
Representation and Evaluation of Security Policies
for Distributed System Services

Tatyana Ryutov and Clifford Neuman
Information Sciences Institute

University of Southern California
4676 Admiralty Way suite 1001

Marina del Rey, CA 90292�
tryutov, bcn � @isi.edu

(310)822-1511 (voice) (310)823-6714 (fax)

Abstract

We present a new model for authorization that inte-
grates both local and distributed access control policies
and that is extensible across applications and administra-
tive domains. We introduce a general mechanism that is
capable of implementing several security policies includ-
ing role-based access control, Clark-Wilson, ACLs, capa-
bilities, and lattice-based access controls. The Generic
Authorization and Access-control API (GAA API) provides
a generic framework by which applications facilitate ac-
cess control decisions and request authorization informa-
tion about a particular resource. We have integrated our
system with the Prospero Resource Manager and Globus Se-
curity Infrastructure.

1 Introduction

The conventional concept of an Access Control List
(ACL) is the architectural foundation of many authorization
mechanisms. A typical ACL is associated with an object to
be protected and enumerates the list of authorized users and
their rights to access the object. Access rights are selected
from a predefined fixed set built into the authorizationmech-
anism. Specification of the subjects is bound to the particu-
lar security mechanism employed by the system. The limita-
tions of the traditional access control model become appar-
ent when it is applied in a heterogeneous, administratively
decentralized, distributed environment.

The variety of services available on the Internet continues
to increase and new classes of applications are evolving, in-

�
In Proceedings of the DARPA Information Survivability Conference

Exposition, January 2000. Hilton Head, South Carolina.�
0-7695-0490-6/99 $10.00 c

�
1999 IEEE

cluding metacomputing, remote printing, and video confer-
encing. These applications will require interactions between
entities in autonomous security domains. The generic tradi-
tional access rights may not be sufficient for some applica-
tions to express authorization requirements. For example, a
site might be willing to make its resources available to oth-
ers, but limited to maximum CPU and memory utilization or
based on a requirement for payment. It is difficult to specify
such security policies in terms of conventional ACLs.

Specification of security policies for principals from mul-
tiple administrative domains poses additional problems:

� In a multipolicyenvironment, policy integrationshould
incorporate the diverse authorization models that can
coexist in a distributed system.

� The implementation will require integration of differ-
ent sets of policies associated with the domain provid-
ing resources, the domain requesting resources and the
individual users within each domain.

� There are multiple mechanisms for authentication of
users in different domains. Therefore, there may be no
single syntax for specification of principals.

� Administrators of each domain might use domain-
specific policy syntax and heterogeneous implementa-
tions of the policies. Generalizing the way that appli-
cations define their security requirements provides the
means for integration and translation of security poli-
cies across multiple authorization models.

This paper describes an authorization framework de-
signed to meet these needs. Our framework is applicable for
a wide range of systems and applications.

It includes a flexible mechanism for security policy rep-
resentation and provides the integration of local and dis-

172

tributed security policies. The system supports the com-
mon authorization requirements and provides the means for
defining and integrating application or organization specific
policies as well. We show how this mechanism can imple-
ment role-based access control, Clark-Wilson model, and
lattice-based policies.

Our framework consists of two components, a policy lan-
guage and the Generic Authorization and Access-control
API.

� Policy language

The language allows us to represent existing access
control models (e.g. ACL, capability, lattice-based ac-
cess controls) in a uniform and consistent manner. Au-
thorization restrictions allow the administrator to de-
fine which operations are allowed, and under what con-
ditions (e.g., user identity, group membership, or time
of day). These restrictions may implement application-
specific policies.

� Generic Authorization and Access-control API

A common access control API facilitates the appli-
cation integration of authentication and authorization.
This API allows applications to request the authoriza-
tion policy information for a particular resource and to
evaluate this policy against credentials carried in the
security context for the current connections. Applica-
tions invoke the GAA API functions to determine if a
requested operation or set of operations was authorized
or if additional checks are necessary.

2 Related Work

There has been recent work elsewhere on access control
models for Internet user agents [7], [8]. These models ap-
ply to the Javakey utility as an authentication mechanism
and use public key digital signatures. Our model is gen-
eral enough to use a variety of security mechanisms based
on public or secret key cryptosystems. Also, our model is
application-independent whereas the models in [7] and [8]
apply primarily for browser-like applications.

The Generalized Access Control List (GACL) frame-
work described by Woo and Lam [3] presents a language-
based approach for specifying authorization policies. The
main goal of the GACL framework is merging policies asso-
ciated with different objects and to resolve complex depen-
dencies. GACL allows specification of the inheritance rules;
access rights can be propagated from one object to the other.
A gacl may reference other gacls in its entries. The bene-
fit of the GACL approach is the ability to omit redundant
information but it may require the retrieval and evaluation
of more then one gacl. Specification of policy dependencies

with inheritance is error-prone and may result in circular de-
pendency of the policies and inconsistency may result.

More importantly, the expressive power of GACL is lim-
ited to that of ACL-based schemes and provides no sup-
port for capabilities and multi-level security systems. The
GACL model supports only system state-related conditions
within which rights are granted, such as current system load
and maximum number of copies of a program to be run con-
currently. This may not be sufficient for distributed applica-
tions. Our model allows fine-grained control over the con-
ditions.

Policy management issues were addressed by Blaze, et.
al. [9] with a claim that using PolicyMaker strengthens se-
curity. Because PolicyMaker credentials bind granted rights
to public keys, instead of identities, this eliminates one level
of indirection. Unfortunately, this binding complicates au-
thorization management, and as applied in cases where a
system uses X.509 or PGP certificates, this binding is depen-
dent on the application which translates credentials to the
PolicyMaker format.

Policies in the PolicyMaker format are easily expressed
in our framework. We treat security policies as a set of op-
erations that subjects are allowed to perform on the targeted
objects, and optional constraints are placed on the granted
operations. The basic question of access control is whether
a subject is allowed to perform a requested operation. The
GAA API provides a common interface for asking this ques-
tion. In contrast, to use PolicyMaker an application devel-
oper must define an application-specific language describ-
ing the requested operation. This language might not be
reusable across different application domains.

The related work described so far presents static policy
evaluation mechanisms. Decisions are based on a set of
policies and credentials presented at the time of the request.
In contrast, our framework allows dynamic policy evalua-
tion where credentials can be requested from the client or
from third parties during recursive evaluation of policies
within the API.

3 Overview of the Framework

Our framework is applied to distributedsystems that span
multiple autonomous administrative domains withouta cen-
tral management authority. Applications may impose their
own security policies and use different authentication ser-
vices, e.g. Kerberos, DCE or X.509 certificates. We assume
that within a distributedsystem, multiple independent appli-
cations coexist.

The individual security requirements of each application
are reflected in application-specific security policies. There
might exist common ACLs that apply to sets of applications.
Therefore, we designed a flexible and expressive mecha-
nism for representing and evaluating authorization policies.

173

It is general enough to support a variety of security mecha-
nisms based on public or secret key cryptosystems, and it is
usable by multiple applications supporting different opera-
tions and different kinds of protected objects.

The major components of the architecture are:

� Authentication mechanisms perform authentication of
users and supply credentials.

� A group server maintains group membership informa-
tion.

� The GAA API; Applications call GAA API routines
to check authorization against an authorization model.
The API routines obtain policies from local files, dis-
tributed authorization servers, and from credentials
provided by the user. They combine local and dis-
tributed authorization information under a single API
based on the requirements of the application and appli-
cable policies.

� Delegation is supported by delegation credentials, such
as restricted proxies [1], or through other delegation
methods.

3.1 Policy Language

The security policy associated with a protected resource
consists of a set of allowed operations, a set of approved
principals, and optional operation constraints. For exam-
ple, a system administrator can define the following security
policy to govern access to a printer: ”Joe Smith and mem-
bers of Department1 are allowed to print documents Mon-
day through Friday, from 9:00AM to 6:00PM”. This pol-
icy can be described by an ACL mechanism, where for each
resource, a list of valid entities is granted a set of access
rights. The same policy can be implemented using a capabil-
ity mechanism. However, to do so, traditional ACL and ca-
pability abstractions must be extended to allow conditional
restrictions on access rights. Therefore, in implementing a
policy, it should be possible to define:
1) access identity
2) grantor identity
3) a set of access rights
4) a set of conditions
The policy language represents a sequence of tokens. Each
token consists of:

� Token Type

Defines the type of the token. Tokens of the same type
have the same authorization semantics.

� Defining Authority

Indicates the authority responsible for defining the
value within the token type.

� Value

The value of the token. Its syntax and semantics are
determined by the token type. The name space for
the value is defined by the Defining Authority
field.

The rest of this section describes the user-level representa-
tion of the policy language tokens, which can be used to im-
plement both ACLs and capabilities. More precise syntax is
given in the Appendix.

3.1.1 Specification of Access Identity

The access identity represents an identity to be used for ac-
cess control purposes. The authorization framework sup-
ports the following types of access identity: USER, HOST,
APPLICATION, CA (Certification Authority), GROUP and
ANYBODY. Where ANYBODY represents any entity regard-
less of authentication. This may be useful for setting the de-
fault policies. The type of access identity is useful in deter-
mining which additional credentials are needed (see section
3.3). Principals can be aggregated into a single entry when
the same set of access rights and conditions applies to all of
them.

Our framework supports multiple existing principal nam-
ing methods. Different administrative domains might use
different authentication mechanisms, each having a par-
ticular syntax for specification of principals. Therefore,
Defining Authority for access identity indicates the
underlying authentication mechanism used to provide the
principal identity. Value represents the particular principal
identity.

3.1.2 Specification of Grantor Identity

The grantor identity represents an identity used to specify
the grantor of a capability or a delegated credential. Its
structure is similar to the one of the access identitydescribed
in the previous subsection.

3.1.3 Specification of Access Rights

It must be possible to specify which principals or groups of
principals are authorized for specific operations, as well as
who is explicitly denied authorizations, therefore we define
positive and negative access rights.

All operations defined on the object are grouped by type
of access to the object they represent, and named using a tag.
For example, the following operations are defined for a file:

Token Type: pos access rights
Defining Authority: local manager
Value: FILE:read,write,execute

174

However, in a bank application, an object might be a cus-
tomer account, and the following set of operations might be
defined:

Token Type: pos access rights
Defining Authority: local manager
Value: ACCOUNT:deposit,withdraw,transfer

3.1.4 Specification of Conditions

Conditionsspecify the type-specific policies under which an
operation can be performed on an object. A condition is in-
terpreted according to its type. Conditions can be catego-
rized as generic or specific. Generic conditions are evalu-
ated within the access control API; specific conditions are
application-dependent and usually are evaluated by the ap-
plication. These are several of the more useful generic con-
ditions [1].

� time

Time periods for which access is granted.

� location

Location of the principal. Authorization is granted to
the principals residing on specific hosts, domains, or
networks.

� message protection

Required confidentiality/integrity message protection.
This condition specifies a level or mechanism that must
be used for confidentiality or integrity if access is to be
granted.

� privilege constraints

Specifies well-formed transactions and separation of
duty constraints. For more details see Section 8.

� multi-level security constraints

Specifies mandatory confidentiality and integrity con-
straints. For more information see Section 9.

� payment

Specifies a currency and an amount that must be paid
prior to accessing an object.

� quota

Specifies a currency and a limit. It limits the quantity
of a resource that can be consumed or obtained.

� strength of authentication

Specifies the authentication mechanism or set of suit-
able mechanisms, for authentication.

� trust constraints

Specifies restrictions placed on security credentials.
For more information see Section 6.

� attributes of subjects

Defines a set of attributes that must be possessed by
subjects in order to get access to the object, e.g. secu-
rity label.

If generic conditions are not sufficient for expressing
application-specific security policies, applications specify
their own conditions. Anything that can be expressed as
an alphanumeric string can be a condition. The application
must provide evaluation rules for the application-specific
conditions, or be prepared to evaluate the condition once the
authorization call completes.

3.1.5 Extended Access Control Lists (EACLs)

Extended Access Control Lists (EACLs) extend the conven-
tional ACL concept by allowing one to specify conditional
authorization policies. These are implemented as conditions
on authentication and authorization credentials. An EACL
is associated with an object and lists the subjects allowed to
access this object and the type of granted access. For ex-
ample, the following EACL implements policy stating that
anyone authenticated by Kerberos.V5 has read access to the
targeted resource and any member of group 15 connecting
from the USC.EDU domain has read and write access to the
object.

Token Type: access id ANYBODY
Defining Authority: none
Value: none

Token Type: pos access rights
Defining Authority: local manager
Value: FILE:read

Token Type: authentication mechanism
Defining Authority: system manager
Value: kerberos.V5

Token Type: access id GROUP
Defining Authority: DCE
Value: 15

Token Type: pos access rights
Defining Authority: local manager
Value: FILE:read FILE:write

Token Type: location
Defining Authority: system manager
Value: *.USC.EDU

175

The framework supports various strengths of user au-
thentication. A user may be granted a different set of rights,
depending on the strength of the authentication method used
for identification. Specification of weaker authentication
methods including network address or username will allow
the GAA API to be used with existing applications that do
not have support for strong authentication.

Objects that need to be protected include files, directo-
ries, network connections, hosts, and auxiliary devices, e.g.
printers and faxes. Our authorization mechanism supports
these different kinds of objects in a uniform manner. The
same EACL structure can be used to specify access policies
for different kinds of objects. Object names are drawn from
the application-specific name space and are opaque to the
authorization mechanism.

When a protected object is created, an EACL is associ-
ated with the object. The management of EACLs, including
giving authority to modify an EACL, is supported through
inclusion of entries specifying which principals are allowed
to modify the EACL. The control permissions comprise a
separate set of access rights named with the tag MANAGE-
MENT. To restrict the ability to pass the control permissions
to others a condition no delegation may be specified asso-
ciated with such entries.

3.1.6 Capabilities

Here we present an implementation of a capability. The ex-
ample states that the capability granted by the group admin
permits read access if the capability is presented during the
specified time period.

Token Type: grantor id GROUP
Defining Authority: kerberos.V5
Value: admin@USC.EDU

Token Type: pos access rights
Defining Authority: local manager
Value: FILE:read

Token Type: time window
Defining Authority: eastern timezone
Value: 8:00AM-5:00PM

3.2 EACL evaluation

The policy language we presented supports authorization
models based on the closed world model, when all rights are
implicitly denied. Authorizations are granted by an explicit
listing of positive access rights. Restrictions placed on pos-
itive access rights have the goal of restricting the granted
rights. The meaning of conditions on negative (denied) ac-
cess rights is unclear. We intend to investigate this issue,
however, for the time being, we require that:

1) A single EACL entry must not specify both positive
and negative rights.

2) If an EACL entry specifies negative rights, it must not
have any conditions. If both negative and positive autho-
rizations are allowed in individual or group entries, incon-
sistencies must be resolved according to resolution rules.
The design approach we adopted allows the ordered inter-
pretation [11] of EACLs. Evaluation of ordered EACL starts
from the first to the last in the list of EACL entries. The
resolution of inconsistent authorization is based on order-
ing. The authorizations that already have been examined
take precedence over new authorizations. Other interpreta-
tions were possible, but we found that for many such poli-
cies, resolution of inconsistencies was either NP-Complete
or undecidable.

There may be interactions when independent credentials
are used, e.g., one set of credentials causes denial, but the
other causes accept. A user may chose to withhold creden-
tials that it believes may result in a denial. The administra-
tor must deal with these issues by carefully setting policies
in an EACL. Conflicts may arise when more then one entry
applies. For example, one matching entry specifies individ-
ual subject (user, host or application), and another matching
entry specifies a certain group name. In this case, we would
require the entry for the individual subject to be placed be-
fore the entry for the group (assuming the policy expressed
for the individual subject entry is an exception to the policy
expressed for the group entry). When several EACL entries
with different conditions apply, entries for which conditions
are not satisfied will not affect the outcome of the authoriza-
tion function.

An ordered evaluation approach is easier to implement as
it allows only partial evaluation of an EACL and resolves
the authorization conflicts. The problem with this approach
is that it requires total ordering among authorizations. It
requires careful writing of the EACL by the security ad-
ministrator and is error-prone. An improper order of the
EACL entries may result in discrepancies between the in-
tended policy and the one that results from evaluation of the
EACL. It might be useful to have a separate module [4], [9],
that would help verify and debug the EACL to assure that it
expresses the desired policy.

3.3 Credential evaluation

Credentials are translated to the GAA API internal format
and placed into the GAA API security context. When evalu-
ating an EACL, the security context is searched for the nec-
essary credentials. Assume that file doc.txt has the following
EACL shown in Table 1. stored in the authorization data
base:

176

TOKEN TYPE

VALUE

IDENTITY

local_manager

pos_access_rights

ACCESS RIGHTS

TOKEN TYPE

VALUE

IDENTITY ACCESS RIGHTS

access_id_USER

KerberosV5

pos_access_rights

local_manager

TOKEN TYPE

VALUE

access_id_USER

IDENTITY ACCESS RIGHTS

KerberosV5

FILE : read

FILE : write

local_manager

pos_access_rights

FILE : read,write

KerberosV5

DEF. AUTHORITY

DEF. AUTHORITY

DEF. AUTHORITY

tom@ORG.EDU

admin@ORG.EDU

joe@ORG.EDU

access_id_GROUP

#3

#2

#1

Table 1.

Credentials may have optional conditionsassociated with
the granted rights. Assume the following credentials are
stored in the security context associated with the user Tom.

Identity credential:

access id USER kerberos.v5 tom@ORG.EDU
condition: time window pacific tzone 6am-7pm

Group membership credential:

access id GROUP kerberosV5 admin@ORG.EDU
condition: privilege:restricted

Delegation credential:

grantor: grantor id USER kerberosV5 joe@ORG.EDU
grantee: access id USER kerberosV5 tom@ORG.EDU
objects: doc.txt
rights: pos access rights local manager FILE:write
condition: location local manager *.org.edu

Let’s consider a request from a user Tom who is connect-
ing from the ORG.EDU domain to write to the file doc.txt at
5pm.

In evaluating the EACL, the first entry does not grant
the requested operation, however the second entry grants
it. The evaluation function will then check the security
context for the group admin membership credential. The
proper credential is found, however, there is a condition
privilege:restricted. This means that Tom can
use this privilege only if logged in as an administrator. Eval-
uation continues. The thirdentry grants the requested opera-
tion. The evaluation function will look for a delegation cre-
dential for tom@ORG.EDU issued by joe@ORG.EDU. The
appropriate delegation credential is found. The condition on
location*org.edu is satisfied, so the requested access will

be granted.

3.4 Generic Authorization and Access-control
API (GAA API)

In this section we provide a description of the main GAA
API routines.

3.4.1 GAA API functions

The gaa get object policy info function is called
to obtain the security policy associated with the object.

� Input:

– Reference to the object to be accessed. The
identifier for the object is from an application-
dependent name space, it can be represented as
unique object identifier, or symbolic name local
to the application.

– Pointer to application specific Authorization
Database.

– Upcall function for the retrieval of the object pol-
icy. The application maintains authorization in-
formation in a form understood by the applica-
tion. It can be stored in a file, database, directory
service or in some other way. The upcall function
provided for the GAA API retrieves this informa-
tion and translates it into the internal representa-
tion understood by the GAA API.

� Output:

– Object policy handle

The gaa check authorization function tells the
application server whether the requested operations are au-
thorized, or if additional application-specific checks are re-
quired.

� Input:

– Object policy handle, returned by
gaa get object policy info

– Principal’s security context (see section 3.5.1)

– Operations for authorization. This argument in-
dicates requested operations.

� Output:

– YES (indicating authorization) is returned if all
requested operations are authorized.

– NO (indicatingdenial of authorization) is returned
if at least one operation is not authorized.

177

– MAYBE (indicatinga need for application-specific
checks) is returned if there are some unevaluated
conditions and additional application-specific
checks are needed, or if continuous evaluation of
conditions is required.

– detailed answer contains:
� Authorization valid time period. The time

period during which the authoriza-
tion is granted is returned as condition to be
checked by the application.
Expiration time is calculated by the GAA
API, based on:
1. Time-related conditions in the object

policy, e.g. EACL matching entries.
2. Restrictions in the authentication and

authorization credentials.
� The requested operations are returned

marked as granted or denied along with a list
of corresponding conditions, if any. Each
condition is marked as evaluated or not eval-
uated, and if evaluated marked as met, not
met or further evaluation or enforcement is
required. This tells the application which
policies must be enforced.

� Information about additional security at-
tributes required. Additional credentials
might be required from clients to perform
certain operations, e.g. group membership
or delegated credentials.

� gaa inquire object policy info

This function allows the application to discover access
control policies associated with the targeted object ap-
plied to a particular principal. It returns a list of rights
that the principal is authorized for and corresponding
conditions, if any. The application must understand the
conditions that are returned unevaluated, or it must re-
ject the request. If understood, the application checks
the conditions against information about the request,
the target object, or environmental conditions to deter-
mine whether the conditions are met. Actual enforce-
ment of policies expressed through application specific
conditions is the responsibility of the application and is
outside of the scope of this paper.

3.4.2 GAA API Security Context

The security context is a GAA API data structure. It stores
information relevant to access control. Some of its con-
stituents are listed here:

Identity Verified authentication information, such as prin-
cipal ID for a particular security mechanism. To deter-
mine which entries apply, the GAA API checks if the

specified principal ID appears in an EACL entry that is
paired with a privilege for the type of access requested.

Authorization Attributes Verified authorization
credentials, such as group membership, group non-
membership, delegation credentials, and capabilities.

Evaluation and Retrieval Functions for Upcalls These
functions are called to evaluate application-specific
conditions, to request additional credentials, and to ver-
ify them.

4 Creation of the GAA API security context

Prior to calling the gaa check authorization
function, the application must obtain the authenticated prin-
cipal’s identity and store it in the security context. This
context may be constructed from credentials obtained from
different mechanisms, e.g. GSS API, Kerberos, or others.
This scenario places a heavy burden on the application pro-
grammer to provide the integration of the security mecha-
nism with the application. A second scenario is to obtain
the authentication credentials from a transport protocol that
already has the security context integrated with it. For ex-
ample, the application can call SSL or authenticated RPC.
In this case, it is the implementation of the transport mecha-
nism (usually written by someone other than the application
programmer) which calls the security API requesting prin-
cipal’s identity.

The principal’s authentication information is placed into
the security context and passed to the GAA API. When addi-
tional security attributes are required for the requested oper-
ation, the list of required attributes is returned to the applica-
tion, which may request them. Through the security context,
the application may provide the GAA API with an upcall
function for requesting required additional credentials. The
credentials pulled by the GAA API are verified and added to
the security context by the upcall function.

5 An Extended Example

To illustrate our approach we describe a simple Printer
Manager application, where protected objects are printers.
The Printer Manager accepts requests from users to access
printers and invokes the GAA API routines to make autho-
rization decisions, under the assumption that the administra-
tor of the resources has specified the local policy regarding
the use of the resources by means of EACL files. These files
are stored in an authorization database, maintained by the
Printer Manager.

178

5.1 Conditions

Administrators will be more willing to grant access to
the printers if they can restrict the access to the resources
to only users and organizations they trust. Further, the ad-
ministrators may need to specify time availability, restric-
tions on resources consumed by the clients and accounting
for the consumed resources. To specify these limits, the
Printer Manager uses generic conditions, such as time, loca-
tion, payment and quota. As an example of Printer Manager-
specific condition, consider printer load, expressed as max-
imum number of jobs that may be in the queue.

5.2 Authorization Walk-through

Here we present an authorizationscenario to demonstrate
the use of the authorization framework for the case of print-
ing a document. Assume Kerberos V5 is used for principal
authentication. Assume that printer ps12a has the following
ordered EACL shown in Table 2. stored in the Printer Man-
ager authorization database.

TOKEN TYPE

VALUE

IDENTITY CONDITIONS

TOKEN TYPE

VALUE

IDENTITY ACCESS RIGHTS

positive_access_rights

TOKEN TYPE

VALUE

access_identity_USER

TOKEN TYPE

VALUE

#1

#2

#3

DEVICE : power_down

access_identity_GROUP

local_manager local_manager

20%6AM-8PM

KerberosV5

KerberosV5

KerberosV5

ACCESS RIGHTS

access_id_USER printer_load

PRINTER : submit_print_job

 pacific_tzone

time_window

local_managerlocal_manager

PRINTER : *

access_id_ANYBODY pos_access_rights

local_manager

ACCESS RIGHTS

DEF. AUTHORITY

DEF. AUTHORITY

DEF. AUTHORITY

DEF. AUTHORITY

joe@ORG.EDU

operator@ORG.EDU

tom@ORG.EDU

time_window

6AM-8PM

time_day

 pacific_tzonelocal_manager

sat-sunPRINTER:view_printer_capabilities

CONDITIONSIDENTITY

none

none

pos_access_rights

positive_access_rights

Table 2.

Let’s consider a request from user Tom who is connect-
ing from the ORG.EDU domain to print a document on the
printer ps12a at 7:30 PM.

When a client process running on behalf of the user con-
tacts the Printer Manager with the request
to submit print job to printer ps12a, the Printer Man-
ager first calls gaa get object policy info to ob-
tain a handle to the EACL of printer ps12a. The upcall func-
tion for retrieving the EACL for the specified object from the
Authorization Database system is passed to the GAA API
and is called bygaa get object policy info, which
returns the EACL handle.

The Printer Manager must place the principal’s authen-
ticated identity in the security context to pass into the
gaa check authorization function. This context
may be constructed according to the first or second scenario,
described in Section 8. If Tom is authenticated success-
fully, then verified identity credentials are placed into the

security context, specifying Tom as the Kerberos principal
tom@ORG.EDU.

Next, the Printer Manager calls the
gaa check authorization function. In evaluating
the EACL, the first entry applies. It grants the requested op-
eration, but there are two conditions that must be evaluated.

The first condition is generic and is evaluated directly by
the GAA API. Since, the request was issued at 7:30 PM this
condition is satisfied. The second condition is specific. If
the security context defined a condition evaluation function
for upcall, then this function is invoked and if this condi-
tion is met then the final answer is YES (authorized) and
detailed answer contains an authorization expiration time :
8PM (assume that authentication credential has expiration
time 9PM), allowed operation submit print job and
two conditions. Both conditions are marked as evaluated
and met. During the execution of the task the Printer Man-
ager is enforcing the limits imposed on the local resources
and authorization time.

If the corresponding upcall function was not passed to the
GAA API, the answer is MAYBE and the second condition is
marked as not evaluated and must be checked by the Printer
Manager.

When additional credentials are needed, if the security
context defines a credential retrieval function for the upcall,
it is invoked. If the requested credential is obtained, then the
final answer is YES. If the upcall function was not passed to
the GAA API, the answer is NO.

6 Integration with alternative authentication
mechanisms

Our model is designed for a system that spans multiple
administrative domains where each domain can impose its
own security policies. It is still necessary that a common au-
thentication mechanism be supported between two commu-
nicating systems. The model we present enables the syntac-
tic specification of multiple authentication policies and the
unambiguous identification of principals in each, but it does
not translate between heterogeneous authentication mecha-
nisms.

We have integrated our distributed model for authoriza-
tion with the Prospero Resource Manager (PRM), a meta-
computing resource allocation system developed at USC.
PRM uses Kerberos [2] to achieve strong authentication.
PRM uses calls to the Asynchronous Reliable Delivery Pro-
tocol (ARDP) [16], a communication protocol which han-
dles a set of security services, such as authentication, in-
tegrity and payment. ARDP calls the Kerberos library
through a security API, requesting the principal’s authenti-
cation information.

In addition, we have integrated the framework with the
Globus Security Infrastructure (GSI), a component of the

179

Globus metacomputing Toolkit [18]. GSI is implemented
on top of the GSS-API which allows the integration of dif-
ferent underlying security mechanisms. Currently, GSI im-
plementation uses SSL authentication protocol with X.509
certificates.

Public key authentication requires consideration of the
trustworthiness of the certifying authorities for the purpose
of public key certification. Authentication is not based on
the public key alone, since anybody can issue a valid certifi-
cate.

Certificates can comprise a chain, where each certificate
(except the last one) is followed by a certificate of its issuer.
Reliable authentication of a public key must be based on a
complete chain of certificates which starts at an end-entity
(e.g. user) certificate, includes zero or more Certification
Authorities (CA) certificates and ends at a self-signed root
certificate. A policy must be specified to validate the legiti-
macy of the received certificate chain and the authenticity of
the specified keys. The following is an example of an EACL
used for describing the Globus policy for what CAs are al-
lowed to sign which certificates. The Globus CA can sign
certificates for Globus or the Alliance. The Alliance CA can
sign certificates for the Alliance.

Token Type: access id CA
Defining Authority: X509
Value: /C=US/O=Globus/CN=Globus CA

Token Type: pos access rights
Defining Authority: globus
Value: CA:sign

Token Type: cond subjects
Defining Authority: globus
Value: /C=us/O=Globus/* /C=us/O=Alliance/*

7 Groups and Roles

A group is a convenient method to associate a name with
a set of subjects and to use this group name for access con-
trol purposes. The kind of subject (individual user, host, ap-
plication or other group) composing the group is opaque to
the authorization mechanism. A group server issues group
membership and non-membership certificates.

In general, a principal may be a member of several
groups. By default, a principal operates with the union of
privileges of all groups to which it belongs, as well as all of
his individual privileges.

Some applications adopt role-based access control. The
concept of roles is not consistent across different systems.
Several definitions of roles are present in the literature. In
general, a role is named collection of privileges needed to
perform specific tasks in the system. Role properties [4] in-
clude:

� A user can be a member of several roles

� Role can be activated and deactivated by users at their
discretion.

� Authorizationsgiven to a role are applicable only when
that role is activated.

� There may be various constraints placed on the use of
roles, e.g. a user can activate just one role at a time.

Shandu et. al. [10] view roles as a policy and groups as
a mechanism for role implementation. We adopt this point
of view. In our framework we implement different flavors
of roles using the notion of group and a set of restrictions on
granted privileges. Consider a role-based policy, which as-
signs users: Tom, Joe, and Ken role Bank Teller. This
role allows a legitimate user to perform deposit and with-
draw operations on objects account 1 and account 2. This
policy may be easily expressed by our EACL framework:

1. Group Bank Teller is defined which will include
Tom, Joe, and Ken

2. The EACLs for objects account 1 and account 2 will
contain the following entry:

Token Type: access id GROUP
Defining Authority: X.509
Value: /C=US/O=Globus/CN=Bank Teller

Token Type: pos access rights
Defining Authority: pasific coast bank
Value: ACCOUNT:deposit,withdraw

In expressing role-based policy using groups, the issue of
constraints on role activation and use should be addressed.

8 Clark-Wilson

The Clark-Wilson model [12] was developed to address
security issues in commercial environments. The model
uses two categories of mechanisms to realize integrity: well-
formed transactions and separation of duty.

Our framework is designed to handle the Clark-Wilson
integrity model. A possible way to represent a constraint
that only certain trusted programs can modify objects is
using application:checksum condition, where the
checksum ensures authenticity of the application. An-
other way is using application:endorser condition,
which indicates that a valid certificate, stating that the appli-
cation has been endorsed by the specified endorser, must be
presented.

Static separation of duty is enforced by the security ad-
ministrator when assigning group membership. Dynamic

180

separation of duty enforces control over how permissions
are used at the access time [6]. Here are examples of EACL
conditions specific to the Dynamic separation of duty:

� privilege:restricted Makes subject operate
with the privilege of only one group at a time.

� privilege:set of groups Makes subject oper-
ate with the privilege of only specified groups at a time.

� endorsement:list of endorsers
Concurrence of several subjects to perform some op-
eration.

9 Lattice-based Policies

Our framework allows incorporation of Mandatory Con-
fidentiality [14], Mandatory Integrity [15] models and their
combination.

Mandatory policies govern access on the basis of classi-
fication of subjects and objects in the system. Objects and
subjects are assigned security labels:

1. Confidentiality labels, e.g. Top Secret/NASA, Sensi-
tive/Department2

2. Integrity labels, e.g. High integrity, Low integrity

3. Single security labels for both confidentiality and in-
tegrity, e.g. Top Secret/NASA, Unclassified. Assume
that the first label denotes high integrity level, whereas
the second one denotes low integrity level.

To prove eligibility to access an object, a subject has to
present a valid credential, stating subject’s security label.

All access rights are divided into read-class and write-
class. Appropriate rules are applied to each class.

Generic conditions for read-class access rights:
a) conf read equal:cofidentiality label
This condition specifies that a subject, wishing to get

read-class access to the object has to have security clearance
equal to the one, specified in the cofidentiality label field.

b) conf read below:cofidentiality label
This condition is used to enforce read down

mandatory confidentiality rule. It specifies that a sub-
ject, wishing to get read-class access to the object has to
have security clearance no less the one, specified in the
cofidentiality label field.

c) integr read equal:integrity label
This condition specifies that a subject, wishing to get

read-class access to the object has to have security clearance
equal to the one, specified in the integrity label field.

d) integr read above:integrity label
This condition is used to enforce read up mandatory

integrity rule. It specifies that a subject, wishing to get read-
class access to the object has to have integrity clearance less

or equal to the one, specified in the integrity label
field.

Similarly we define generic conditions for write-class
access rights. Assume file doc.txt has classification
Sensitive/Departmen1 and integrity label Medium, then
EACL for this file can be specified as:

TOKEN TYPE

VALUE

IDENTITY

#1

access_id_ANIBODY pos_access_rights conf_write_above

system_manager system_manager

system_manager

Sensitive/Deprt1

Sensitive/Deprt1

Medium

CONDITIONS

none

none

DEF. AUTHORITY

 integr_write_below

ACCESS RIGHTS

system_manager

FILE : write

pos_access_rights conf_read_below

system_manager

FILE : read

Table 3.

Note that in the example above, everybody in the dis-
tributed system can get read or write access to the file if
a valid credential stating the appropriate security label at-
tribute is presented. This poses a requirement that security
labels be unique across different security domains. This may
not be easily satisfied.

A possible way to restrict the scope of security labels to a
particular administrative domain is to specify an additional
condition such as location.

10 Conclusions

In this paper we presented a generic authorization mech-
anism that supports a variety of security mechanisms based
on public or secret key cryptography. The mechanism is
extensible across multiple applications supporting different
operations and different kinds of protected objects. Alter-
native implementations may be chosen for underling secu-
rity services that support the API. By extending the tradi-
tional ACLs and capabilities with conditions on authorized
rights we are able to support a flexible distributed autho-
rization mechanism, allowing applications and users to de-
fine their own access control policies either independently
or in conjunction with centralized authorization and group
servers. The problem of policy translation is addressed by
using generic or application-specific evaluation functions.
We are going to investigate the request and evaluation of ad-
ditional credentials. The assumption that all relevant cre-
dentials are passed for evaluation contradicts privacy re-
quirements. It might not be always desirable to reveal group
membership and principal attributes up front. We have inte-
grated our model with several applications.

11 Appendix

We use the Backus-Naur Form to denote the elements of
our policy language. Square brackets, [], denote optional
items and curly brackets,

���
, surround items that can repeat

181

zero or more times. A vertical line, |, separates alternatives.
Items inside double quotes are the terminal symbols.

An EACL is specified according to the following format:
eacl ::=

�
eacl entry �

eacl entry ::=
access id

�
access id � pos access rights

�
condition ��

pos access rights
�
condition ��� |

access id
�
access id � neg access rights

access id ::=
access id type def authority value

access id type ::=
”access id HOST” |
”access id USER” |
”access id GROUP” |
”access id CA” |
”access id APPLICATION” |
”access id ANYBODY”

A capability is defined according to the followingformat:

capability ::=
grantor id pos access rights

�
condition ��

pos access rights
�
condiction ���

grantor id ::=
grantor id type def authority value

grantor id type ::=
”grantor id HOST” |
”grantor id USER” |
”grantor id GROUP” |
”grantor id CA” |
”grantor id APPLICATION” |
”grantor id ANYBODY”

pos access rights ::=
”pos access rights” def authority value�

”pos access rights” def authority value �

neg access rights ::=
”neg access rights” def authority value�

”neg access rights” def authority value �

condition ::=
condition type def authority value

condition type ::= alphanumeric string

def authority ::= alphanumeric string

value ::= alphanumeric string

12 Acknowledgments

This research was supported in part by the Informa-
tion Technology Office of the Defense Advanced Research
Projects Agency (DoD) under the Scalable Computing In-
frastructure (SCOPE) Project, Contract No. DABT63-95-
C-0095, Security Infrastructure for Large Distributed Sys-
tems (SILDS) Project, Contract No. DABT63-94-C-0034,
Global Operating Systems Technology (GOST) Project,
Contract No. J-FBI-95-204, Diplomat, Project Depart-
ment of Energy Cooperative Agreement No. DE-FC03-
99ER25397 and by a grant from Xerox Corporation. The
views and conclusions contained in this document are those
of the authors and should not be interpreted as representing
the official policies, either expressed or implied, of the U.S.
Army Intelligence Center and Fort Huachuca Directorate
of Contracting, the Defense Advanced Research Projects
Agency, the U.S. Government, or Xerox Corporation.

References

[1] C. Neuman. Proxy-based authorization and accounting for
distributed systems. Proceedings of the 13th International
Conference on Distributed Computing Systems, Pittsburgh,
May 1993.

[2] C. Neuman and T. Ts’o. Kerberos: An authentication ser-
vice for computer networks. IEEE Communications Maga-
zine, pages 33–38, September 1994.

[3] T. Y. C. Woo and S.S. Lam. Designing a Distributed Autho-
rization Service. In Procedings IEEE INFOCOM ’98, San
Francisco, March 1998.

[4] S. Jajodia, P. Samarati and V.S. Subrahmanian. A logical Lan-
guage for Expressing Authorizations. Proceedingsof the 1997
IEEE Symposium on Security and Privacy, 1997.

[5] M. Abadi, M. Burrows, B. Lampson and G. Plotkin A calculus
for Access Control in Distributed Systems. ACM Transactions
on ProgrammingLanguagesand Systems, Vol. 15, No 4, Pages
706-734, September 1993.

[6] R. T. Simon and M. E. Zurko Separation of Duty in Role-
Based Environments. Computer Security Foundations Work-
shop, June 1997.

[7] N. Nagaratnam and S. B. Byrne. Resource access control for
internet user agent. Proceedings of the third USENIX Confer-
ence on Object-Oriented Technologiesand Systems, Portland,
Oregon, June 1997.

[8] L. Gong and R. Schemers. Implementing Protection Domains
in the Java Development Kit 1.2. Proceedingsof Network and
Distributed System Security Symposium, San Diego, Califor-
nia, March 1998.

[9] M. Blaze, J. Feigenbaum and J. Lacy. Decentralized Trust
Management. in Proc. IEEE Symp. on Security and Privacy,
IEEE Computer Press, Los Angeles, pages 164-173, 1996.

[10] R. S. Shandhu, E. J. Coyne, et al Role-Based Access Control:
A Multi-Dimensional View. Proc. of 10th Annual Computer
Security Applications Conference, December 5-9, pages 54-
62, 1994.

182

[11] W. Shen and P. Dewan Access Control for Collaborative En-
vironments. Proc. of CSCW, November, 1992, pages 51-58

[12] D. D. Clark and D. R. Wilson Non Discretionary Controls
Commercial Applications. Proc. of the IEEE Symposium on
Security and Privacy, pages 184-194, April 1997.

[13] S B. Lipner A Comparison of Commercial and Military Com-
puter Security Policies Proc. of the 1987 IEEE Symposium on
Security and Privacy, 1982.

[14] D. Elliott Bell and L. J. LaPadula Secure Computer Sys-
tem: Unified Exposition and Multics. Interpretation, ESD-TR-
75-306 (MTR-2997), The MITRE Corporation Bedford, Mas-
sachusetts, July 1975.

[15] K. J. Biba Integrity Considerations for Secure Computer Sys-
tems, The MITRE Corporation, Bedford, MA, MTR-3153, 30
June 1975.

[16] N. Salehi, K. Obraczka and C. Neuman The performance of
a reliable, request-responsetransport protocol. Proceedingsof
the Fourth IEEE Symposium on Computers and Communica-
tions, 6-8 July, 1999.

[17] Edited by I. Foster and C. Kesselman.
The GRID: Blueprint for a New Computing Infrastructure
Morgan Kauffman Publishers, 1999.

[18] I. Foster and C. Kesselman. The GRID: Blueprint for a
New Computing Infrastructure. Morgan Kauffman Publish-
ers, 1999.

183

