Proceedings of the 13th International
Conference on Distributed Computing Systems, Pittsburgh,
May 1993.
C. Neuman and T. TSo. Kerberos: An authentication ser-
vice for computer networks. |EEE Communications Maga-
Zine, pages 3338, September 1994.
T. Y. C. Woo and S.S. Lam. Designing a Distributed Autho-
rization Service. In Procedings |IEEE INFOCOM '98, San
Francisco, March 1998.
S. Jgjodia, P. Samarati and V.S. Subrahmanian. A logical Lan-
guagefor Expressing Authorizations. Proceedingsof the 1997
IEEE Symposiumon Security and Privacy, 1997.
M. Abadi, M. Burrows, B. Lampsonand G. Plotkin A calculus
for AccessControl in Distributed Systems. ACM Transactions
on Programming Languagesand Systems, Vol. 15, No 4, Pages
706-734, September 1993.
R. T. Simon and M. E. Zurko Separation of Duty in Role-
Based Environments. Computer Security FoundationsWork-
shop, June 1997.
N. Nagaratham and S. B. Byrne. Resource access control for
internet user agent. Proceedingsof the third USENIX Confer-
ence on Object-Oriented Technologiesand Systems, Portland,
Oregon, June 1997.
L. Gong and R. Schemers. Implementing Protection Domains
inthe JavaDevelopment Kit 1.2. Proceedingsof Network and
Distributed System Security Symposium, San Diego, Califor-
nia, March 1998.
M. Blaze, J. Feigenbaum and J. Lacy. Decentralized Trust
Management. in Proc. IEEE Symp. on Security and Privacy,
IEEE Computer Press, Los Angeles, pages 164-173, 1996.
[10] R.S. Shandhu, E. J. Coyne, et al Role-Based AccessControl:
A Multi-Dimensional View. Proc. of 10th Annual Computer
Security Applications Conference, December 5-9, pages 54-
62, 1994.

(2]

(3]

[4]

(3]

6]

(7]

(8]

(9]

[11] W. Shenand P. Dewan AccessControl for Collaborative En-
vironments. Proc. of CSCW, November, 1992, pages51-58

[12] D. D. Clark and D. R. Wilson Non Discretionary Controls
Commercial Applications. Proc. of the IEEE Symposiumon
Security and Privacy, pages 184-194, April 1997.

[13] SB.Lipner A Comparisonof Commercial and Military Com-
puter Security Policies Proc. of the 1987 |EEE Symposiumon
Security and Privacy, 1982.

[14] D. Elliott Bell and L. J. LaPadula Secure Computer Sys-
tem: Unified Exposition and Multics. Interpretation, ESD-TR-
75-306 (MTR-2997), The MITRE Cor poration Bedford, Mas-
sachusetts, July 1975.

[15] K.J.Bibalntegrity Considerationsfor Secure Computer Sys-
tems, The MITRE Cor poration, Bedford, MA, MTR-3153, 30
June 1975.

[16] N. Salehi, K. Obraczkaand C. Neuman The performance of
areliable, request-responsetransport protocol. Proceedingsof
the Fourth |EEE Symposiumon Computersand Communica-
tions, 6-8 July, 1999.

[17] Edited by I. Foster and C. Kesselman.

The GRID: Blueprint for a New Computing Infrastructure
Morgan Kauffman Publishers, 1999.

[18] I. Foster and C. Kesselman. The GRID: Blueprint for a
New Computing Infrastructure. Morgan Kauffman Publish-
ers, 1999.

183

