852

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VvOL.25, NO.6, NOVEMBER/DECEMBER 1999

Conflicts in Policy-Based
Distributed Systems Management

Emil C. Lupu, Member, IEEE, and Morris Sloman, Member, IEEE Computer Saciety

Abstract—Modern distributed systems contain a large number ot objects and must be capable of evolving, without shutting down the
compleie system, to cater for changing requirements. There is a need for distributed, automated management agents whose behavior
also has to dynamically change to reflect the evolution of the system being managed. Policies are a means of specifying and
influencing management behavior within a disttibuted system, without coding the behavior into the manager agents. Our approach is
aimed at specifying implementable policies, aithcugh policies may be initially specified at the organizational level (c.f. goals) and then
refined to implementable actions. We are cencerned with two types of policies. Authorization pollcies specify what activities a
manager is permitted or forhidden to do to a set of target objects and are similar to security access-control policies. Obllgation
policies specify what activities a manager must or must not do to a set of target objects and essentially define the duties of a manager.
Conflicts can arise in the set of policies. For example, an obligation policy may define an activity which is forbidden by a negative
authorization policy; there may be two authorization policies which permit and forbid an activity or two policies permitting the same
manager to sign checks and approve payments may conflict with an external principle of separation of duties. Conflicts may also arise
during the refinement process between the high-level goals and the implementable policies. The system may have to cater for conflicts
such as exceptions to normal authorization policies. This paper reviews policy conflicts, focusing on the problems of conflict detection
and resolution. We discuss the various precedence relationships that can be established between policies in order to allow inconsistent
policies fo coexist within the system and present a conflict analysis tool which forms part of a role-based management framework,

Software development and madical environments are used as example scenarios in the paper.

Index Terms—Obligation policy, authorization policy, meta-pelicy, policy conflict, conflict resolution, management roles.

1 INTRODUCTION

DISTRIBUTED systems may contain a large number of
objects and potentially cross organizational bound-
aries, New components and services are added or removed
from the system dynamically, thus changing the require-
ments of the management system over a pofentially long
lifetime. There has been considerable interest recently in
policy-based management for distributed systems [51], [5],
[26], [19]. A Policy is information which can be used to
modify the behavior of a system. Separating policies from
the managers which interpret them permits the modifica-
tion of the policies to change the behavior and strategy of
the management system without recoding the managers.
The management system can then adapt to changing
requirements by disabling policies or replacing old policies
with new ones without shutting down the system. We are
concerned with two types of policies. Authorization
policies are essentially security pelicies related to access-
control and specify what activities a subject is permitted or
forbidden to do to a set of target objects. Obligation
policies specify what activities a subject must or must not
do to a set of target objects and define the duties of the
policy subject. We permit the specification of both positive
and negative authorization policies and require explicit
authorization, i.e., nonauthorized invocations are

o The auihors are with the Department of Computing, Intperial College,
London SW7 2BZ, UK. E-mail: fe.c.lupu, m.slowmanl@doc.ic.ac.uk.

Manuscript recefved 15 Sept. 1997; vevised 25 July 1998,

Recomttended for acceptance by C. Ghezzi.

For information on obigining reprints of this article, plense send e-mail to:
tse@computer.org, and reference IEEECS Log Number 109063,

forbidden. An overview of our policy notation is given in
Section 2.2.

The subject of a policy specifies the human or automated
managers to which the policies apply and which interpret
obligation policies. The target of a policy specifies the
objects on which actions are to be performed. Domains are
a means of grouping objects and are similar to file system
directories. They are described in more detail in Section 2.1
below. The subject or target of a policy is expressed as a
domain of objects and the policy applies to all objects in the
domain; so a single policy can be specified for a group of
objects [52]. This helps to cater for large-scale systems in
that it is not necessary to define separate policies for
individual objects in the system, but rather for groups
of objects. :

In a large distributed system there will be multiple
human administrators specifying policies which are stored .
on distributed policy servers. Policy conflicts can arise due
to omissions, errors or conflicting requirements of the
administrators specifying the policies. For example an
obligation policy may define an activity a manager must
perform but there is no authorization policy to permit the
manager to perform the activity. Conflicts can alsc arise
between positive and negative policies applying to the same
objects (which we refer to as modality conflicts). In general,
whenever multiple policies apply to an object there is a
potential for some form of conflict, but it is essential that
multiple policies should apply in order to cover the
diversity of management functions and of management
domains. There may be different policies relating to
security, monitoring, or configuration which apply to a set

0098-5589/99/510.00 © 1999 IEEE

LUPU AND SLOMAN: CONFLICTS IN POLICY-BASED DISTRIBUTED SYSTEMS MANAGEMENT 853

of objects reflecting different management functions which
may be performed on the objects. Similarly, the policies
specified for the network, subnetwork, and workstation
domains will all propagate to the network objects inside
the workstation.

Many policies specified for the management of a large
system specify exceptions to more general policies. System
administrators are typically permitted to reboot computer
systems while ordinary users are prohibited from perform-
ing such actions. It is not always desirable to eliminate the
conflict by rewriting the policies or changing the member-
ship of the domains to which policies apply. As automated
managers cannot enforce conflicting policies, a precedence
relationship must be established between the policies in
order to resolve the conflicts.

In this paper, we review the conflicts which may arise
between management policies and describe the tools we
have developed for analyzing policy specifications to
determine conflicts. We use roles as the means of grouping
policies related o a particular manager position and then
managers can be assigned or removed from the position
without changing the policies [23]. We also define the
relationships between roles with regard to the use of shared
resources or with regard to the organizational structure,
e.g., a departmental manager role will have the right to
assign tasks to the section manager role. A large-scale
distributed system will have very large numbers of objects
and policies distributed around the system, so the conflict
detection cannot be centralized but also has to be
distributed. Qur use of roles and inter-role relationships
provides a scope for the conflict detection and helps to limit
the number of policies that have to be examined in order to
determine conflicts. This paper focuses on techniques and
tool support for off-line conflict detection and resolution,
although some conflicts can be detected only at run-time.

Policies are interpreted by automated manager agents
and so the behavior of the agents can be modified
dynamically by changing policy rather than recoding. We
use the term “agent” to refer to an automated component
which interprets policies. The policies thus provide a
constrained form of “programming” of automated agents
to change management strategy without shutting down the
management systemn. As management activities can have a
drastic impact on the system being managed, it is important
to determine and resolve policy conflicts so that the
automated management is able to perform correctly. The
policies can also apply to humans, for example the roles
related to a collaborative software development team. Qur
policy notation and role framework could be used to specify
the rights (authorizations) and duties (obligations) of
members of the team. It is useful to be able to determine
policy conflicts within a single role or between roles by
analysis of the policies rather than relying on human
initiative to resolve the conflicts when they oceur.

The work presented in this paper stems from research on
software paradigms for the management of distributed
systems. However, most of the principles outlined here also
apply to the engineering of large software applications.
Authorization policies are often embedded in database
management systems in order to ensure the privacy of

information [22]. The opportunity of downloading and
running programs (Java, SafeTcl, etc) from sources with
varying degrees of trust, requires the host application to
configure access confrol according to security policies
which may be explicit or implicit. Minsky has extensively
studied the use of permission and prohibition rules for
specifying laws with which application components must
comply [34]. Obligation policies can be either used in
conjunction with authorizations in order to ensure the
integrity of the system [33] or to declaratively specify the
actions a component must initiate in response to changes in
its internal state or environment.

In Section 2 of this paper, we give more details of the
domains, policies, and roles which form our management
framework. Section 3 discusses the type of inconsistencies
and the policy conflicts we need to detect. In Section 4 and
Section 5, we expiain our approach to conflict detection, and
conflict resolution based on policy precedence relation-
ships. Section 6 describes the prototype toals the authors
have implemented. Relationship to other works are covered
in Section 7, followed by conclusions and further work in
Section 8. In this paper, the authors do not address
inconsistencies that may arise as a resuit of partial failures
within a distributed system.,

2 MANAGEMENT FRAMEWORK

The main components.of our management framework are
domains for grouping objects, a policy service to support
the specification and storage of policies and roles to reflect
the organizational structure, responsibility, and relation-
ships between management positions.

2.1 Domains

Domains provide a flexible means of partitioning the objects
in a large system according to geographical boundaries,
object type, management functionality, responsibility, and
authority or for the convenience of human managers. In
many cases, domains are used to group objects in order to
apply a common policy to a set of objects, e.g., in a

. department within a company. Membership of a domain is

explicit and not defined in terms of a predicate on object
attributes. A domain does not encapsulate the objects it
contains but merely holds references to object interfaces, A
domain is thus very similar in concept to a file system
directory but may hold references to any type of object,
including a person. A domain, which is a member of
another domain, is called a subdomain of the parent
domain. A subdomain is not a subset of the parent domain,
in that an object included in a subdomain is not a direct
member of the parent domain, but is an indirect member
(c.f., a file in a subdirectory is not a direct member of a
parent directory). An object or subdomain may be member
of multiple parent domains. For example, in Fig. 1, the two
“bean people” and subdomain E are members of both B and
C domains which, therefore, overlap. We permit cyclic
structures within the domain hierarchy, as it is easier to deal
with them in domain traversal algorithms than to try to
prevent them. Details of domains are described in [51], [52].

Path names are used to identify domains, e.g., domain E
can be referred to as /A/B/E or /A/C/E as an object may have

854

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 25, NO. 6, NOVEMBER/DECEMBER 1999

Sub-Domaing and Overlapping Domains

Fig. 1. Domains.

different local names with multiple parent domains, where
“{” is used as a delimiter for domain path names. Policies
normally propagate to members of subdomains, so a policy
applying to domain B will also apply to members of
domains D and E. Domain scope expressions can be used
to combine domains to form a set of objects, for applying a
policy, using union, intersection, and difference operators,

e.g., a scope expression @/A/B + @/A/C - @/A/B/E would

apply to members of B plus Cbut not E, and @/A/B* @/A/C

applies only to the direct and indirect members of the
overlap between B and C. The “@” symbol selects all
nondomain cbjects in nested domains.

An advantage of specifying policy scope in terms of
domains is that objects can be added and removed from the
domains to which polictes apply without having to change
the policies.

2.2 Policies
In this section, we give an overview, of the notation used to
specify policies [28], [22]. The notation is essentially aimed
at specifying policies which are interpreted by automated
agents, but can alse be used to specify high-level abstract
policies or geals that could only be interpreted by humans.
As stated in Section 1, the policies are interpreted rather
than compiled into the code of agents, so can be changed
dynamically. The notation is precise and can be analyzed
for conflicts using tools, but it is not based on a well-known
logic, Implementable policies are directly interpreted by
automated manager and access control agents, which are
(potentially} distributed, so we do not use logical deduction
in order to analyze the state of the system. Our notation
should not be confused with Deontic Logic as our
authorizations are independent from obligations. The
interdefinability axiom in Standard Deontic Logic, where
permissions are defined in terms of obligations, i.e.,
Px = nepr.7O—x, does not apply to our notation.
Authorization policies define what activities a subject
can perform on a set of target objects and are essentially
access control policies to protect resources from unauthor-
ized access. Constraints can be specified to limit the

Domain Hierarchy (without
member objects)

applicability of both authorization and obligation policies
based on time or values of the attributes of the objects to
which the policy refers.

X1 A+ @/project-managers { defet(); activate() }
x: @/tasks/modification_requests
when (x.status == approved)

Project managers are authorized to defer or acfivate
modification requests that have been approved. The “;”
is used to separate the permitted actions. Note the use of
the constraint to limit the scope of applicability of the
policy to objects in the target domain with status =

approved.

x2 A- @/test-engineers { commit(); edit() } /repository/db .
when (20:00 < time) or (time < 07:00)

Test engineers are forbiddén to commit new changes or
edit the repository database between the hours of
800 p.m. and 7:00 a.m. the following day, ie., a time-
based constraint. The “;” is used to separate the
forbidden actions. Note, that if there is a default negative
authorization policy, whereby all actions are forbidden
unless explicitly authorized, the negative authorization
in X2 could be converted into a positive authorization
with a constraint when 07:00 < time < 20:00.

Obligation policies define what activities a manager or
agent must or must not perform on a set of target objects.
Positive obligation policies are triggered by events.

X3 O+ on new_request(mri) @/project1/analysts
{ investigate(mri); propose_solution{mri) }
/project2/tasks/modification_requests;
This positive obligation policy is triggered by an external
event signaling that a new modification request has been
issued and obliges the analysts to investigate and then
propose a solution to the modification request. The “;” is
used to separate a sequence of actions in an obligation
- policy, !
x4 O+ at 01:00 farchiver { backup () } /repository/db

LUPU AND SLOMAN: CONFLICTS IN POLICY-BASED DISTRIBUTED SYSTEMS MANAGEMENT 855

‘Fhis positive obligation policy is triggered by an internal
event—every night at 1:00 am.—for the archiver to
backup the repository database.

x5 O- n: @/test-engineers { DiscloseTestRasults() }
@/analysts + @/developers
when n.testing_sequence == in-progress

This negative obligation policy specifies that test
engineers must not disclose test results to analysts or
developers when the testing sequence being performed
by that subject is still in progress, i.e.,, a constraint based
on the state of subjects.

The general format of a policy is given below with
optional attributes within brackets (the braces and semi-
colon are the main syntactic separators). Some attributes of

- a policy such as trigger, subject, action, target or constraint
may be comments {e.g., /” this is a comment "/} in which
case the policy is considered high-level and not able to be
directly interpreted.

identifier mode {trigger] subject “{” action “}"
target [constraint] [exception] [parent] [child] [xref] *;"

The identifier is a label used to refer to the policy. The
mode of the policy distinguishes between positive obliga-
tions (O+), negative obligations (O-), positive authoriza-
tions (A+), and negative authorizations (A-).

The trigger only applies to positive obligation policies. It
can specify an internal timer event using an at clause, as in
x4 above, or an external event using an on clause, as in x3
above, where the new_request event passes a parameter
(mfi) to the agent. Examples of external events are a
temperature exceeding a threshold or a component failing,
These are detected by a monitoring service, The policy
notation only specifies simple events as a generalized
monitoring service can be used to combine event sequences
to generate simple events [27].

The subject of a policy, defined in terms of a domain
scope expression, specifies the human or automated
managers and agents to which the policies apply and
which interpret obligation policies. The target of a policy,
also defined in terms of a domain scope expression,
specifies the objects on which actions are to be performed.
Security agenfs al a target’s node interpret authorization
policies and manager agents in the subject domain interpret
obligation policies.

The actions specify what must be performed for
obligations and what is permitted for authorizations. It
consists of method invocations or a comment and may list
different methods for different object types. Multiple
actions in an authorization policy indicate the set of actions
or operations which are permitted or forbidden. Multiple
actions in a positive obligation policy imply that they are
performed sequentially after the policy is triggered.

The constraint, defined by the when clause, limits the
applicability of a policy, e.g., to a particular time period as
in policy X2 above, or making it valid after a particular date
{when time > 1/June/1999). In addition, the constraint could
be based on attribute values of the subject (as in policy x5
above) or target objects. In x5, the label n, prepended to the
subject, is referenced in the constraint to indicate a subject
attribute. Constraints must be evaluated every time an

~ obligation policy is triggered or an authorization policy is

checked to see whether the policy still applies as atfribute
values may change.

An action within an obligation pelicy may result in an
operation on a remote target object. This could fail due to
remote system or network failure so an exception mechan-
ism is provided for positive obligations to permit the
specification of alternative actions to cater for failures which
may arise in any distributed system.

High-level abstract policies can be refined into imple-
mentable policies. In order to record this hierarchy, policies
automatically contain references to their parent and
children policies. In addition, a cross-reference {xref} from
one policy to another can be inserted manually, e.g., so that
an obligation policy can indicate the authorization policies
granting permission for its activities {see Section 3.1 for
an example). : :

2.3 Is Negative Authorization Equivalent to
Negative Obligation?
Both negative authorizations and obligations are needed
because they are specified independently and implemented
using completely different techniques. Authorizations are
specified to protect target objects from unauthorized access
by subjects, Subjects, therefore, cannot be trusted to interpret
authorization policies so they are interpreted by trusted
access control agents within the farget system [57]. The
implementation of authorization policies can map onto
access control lists or capabilities (c.f. operating system or
database access control). In commercial crganizations,
authorization policies are likely to be specified by a security
administrator and are subject to very strict controls.
Obligation policies are likely to be defined by line-managers
and there may be less strict controls on modifying
obligation policies. In some organizations there is an
overriding default negative authorization so that all actions
are forbidden unless explicitly authorized. However ex-
plicit negative authorization can be useful, e.g., to suspend a
student from access to the computer system as a punish-
ment for misbehavior. Examples of negative authorizations
which are considered to be nonfunctional (security)
requirements are given in [38] “reimbursements should
not be revealed to secretaries with a job classification below
I i

A negative obligation policy acts a restraint on the
subject in situations where it is not practical or feasible to
provide a negative authorization. Negative obligations
should be read as “obliged not to” or “refrain from” and
can be considered as “filters” [36] to prevent permitted
actions from being performed under certain circumstances.
For example in policy x4 above, the test engineers must not
disclose intermediate results to the analysts or developers
before the tests are completed. It would not be practical to
implement this as a target-based negative authorization
policy as the targets do not wish to be protected and will try
to get early results from the test engineers. In addition, the
test engineers may actually be authorized to disclose test
results to analysts and developers. Therefore, the subject
must interpret the negative obligation policy and filter
information going to the analysts and developers, Another
example would be an agent that is authorized to perform an

856 |IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL, 25, NO. §,

action, but must not do so when in standby mode. This
must be specified as a negative obligation since the internal
of the agent can only be determined at the agent side.
Negative obligations to refrain {rom actions have also been
used in [33] in a similar way. In [40], the authors define a
negative Deontic obligation known as a waiver, which
corresponds to mot obliged to whereas our negative
obligation is obliged not to perform an action which is
permitted.

Negative obligation policies are restraints which have to
apply over long periods of time (as do authorization
policies) so they cannot be triggered by events. However
constraints can be used to limit their applicability.

2.4 Policy Implementation Aspects

The policy service provides tool support for defining
policies and disseminating polices to the relevant agents
that will interpret them. Policies are implemented as objects
which can be members of domains so that authorization
policies can be used to control which administrators are
permitted to specify or modify policies stored in the
- policy service.

An overview of the approach to policy enforcement is
given in Fig. 2. An administrator creates and modifies
policies using a policy editor. He checks for conflicts, and if
necessary modifies policies to remove the conflicts, Author-
ization policies are then disseminated to target security
agents as specified by the target domains and obligation
policies to automated manager agents as specified by the
subject domains, Policies may be subsequently enabled,
disabled, or removed from the agents. Manager agents
register with the monitoring service to receive relevant
events generated from the managed objects. On receiving
an event which triggers one or more obligation policies, the
agent queries the domain service to determine target objects
and performs the policy actions, provided no negative
obligation policies restrain the action. More details on the
syntax, semantics and implementation issues of the policy
service can be found in [28], [29], [30].

2.5 Roles

Organizational structure is often specified in terms of
manager positions such as department manager, project
manager, analyst or ward-A nurse. Specifying organiza-
tional policies for human managers in terms of manager
positions rather than persons, permits the assignment of a
new person to the manager position without respecifying
the policies referring to the duties and authorizations of that
position. The tasks and responsibilities corresponding to the
position are grouped into a role associated with the position
{(which is essentially a static concept in the organization). A
role is thus the manager position, the set of authorization
policies defining the rights for that position and the set of
obligation policies defining the duties of that position.
These definitions correspond to the concepts of classic Role
Theory which postulates that individuals occupy positions
inside an organization and associated with the position are
a set of activities (including the required interactions) that
constitute the role of that position [2]. Example roles would
be a project manager or analyst in a programming team and
ward nurse or staff nurse in a hospital.

NOVEMBER/DECEMBER 1999

Poliey
Editor

Enable/Disable
policy

_ Query
1 subjects
& targets

]

. Domain Service

Hn

. Query
targets

O/ O-
policies
A+l A- policies

Manager

Agent Perform actions

Register Notify

Target Objects
Domain

Monitoring Service

Fig. 2. Palicy enforcement.

Manager positions can be represented as domains and
we consider a role to be the set of authorization and
obligation policies (the arrows in Fig, 3) with the Manager
Position Domain as subject. A person can then be assigned
to or removed from the position domain without changing
the policies as explained in [51].

There is a need for interactions between roles, e.g.,
delegating a task from a project manager role to an analyst
or coordinating access to objects shared between multiple
roles. The relationship between roles such as ward nurse
and staff nurse is repeated in many wards within a hospital.
We have, therefore, defined a Role Relationship class
which can be instantiated and specifies:

¢ authorization and obligation policies specific to the
relationship between roles,
those policies which refer to shared target objects,

e concurrency constraints relating to policy actions for
those policies specified in the relationship object,

e protocols specifying the required interactions be-
tween roles, e.g., how the project manager delegates
a fault-report to be handled by an analyst.

This permits the specification of contractual relationships
between roles in terms of the rights and duties of the related
parties toward each other and protocols for reqitired
interactions between them. The extended role model is

LUPU AND SLOMAN: CONFLICTS IN POLICY-BASED DISTRIBUTED SYSTEMS MANAGEMENT 857

FETN, Target Domains &
Managed Objects

: éﬁééie. ¢
% Dormain (Sub

Fig. 3. Management roles.

described in [23], [25] and further work on roles, relation-
ships, and our object-oriented approach to these concepts is
described in [24].

Distributed systems contain a large number of objects to
be managed; hence, a large number of policies are needed to
cover different management functionalities, such as config-
uration, security, fault handling, and performance. Since

conflict detection algorithms are computationally expen--

sive, a prime concern is the choice of a scope for the conflict
search. Roles, relationships, and domains offer a means of
determining and progressively extending this scope. The
policies within a role define the rights and duties associated
with the position inside the organization. Hence, a role’s
specification must be free of conflicts. The scope of the
search for conflicts can then be extended horizontally to the
relationships the role participates in and the related roles
themselves, or vertically to all the roles which are members
of the same domain or parent domains and to the policies
specified in ferms of parent domains which propagate to
the role. .

Roles have sometimes been used in Process Modeling as
an abstract representation or as placeholder [10] for the
stakeholders in the software development process. Reles
which are assigned to individuals can then be associated
with tasks and responsibilities [16]. Mapping the activities
performed by roles onto a time-frame leads to the
specification of Role Activity Diagrams (RAD) [3], which
are also adopted in some Object-Oriented Modeling
Notations [41] A different model of RAD based on the
concept of n-party interactions [11], [12] is described in [50],

[43]. An extensive study of roles and role-modeling issues
can be found in [25].

3 CONFLICTS

In this section, we give some example policies and indicate
how modality conflicts can arise due to positive and
negative policies. We also discuss conflicts atising from
meta-policy specifications, i.e., constraints on the permitted
policies within the policy service.

3.1 Some Examples

A service provider offers its users access to a travel-booking
agent. Access is regulated according to the type of the users
(private clients, corporate, etc.) and the area from which the
users are accessing the service. For example:

/¥ Users gecessing from a Netwerk Access Point in Wales
are not allowed to access the service */

p5 A- @/users_by_NAP/Wales { browse(); purchase() }
/services/Travel_book

/* All corporate users are allowed to access the service */

p6 A+ @/corporate users { browse(); purchase() }
[services/Travel_book

An obvious conflict occurs when a corporate user accesses
services from Wales, in which case access cannot be decided
without giving precedence to one of the policies and
ignoring the other. '

Consider now the policies regulating the medication of
patients in a hospital. An initial abstract policy can then be
written as: '

/* Nurses must maintain patients’ lemperature within
normal limits */

h1 O+ /* nurses */
{ /maintain temperature within normal limits */ }
/" patients */child h2, h3, ...

This policy indicates a state that must be maintained but
does not specify how to do it. It is refined to a set of policies
specifying - the drugs which must be administered and
which additional actions must be taken, plus an authoriza-
tion policy to permit analgesics to be administered.

/* Administer analgesics when temperature is too high ¥/

h2 O+ on high_temperature(patient) /nurses
{ administer(analgesics) } u:@/patients
when u==patient parent h1 , xref authorization h3

/* Nurses are authorized to administer analgesics */

h3 A+ @/nurses { administer(anaigesics) }
@/patients parent h1 ’

/* Nurses must log their handling of drugs %/

h4 O+ on drugs_administered @/nurses { update() }
/drugs_db
parent hi

Note that at this point there are no authorizations giving
nurses access to the database. If the administrator omits to
specify such a policy, wrongly assuming it may have been
specified in the general access conirol policies, the
unauthorized obligations should be detected. Furthermore,
if such an authorization does exist, it may conflict with the
following policy:

/* Every night at 1:00 a.m., drug stock-levels must be checked
then new drugs ordered */

h5 O+ at 01:00 /agents/stock_taker
{ check_stock(); generate_order() } /drugs_db

This conflict is due to the fact that no updates can be
performed on the database while the stock levels are being
checked.

3.2 Conflict Classification

Modality conflicts are inconsistencies in the policy speci-
fication which may arise when two or more policies with
modalities of opposite sign refer to the same subjects,
actions and targets. This occurs when there is a triple .

. 858 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 25, NO. 8, NOVEMBEH/DECEMEER 1699

overlap between the sets of subjects, targets and actions as
shown in Fig. 4, and so can be determined by syntactic
analysis of polices. There are three types of modality
conflicts:

1. O+/Q- the subjects are both required and required
not to perform the same actions on the target objects.

2, A+/A- the subjects are both authorized and forbid-
den to perform the actions on the target objects.

3. O+fA- the subjects are required but forbidden to
perform the actions on the target objects (obligation
does not imply authorization in our case).

As mentijoned in Section 2.2, O-/A+ is not a conflict, but
may occur when managers must refrain from performing
certain actions as specified by a negative obligation.

A second type of conflict refers to the consistency
between what is contained in the policies, ie., which
subjects, targets and actions are involved and external
criteria such as limited resources or the overall policies of
the organization. An example of this type of conflict arises
from the principle of separation of duties [4], e.g., the same
managers cannot authorize payments and sign the payment
checks. These conflicts are application specific and cannot
be determined directly from the policy specifications—ad-
ditional information is needed to specify the conditions
which result in conflict. These can be specified as a Meta-
policy, which is a constraint about permitted policies. (The
constraints on the permitted policies within a system may
be considered a policy decision—hence the term “meta-
policy”). Several types of application-specific conflicts such
as: confiict of priorities for resources, conflict of duties,
conflict of interests, multiple managers conflict and self-
management conflict have been identified in [37] and
classified according to the overlaps between the subject,
action and target sets. These will be described further in

Section 5.
Modality conflicts arise from averlapping domains but it

is impractical to prevent these overlaps (see Section 4.1) as
there is a need for multiple policies to apply to a domain to
reflect partitioned responsibility and the diversity of
management functions that can be performed on target
objects, e.g., different managers may be responsible for
maintenance and securily relating to a domain of work-
stations. In the following, we discuss the precedence
relationships which can help to resolve modality conflicts,
then describe our approach to specifying meta-policies to
detect application specific conflicts,

P1a
51 -;1 t1
al
sc ac to
) P azg : - t2
L v
P2 -

Fig. 4. Overlapping subjects, targets, and actions,

4 MobaLuTY CONFLICT DETECTION AND .
RESOLUTION

Conflict detection between management policies can be
performed statically for a set of policies in a policy server as
part of the policy specification process or at run-time [49],
[32]. The specification time conflict detection is analogous to
compile-time type checking for programming languages in
that it reduces run-time errors and detects specification
errors, The limitation of static analysis is that it may not be
possible to evaluate policy constraints, as they depend on
run-time state, and domain membership may change at
run-time, so only potential rather than actual conflicts can
be detected. Both static and run-time conflict detection are
needed, but this paper concentrates on a static conflict
detection tool which assists the users specifying policies,
roles and relationships, In the following, we discuss some
principles for the detection of the modality conflicts and
present an implementation of the conflict detection tool.

4.1 Modality Conflicts,

The analysis for modality conflicts of a set of policies
enumerates all subject, action, target tuples which have a
different set of policies applying to them. If there are two or
more policies applying to a tuple then there is a potential
conflict and the policies can be checked to see whether there
is an actual conflict, i.e., a positive and negative policy with
the same subjects, targets and actions.

Consider the policies P1 and P2 represented in Pig. 4
with P1 being positive and P2 being negative. Let us call the
overlapping areas s,, a., and t. for common subjects, actions
and targets. The triple overlap between the policies P1 and
P2 creates three tuples to which different sets of policies

apply:

e Tl alone applies to < & — g, 81 — 8,61 ~ te. >

e P2 alone applies to < 83 — 8¢, 83 — 8, b — t, >

¢ D1 and P2 together apply to < 5., 8,1, >
As Pl is positive and P2 is negative, a conflict will be
indicated. The above analysis is purely syntactic and
requires no understanding of the policies. Detecting these
modality conflicts is not particularly difficult, It is more
interesting to consider whether the conflicts can be
automatically resolved by assigning precedence to policies.

4.2 Policy Precedence Relationships

As previously mentioned, modality conflicts result from a
triple overlap between the subjects, actions, and targets of
the policies. In a typical organization there will be some
general policies pertaining to all staff in the organization as
well as more specific policies relating to staff in a
department or section. Staff may also be members of many
different domains. Detecting the triple overlaps between
policies with modalities of opposite signs would, therefore,
detect many potential conflicts that do not result in actual
conflicts. Consider for example the following policies:

/¥ All users are forbidden to reboot workstations */
W1 A- @/users [reboct() } @/workstatichs

/¥ The system administrators are authorized to reboot the
workstations */

LUPU AND SLOMAN: CONFLICTS IN POLICY-BASED DISTRIBUTED SYSTEMS MANAGEMENT 859

W2 A+ @/users/sys_admin { reboot() } @/workstations

To resolve this conflict, it is necessary either to change
policy W1 or to exclude the system administrators from the
/users domain. Changing a policy is a lengthy operation,
which réquires retracting the policy from all the agents,
editing it and redistributing the new policy to all the agents.
Furthermore, authorization to reboot a particular work-
station may also be granted to a student engaged an
operating systems project, or testers of new hardware
configurations. So, rewriting a policy may not be convenient
or desirable in the general case. Removing the system
administrators from the users domain is not a desirable
alternative either, since this means withdrawing them from
all the other policies specified in terms of the users domain.
We must, therefore, allow the two pelicies to coexist within
the system and determine which policies should apply for
each manager (or set of managers), and which policies
should be ignored (e.g., W1 for system administrators in the
case above). Using a policy precedence relationship can
substantially reduce the number of conflicts between
policies and permit apparently inconsistent specifications.
There are several principles, outlined below, for establish-
ing this precedence. The choice between them has fo be
guided by which conflicts should be ignored and how easy
it is for the human user to understand the decisions and
selection of the confiict detection tool using this principle,
i.e., how intuitive the principle is.

4.2.1 Negative Policies Always Have Priority

It is quite common for negative authorization policies to
always override positive ones so that a forbidden action will
never be permitted. However, in the example above, this
implies that Policy W1, being negative, has priority over W2
so the system administrators are denied access to the
system files but then they cannot perform their function.
Precedence based on modality, ie., negative policies take
precedence over posifive ones or vice versa, allows
conflicting policies to coexist but resolves all the conflicts
in a deterministic way which is not flexible. For example,
the following policy may be added fo the policies W1 and
W2 above;

/* Junior employees are not allowed to vebool workstations
providing persistent services */ '

W3 A- @/employees/junior_employees { reboot() }
@/workstations/persistent_service

A user can be at the same time a junior employee and a
system administrator. So, if positive policies override
negative ones then junior system administrators will be
allowed to reboot all workstations according to W2. ¥ on
the other hand, negative policies take precedence over
positive ones then none of the system administrators can
reboot workstations according to W1. Some flexibility may
be introduced by adopting a default policy such as:
everything is implicitly forbidden, or everything is im-
plicitly authorized and defining precedence between
explicit authorization, explicit denial, implicit authorization
or implicit denial [34]. A default negative authorization
policy, would mean that Policy W1 above would not need
to be specified and so would eliminate some conflicts but

does not really solve the problem. The same situation may
arise for subdomains of the sys_admin domain—network
administrators are not allowed to reboot workstations but a
subset of them must be able to reboot workstations
providing networking services such as DNS.

4.2.2 Assigning Explicit Priorities

A user can assign explicit priority values to policies to
define a precedence ordering, but meaningful priorities are
notoriously difficult for users to assign and may resulf in
arbitrary priorities which do not really relate to the
importance of the policies. Inconsistent priorities could
easily arise in a distributed system with several people
responsible for specifying policies and assigning priorities.

4.2.3 Distance between a Policy and the Managed
Objects '

The concept of caleulating the distance between a rule
(policy) and the objects it refers to has been iniroduced in
[22] for authorization policies in an object-oriented data-
base. Priority is given to the policy applying to the closer
class in the inheritance hierarchy when evaluating access to
an object referenced in a query. Consider a foreign student
class to be a subclass of student, which is a subclass of
person. Then an access policy applying to a foreign student
overrides the general access policy applying to a person.
The distance between the policy and the (class of) objects to
which it applies indicates the relevance of the policy to
those objects. An organization may define new palicies
which are intended to replace older ones so more recent
policies may take precedence in some cases. In general there
is a compromise between the complexity and the intuitive-
ness of the distance to be evaluated. A distance that is
intuitive may not correctly evaluate the importance of a
policy in all the cases. However, a complex calculated
distance may not be intuitive enough for the human user to
understand the selection and priorities assigned to a policy
during the conflict detection process. For example, the
priority could be based on a function of the refinement level
of the policy, last modification date and author of the policy.

Spanoudakis [53] uses different types of distances to
detect similarities and potential discrepancies between
requirements specifications, Three distance functions are
considered: 1} a classification distance giving an estimate of
the analogy of two objects by measuring the importance of
their noncommon classes in a generalization hierarchy, 2} a
generalization distance which also takes into account the
object’s superclasses, and 3) an attribution distance evalu-
ating the similarity of analogous and unique altributes
of objects.

A precedence relation similar to the one used in [22] is
also encountered in the area of default reasoning. In Modal
Action Logic (MAL) a default is a statement which is true
unless some stronger sentence overrides it. Structuring a
MAL specification in terms of objects related in a general-
ization hierarchy allows a specificity principle to be defined
which gives priority to defaults about a specific class of
objects over those for a more general class [45].

860 |IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 25, NO. 8, NOVEMBER/DECEMBER 1999

4.2.4 Specificity Related to Domain Nesting

The principle here is that a more specific policy, ie., a policy
applying to a subdomain refers to fewer objects so overrides
more general policies applying to an ancestor domain. This
concept has been introduced in Mir6 [17] and is a particular
case of the previous concept of distance. Considering the
specificity of a policy with regards to the objects it applies to
is an intuifive concept in a domain-based system. A
subdomain of objects is created for a specific management
purpose—to specify a policy that differs from those
applying to the objects in the parent domain. The system

administrators in Policy W2 above are a subdomain of users

so W2 has precedence over W1 which prohibits users from
having access to system files, but other policies applying to
all the users still apply to the system administrators.
Similarly a policy specified with regards to a subset of
target objects, such as workstations maintaining persistent
services, should take precedence over policies relating to
workstations in general, Precedence based on domain
nesting can thus be used to allow conflicting specifications
by automatically resolving some conflicts.

The specificity precedence as used in [22] and in default
reasoning [45] is only between those objects which belong to
the same generalization hierarchy. Similarly, precedence
based on the specificity in an IsA hierarchy has also been
used in knowledge representation systems based on
semantic networks and frames such as the KEE system
[20], [18]. However, our precedence is based on domain
nesting indicating PartOf relationships where the domains
may contain the same or different types of objects. This is
very flexible as objects can be grouped into subdomains to
reflect specialization or any other relationship which is
considered important for management purposes e.g.,
geographical partitioning, organizational or network struc-
ture. .

In Section 4.3 we describe how domain nesting can be
used within conflict detection to reduce the number of
potential conflicts. We recognize that this principle does not
apply successfully fo all the situations, i.e,, there are cases in
which it is desirable that a global policy overrides more
specific ones. For this purpose, the conflict detection can be
performed with precedence relationships optionally dis-
abled. The following two sections examine the importance
of the overlaps between domains while applying the
domain nesting principle and indicates the cases where
inconsistencies still remain.

4.3 Resolving Conflicts Based on Domain Nesting
In Fig. 4, P1 and P2 have opposite modalities and neither is
more specific so a conflict is indicated to the user. Now
consider a policy P3 {(shown in Fig. 5) defined by the tuple
< 83, a3, t3 > such that s; = s;, a3 = a., and t. is a subdomain
of tz which is a subdomain of t,.

We now have the following tuples and policies:

P1 alone applies to <8 — 8¢, a1 — 8, b1 — te >
P2 alone applies to < sy — 8¢, 83 — 8¢, by — 3 >
P1, P2, and P3 together apply to < s, a.,t; >
P2 and P3 together apply to < s;, ac, t3 — te >

P+
s1 »| 11
T P3+ al
sC ac [¢ }23
82 . . 2
-
P2 -

Fig. 5. More specific policy overrtides.

P3 is positive and is more specific than P2 so it overrides P2
in the areas where they overlap, ie., for the tuple
< 8¢, 8, bz ~ te > and < 8¢, ac,te >. Since P1 and P3 have
the same modality, the conflicts’ can be automatically
resolved using domain nesting precedence.

Note that when displaying the result of a conflict detection
check it is important to provide the user with the information
regarding which policies conflict, where precedence resolves
conflicts and to which tuples <subjects, actions, targets> these
policies apply.

If policies were specified in a logical formalism, the use
of domain nesting precedence would require nonmonotonic
capabilities of the logical framework. Por example, consider
that P1, P2, and P3 above are authorizations. Before policy
P3 is added, managers in the s, domain are forbidden to
perform the invocations denocted by a, on all the targets
defined by the t; — t, set. This is because only P2 specifies
their access rights on those target objects. When policy P3 is
added, the managers are now authorized to perform the
invocations on those target objects since P3 is a positive
policy and overrides P2.

4.4 Limitations of Domain Nesting Based
Precedence

The domain nesting precedence determines all policies
which apply to a tuple of subjects actions and targets and
gives precedence to policies which apply to a more specific
set of subjects, targets, or both. There are cases in which
precedence cannot be established because the sets are equal,
the subject sets are more specific but the target sets are less
specific or vice versa. Various situations where precedence
can or cannot be established between two policies are
illustrated in Fig. 6. Note that that precedence may based on
a policy’s subject or target set s0 it is not an ordering relation
because it is not transitive. However, it presents the
advantage of catering for both more specific subjects and
more specific targets. There is no precedence relationship
between obligations and authorizations since an obligation
overriding an authorization would convey the implicit
assumption that the obligation implies authorization and
this is not true for our policies.

5 META-POLICIES

Modality - conflicts can be detected purely by syntactic
analysis of the policies. Application-specific conflicts arise
from the semantics of the policy and are specified in terms
of constraints on attribute values of permitted policies. For
example, in the case of the separation of duties [4] where the
same set of managers are not allowed to authorize-
payments and sign the payment checks, the conflict is
particular to the actions specified, i.e., authorize a payment

LUPU AND SLOMAN: CONFLICTS IN POLICY-BASED DISTRIBUTED SYSTEMS MANAGEMENT 861

P2 overrides P1 for the areas in which
they overlap

e N G
Q P2 LO_J
—_— P .

= | N
P2 M—

-

h |

Fig. 6. Precedence between policiés.

and sign the check. It, therefore, must be specified by an
additional constraint, which when evaluated, detects the
conflict. We term these constraints meta-policies, i.e.,
policies about management policies, which requires the
use of quantifiers over sets of policies.

For example, the separation of duties can be stated as
“there should not be two policies having overlapping
subject domains which give rights to authorize a payment
and sign a payment check.” This can be written as a logical
predicate;

¥P1, P2 € /policies/accounting

intersectSubject (I’1, P2) A (authorize} € Pl.actions)
. A (sign € PZactions) A (payment € DPl.targets)

A (cheque € P2.targets) A (Pl.mode = Zmode =A+)

= P1 conflicts_with P2

It would not be practical to specify the above meta-policy
as constraints within authorization and obligation policies
as these are evaluated every time the authorization policy is
checked or the obligation policy is triggered. Evaluating this
type of constraint would require checking the policy service
to determine whether another policy exists which violates
this constraint. The run-time overheads of this would be
prohibitive. Specifyinig the constraint as a meta-policy
permits it to be evaluated once at specification time, when

new policies are added. In addition, there is a conceptual

No Precedence between P1 or P2
can be determined

— P1 .
P2
P1

————
P1

—
P1
P2
P1
P2

difference in that the obligation and authorization policy
constraints limit the applicability of these policies whereas
meta-policies are constraints about permitted policies in the
policy service.

We have been experimenting with meta-policies by
implementing the predicate specification in Prolog. The
set of policies contained in the Conflict Detection window
(Fig. 7) is automatically translated into Prolog assertions
and the predicates are evaluated. The set of all the solutions
to a predicate is the set of policies that are in conflict.
Several types of application specific conflicts are presented
in [37]. They identify cases such as the conflict for resources,
multiple management and self-management that are briefly
summarized here.

5.1 Conflict of Resources

This occurs when the amount of resources {target objects)
available is limited. The policies obliging and authorizing
managers to use these resources must, therefore, have a
limited number of objects in their target scope. For example
“at most five disk partitions can be used for back _up
activities.”

5.2 Multiple Management

Muyltiple managers may manage the same objects, either
because the objects are shared between several tasks or

862 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 25, NO.8, NOVEMBER/DECEMBER 19599

BRI greseiiis
[PETRsss SS T I

Rl
i

dnnil

g

i Es
=
3
Fi

S50 biody
Bhaitmriin Y
EE

52
B
Frtid

Fig. 7. Precedence between policies and list of conflicts.

hecause different management functions are assigned to
different roles. This may constitute a conflict when the
management operations to be performed on the target
object are not independent. For' example, an update
operation may require a service to be temporarily shut
down, while a get_configuration operation may require it to
be in service.

5.3 Self-Management
A manager may not be allowed to retract policies that he is
supposed to perform. This can be written as: “There should
be no policy authorizing a manager to retract policies of
which he is the subject.”

Although in [37] these conflicts are characterized by their
overlaps between subject, action and target sets, no
assumption can be made in the general case. The separation
of duty conflict may not have an overlap between target
demains. Further, it may not even have an overlap between
the subjects domains if managers in the same accountancy
department are not allowed to both authorize payments
and sign checks.

Further work rémains to be done regarding the specifica-
tion of meta-policies. While the use of Prolog is attractive
because it offers the flexibility of a general logic program-
ming language a more restricted notation relating directly
to the attributes of a policy is desirable.

6 TooL SUPPORT

The prototype conflict detection teol currently . detects
ovetlaps between policies and optionally applies domain
nesting based precedence. The. domains and policies are
distributed among several servers so CORBA remote object
invocations [39] are used for retrieving the policies and
querying domains to evaluate their sets of subjects, actions,
and targets, In theory, all policies in the system need to be
checked for overlaps, but this is impractical. Instead, we
permit the user to specify the scope of policies to be
checked, for example, the policies applying to particular
roles or the policies of a relationship between roles. Policies
or domains of policies can be dragged from a domain

browser tool into the conflict detection window to establish
the set of policies over which the conflicts are to be detected.
The meta-policies discussed in Section 5 can also explicitly
define the scope to which they apply.

Since there are cases in which a more specific policy
should not take precedence, domain-nesting precedence
can be optionally disabled so that all the policies which
potentially condlict are indicated. When enabled, the
precedence relationship between policies is indicafed by
arrows between the policy icons, as shown in Fig. 7, so the
user can easily determine which policies override. Finally
an analysis option also permits all the tuples of subjects,
actions and targets and the policies applying to them to be
displayed even if there are no conflicts as it is useful fo
examine which policies apply to which tuples.

6.1 Example

Often software process management systems use objects
such as modification requests (MR} or trouble-tickets in
order to coordinate the actions of the actors in the
development process. However, these systems can rarely
reflect the complexity of the organizations, which may
share developers between teams or develop modules
common to multiple projects. We describe a simplified
example relating to the management of modification
request objects in order to highlight how conflicts may
arise in a policy-based specification and how they can be
detected using the analysis tool developed.

Modification request objects are created by invoking the
create_MR() method on the MR_factory object. The organi-
zation is divided in two project teams, each headed by a
project manager (Fig. 8). A group of engineers developing
network modules for multimedia streams (streamingAPI)
are shared between the two projects. In project this group
is a subgroup of a larger group of network developers
(NWdevelopers). We use domains to represent the grouping
of objects and implement policies as objects also repre-
sented in the domain hierarchy (Fig. 8). Project2 has a
manager appointed to the help desk in order to deal with
problems encountered by customers. Note that in Fig. 8, the

LUPL AND SLOMAN: CONFLICTS IN POLICY-BASED DISTRIBUTED SYSTEMS MANAGEMENT 863

|

policies

|

members

_ ‘]*L

NW developers

other project

N

organisation

r l
prejectl project?

members

members] [

\Fyffj

other network
developers

Fig. 8. Software development environment domain structure.

shaded boxes correspond to nondomain objects, i.e., policies
and managers. _

Policies are used to specify who in the organization, is
permitted or forbidden to create modification requests. By
default, we will assume the environment to be an open one
in the sense that all invocations are authorized unless
explicitly forbidden. Access control regarding the creation
of modification requests is decided within each project
separately, based on the characteristics of the project. Let us
consider that both project! and project2 adopt a default
policy where only the project manager is allowed to create
MRs. This means that the members subgroup of each
project is prohibited from creating MRs by two policies
specified as below.

p1 A- @/organization/project1/members { créate_MH() I

/MRfactory

p3 A- @/organization/project2/members { create_MR() }
/MRfactory

Furthermore, any modifications to the nefwork connection
modules may give rise to changes in the entire projectt,
Therefore, network developers in project] are authorized to
create modification requests for the whole project.

p2 A+ '@/organization/projecn/members/NWdevelopers
{ create_MR() } /MRfactory

Policy p2 should be in conflict with policy p1 since
members of the NWdevelopers group are subjects of both
p1 and p2, which have opposite modalities. However, since
policy p2 is more specific than p1 (it relates to a subdomain
of projectt members), it will take precedence over pi
according to the domain nesting principle. This will be
detected by the conflict detection tool and indicated by an
arrow between the two policies (Fig. 7).

streamingAP|

The help desk engineer in project?2 receives direct
feedback from the users regarding possible errors or
misbehaviors of the product, An obligation policy ensures
that any error reports will be transformed into modification
requests that will be investigated by the developers

(policy p4). '
p4 O+ on error_reported @/organization/project2
/members/helpdesk { create_MR() } /MRfactory

Fig. 7 illustrates the main conflict detection window, The
administrator chooses the set of policies on which the
conflict detection is to be performed (here p1-p4) via a drag-
&-drop mechanism. After each conflict check, precedence
relationships between policies will be indicated to the
administrator if precedence has been enabled. Allowing the
administrator to detect conflicts without using precedence
relationships is necessary because there are cases in which
general policies should not be overridden by more specific
ones such as: Remote access to classified information is to
be denied to all users regardless of the circumstances.

After checking for conflicts with precedence enabled,
two conflicts have been found in the policies p1-p4. These
conflicts may be displayed in windows as shown in Fig. 9.
The first conflict (a) outlines that analystl and developeri
are subjects of two conflicting policies among which no
precedence exists. In the domain structure this corresponds
to the members of the streamingAPl subgroup, which is
shared between the two projects. In project! this subgroup
is authorized to create modification requests by virtue of its
being a subgroup of network developers but is prevented
from doing so by the default policy specified in project2 for
all the project members, The second conflict {b) shows that
the helpdesk staff in project2 is subject to two policies
giving rise to an O+/A- conflict. Policy p4 obliges the

864) |[EEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 25, NO.s, NOVEMBER/DECEMBER 1999

3 e o

Ay

4
i

hmerhanas s
FE et aa
watyn

pet
Fiane i

FEE

Sns s LB Ran e T fre s,

R By S
prpeatedy

rdsadesd
BIIRAY

Eesodn ity

i § b

FEIAr ey hand

e
niner

pEvasnd

pavt e
AT b

miare s o
Frisibssds
T Reum o

ey
Y

&

bt
P
2

FEey
St
B AR L e

R R iy 5

Threnran
S

Pt St
AEA T, dr S

pad e dnnn s L
EE) b ien)

kil
Sraan

2
i

Terved

T
$ag vy

BEay
s

o e

e
o

ook g
Sl

i s
AR e,
sty

s

Ty
FIttt b
i ae

P
gy

F¥ ey

Fiiann
earuss

R

55

Fraey EEETIRL L

£

D jitdnd
2 s

petipason

g kg,

L

S HET e
6o

s
[REpdrafi
el vl

B agney i

i
*htid

fishibend
Feiee
[S e

e

it

o

e

e BT IEDIY

HE

Fig. 8. Detected conflicts.

manager to create a MR when customers have reported an
error. However, he is prevented from doing so by the
default policy p3 that forbids MR creation to all members in
project2. Nesting of the subject domain does not help
because our obligation policies do not imply authorization,
as mentioned in Section 4.4.

The conflict detection tool is integrated with other tools
for policy editing and domain browsing. The system
administrator or policy maker can, therefore, study the
indicated conflicts, as shown in Fig. 9, and then edit the
policies or query domain membership of subjects
and targets.

This example has been greatly simplified by considering
a single target object, a single action to be invoked on this
object and a limited number of subject domains and
policies. In any realistic situation, where there are many
levels of nested domains, the likelihood of specifying
conflicting policies with overlapping domains is far greater.
Furthermore, several administrators may be respensible for
specifying policies and modifying the domain structure
thus increasing the risk of conflicts in the specification. In
addition to detecting conflicts, our tools can be used to
analyze a domain specification to determine which pelicies
apply to which tuples of subjects, actions and targets.

7 RELATED WORK

Our concept of domain nesting precedence is based on that
of Miré [17], but they only deal with authorization policy
for file system security, We have discussed in Section 4.2 the
relationship of our work to that of [22] and the specificity
precedence in default reasoning [45] and knowledge
representation systems based on semantic networks and
frames [20]. Sandhu [46] presents constraints that are
similar to our meta-policies, but the notation used and the
enforcement of the constraints are not described. Minsky’s
“law governed systems.” [35] can also specify permissions

and prohibition as a set of rules which are similar to our
positive and negative authorizations. Conflicts are avoided
by defining a meta-level rule which specifies whether a
permission or prohibition take precedence and override the
other. Meta-level rules can also be used to define a
“Prohibition-based regime” where permission is the default
unless explicitly prohibited, or a “Permission-based re-
gime” in which prchibition is the default unless explicitly
permitted. As discussed in Section 4.1, we found assigning
precedence to positive or (more commonly) negative
policies very limiting and not as intuitive as precedence
based on specificity. However, we have also identified the
need to be able to flexibly specify the policy precedence
relationship, used by the analysis tools, in terms of a meta-
policy, although this is not yet implemented in the current
version. We actually only implement positive authorization
and remove negative authorizations by refinement of the
policies, We also assume that all actions are prohibited
unless explicitly authorized, However there are systems
which do implement negative authorization, particularly
for database access control so we consider it necessary to be
supported by a general purpose policy specification tool-
set. The system described in [35] is not distributed although
in [34] a common glebal set of constraints is implemented
by means of filters in every node which check that all
interactions are consistent with the global law. We assume
both specification and implementation of policies can be
distributed. Our policies are not global but are interpreted
only by explicitly specified subjects (for obligations) and
targets (for authorizations).

Sibley et al. have also identified the need for a Policy
Workbench with automated tools to specify and analyze
policies [47]. They have experimented with both first order
logic and an object-oriented approach to representing
policy. They found that the latter reduces the size of the
policy base and simplifies policy specification [48]. The
policies considered are not limited to obligations and

LUPU AND SLOMAN: CONFLICTS IN POLICY-BASED DISTRIBUTED SYSTEMS MANAGEMENT 865

authorizations but general rules about the system. Both
policies and “real-world” facts are eventually formalized in
first order predicate calculus with the use of modeling
techniques such as enhanced entity-relationships diagrams.
A theorem prover is then used on the policies and real-
world facts to ensure consistency of the specification [31].
Inconsistencies can be of two kinds: 1) logical inconsisten-

cies and 2) statements that can be proved by the theorem.

prover tool but do not comply with the intended specifica-
tion. The tool is, therefore, used in a first step to detect
logical inconsistencies in the policies and real-world facts
given as axioms. Questions can then be asked by the policy
maker in form of theorems to be proved by the tool. The
authors have also explored a third stage performing “what-
if” analysis by querying the theorem prover with regards to
incremental changes in the policy base. The complexity of
the approach of Sibley, Michael, and coauthors is due to the
generality of their policies. Our policies are simpler and
explicitly identify subjects, actions and target objects. A
logic-based approach, where real-world facts inclading
object state need to be modeled is more suited to
requirements and specification analysis than distributed
systems where objects states are often transient in nature.
Nevertheless, their approach would help with respect to
our policy constraints, but they do not use precedence
relationships between policies fo automatically resolve
some conflicts. By treating basic conflicts between policies
in terms of logical incensistencies, implementing prece-
dence into the conflict detection process would require
either prioritized or retractable goals or more complex
formalization of the policies catering for logical exceptions.
Consider the case of a group of managers being authorized
to perform an action by policy Py that is forbidden by a

more general policy P,. Implementing precedence would

require either: 1) retracting the logical facts corresponding
to the prohibition given by P, and replacing those facts by
thetr negation, ie. the authorization given by P, or 2)
formalizing policy P, in a different manner—managers

(with specified exceptions) are not allowed to perform -

actions on targets, Policy P, would then need to be
explicitly declared as an exception to P,.

Prakken addresses these issues and shows that defea-
sible or nonmonotonic reasoning is required when for-
malizing exceptions to the rules in a logical system [42].
Although a finite number of exceptions can be formalized in
first order logic, a law (and also a policy) can have an
infinite number of exceptions which cannot be foreseen or
taken into account when specifying the policy in the first
place. Prakken conducts an extensive review of the
defeasible logic frameworks suitable for dealing with
exceptions and of the various precedence relationships or
collision rules that can be established between the formalized
rules specified in the logical system. Among other pre-
cedence relations, the specificity principle (domain nesting
in our case) holds a prime place for choosing between
conflicting conclusions. Prakken then extends the argument
by modeling both defeasibie reasoning and reasoning with
inconsistencies between rules as comparing the arguments
for incompatible conclusiens. This comparison is carried
out by defeating the applicability of the rules invoked in the

argument using precedence relations. The logical frame-
work used is complex, the author himself expressing
concerns about the feasibility of its implementation as an
automated tool. Our policy specification is much simpler
and considers precedence relationships. Specifying activ-
ities and objects using first order logic within a distributed
system would encounter additional problems relating to
failures and transient nature of some objects within the
system. Other work on combining precedence relations can
be found in [1].

Another approach, used to detect feature interaction in
telecommunication systems [14], [56], considers policies as
goals and uses a hierarchical representation of goals and
alternative ways to achieve those goals, Agents that
implement policies negotiate with each other in order to
find a plan in the goal hierarchy that achieves the goals of
all the agents but does not involve conflicting activities. In
this work, conflicts are also considered as legical incon-
sistencies. The originality of the work is the use of
negotiation for achieving conflict -resolution. Planning
techniques for conflict management are also used in
Distributed Artificial Intelligence [21]. In the case of our
management policies such techniques could be used only in
conjunction with the refinement of the policies. For
example, an abstract policy may be implemented in
different manners by alternative sets of more concrete
policies. Koch [19] uses a policy notation based on ours and
establishes a semantic graph model fo detect ill-behaved
policy sets with unsatisfiable preconditions. This can also be

- used to perform “what-if” analysis on chains of policies

prior to execution.

Deontic Logic provides the closest approximation of our
management policies in the context of a logic system.
However as described in [15], Standard Deontic Logic also
relies on the axiom of interdefinability which defines a
permission as Py =per, 70 -x. No such assumption is
made between our authorization and obligation policies. A
number of new logical systems with slightly different
axioms are emerging but the struggle against the paradoxes
that can be proved in such systems seems to continue. Ong
[40] also detects conflicts between positive and negative
deontic obligations and permissions but treats conflicts only
as logical inconsistencies.

In the context of Requirements Engineering, Dubois [8],
[9] uses the deontic constructs of obligation, prohibition and
exclusive obligation to define constraints over the poten-
tially infinite set of behaviors of an agent. Their default
policy is an open one, ie., all behaviors which are not
prohibited are by default permitted. Although these deontic
constructs may appear similar to the policies described in
this paper there are substantial differences. The underlying
notion of deontic permission (prohibition) should not be
equated to a positive (negative) authorization policy.
Permissions and prohibitions are used in [9] as constraints
on the possible behaviors of the agent. In our framework,
positive and negative authorizations are statements about
the behavior of the access control system which directly
interprets and implements them. In this respect, their
deontic prohibitions are closer to our negative obligation
policies. On the other hand, their obligations are essentially

B6E IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, _VOLA 25, NO.6, NOVEMBER/DEGCEMBER 1992

static, ie., something is obliged under given conditions,

while our positive obligations are event triggered and thus
closer to their causality constraints. Note, however, that the
constraints defined in their work are local to each agent
and, therefore, cannot overlap in their scope. Hence, conflict
detection is reduced to the problem of logical inconsistency,
and since no specialization relationship exists between
agents, no precedence or specificity is considered.

Considerable work regarding conflict detection and
resolution and goal (re-)structuring stems from the require-
ments engineering community [38], [55], [44]. While these
concepts are relevant for dealing with policy refinement
(see Section 8 below), there are significant differences
between the end products of the two processes. Require-
ments engineering techniques essentially develop a model
of the system which renders explicit “what” the behavior of
the system must be, “why” the system is needed and should
behave in the prescribed manner and eventually “how” the
system is constructed [13]. The end product of the
requirements phase is a requirements specification docu-
ment defining the system characteristics which need to be
implemented during the design phase [9]. Therefore,
restructuring subgoals in order to resolve conflicts carries
no overheads in the run-time system. In our case, the end
product of the policy refinement process is a set of policies
which are directly interpreted by the subject agents and
access control subsystem. If the introduction of a new policy
results in a conflict, changing existing policies requires
removing them from the (potentially) distributed agents
and replacing them with new ones. Because of agent
distribution, the time required for such operations may be
lengthy and conflict resolution techniques should seek to
minimize the number of policies to be modified. Note, that
by restructuring and conditionalizing [44] all modality
conflicts can be removed since it is always possible to
specify policies applying to nonoverlapping domains.
However, as mentioned above and discussed in
Section 4.2, this is not always desirable in our case although
sometimes it cannot be avoided. The relationships between
conflicts as described by Robinson [44] {e.g., does removing
confliet C; also remove conflict Cj) are particularly interest-
ing when applied in the context of the domain hierarchy
and would require further investigation. In particular, it
should be possible to automatically determine such
relationships between modality conflicts from the policy
specification and the domain structure.

The work presented in [6] will form the basis for our
future work to apply requirements engineering techniques
to the policy refinement. In particular the handling of the
high-level policies as goals (nonfunctional requirements)

"and their operationalization into concrete policies which
influence the behavior of the system being managed could
be applied in our case. However, this requires further study
(see Section 8 below) since the specification of interpreted
policies does not have a straightforward expression. For
example, triggers in the Performs relationship [6] are
modeled as conditions while our positive obligation policies
are triggered by event netifications emitted by the monitor-
ing system. ‘

8 CONCLUSIONS AND FUTURE WORK

The policies described in this paper are interpreted so can
be dynamically replaced or enabled to change the manage-
ment strategy within a distributed system. There may be
multiple administrators specifying and modifying policies
which can lead to conflicts between the policies. The paper
has presented the integration of a conflict detection tool in a
role and policy-based framework. We perform off-line,
static analysis of a set of policies to determine two types of
conflicts: 1) modality conflicts, arising from positive and
negative policies, which can be checked by analyzing the
syntax of the policies and 2) application specific conflicts
that need to be specified by external constraints which we
express as meta-policies. Modality conflicts arise from a
triple overlap between the subjects, actions and targets of
the policies, but it is neither practical nor desirable to
prevent these overlaps. We make use of a precedence
relationship based on the specificity of the policies with
respect to domain nesting to reduce the number of potential
overlaps indicated to a user and allow inconsistencies
between policies to exists within the system, as we consider
this to be an effective and intuitive precedence relationship.
Roles are an important management concept but also
provide a scope to limit the set of policies to be analyzed.

Another aspect of policy analysis relates to determining
the policies applying to a particular subject or target. Our
policies explicitly identify both subject and target and the
domain service maintains the list of policies applying fo a
domain so this is comparatively easy to do.

We have implemented a prototype role framework
which supports. distributed policy and domain servers
and analysis of a set of policies, indicating conflicts as well
as precedence relationships. This will enable us to experi-
ment in realistic situations and evaluate the use of the
precedence relationship. OQur approach is to detect as many
conflicts as possible at specification time, rather than
leaving them to be detected at run-time. The user can then
modify the policies to remove conflicts. This has been
implemented using a CORBA based distributed program-
ming environment [39].

The paper has concentrated on static analysis of policies,
but there. is also a need for dynamic run-time conflict
detection which is an area we are currently working on. The
need for dynamic analysis is that domain membership may
change dynamically and some constraints can only be
evaluated at run-time as they may depend on object states
or current time, Conceptually there is no distinction
between static and dynamic conflict detection, but the
problem is to avoid the overheads of a potentially complex
analysis every time an obligation is triggered or an
authorization checked. We are experimenting with a
conflict agent which resides with a manager agent and
maintains information on ail enabled obligations and
authorizations pertaining to that agent. We are frying to
pre-compute as much information as possible for the
policiés to minimize the run-time costs. Sibley [49] and
Michael [32] also discuss the relationship between static vs.
run-time checking of policies. A problem arises from those
conflicts which cannot be resolved automatically by some
form of precedence. Passing the conflicting policies to an

LUPU AND SLOMAN: CONFLICTS IN POLICY-BASED DISTRIBUTED SYSTEMS MANAGEMENT 867

administrator to resolve, as with static analysis, may not be
practical with some automated management systemns,
because of performance constraints. We hope to detect
these cases as potential conflicts by static analysis and
define suitable precedence meta-policies to resolve the
conflicts when they actually occur. We need to evaluate
additional case studies to see whether this is practical.

Although precedence based on domain nesting works
for some cases, it does not cover all situations. Semetimes
there is a need for negative policies to have precedence in
order to quickly withdraw services from an individual or a
group. In general there is a need for more flexible
application specific precedence relationships, possibly
specified as a meta-policy. Our meta-policy specification
language also needs further refinement. However, since
meta-policies express constraints on the policies which can
be specified, the changes to the notation must also be
supported by further investigation of the policy
refinement process. '

Our policies differ from a requirements specification in
that they are directly implementable so performance issues
are more important in a policy notation compared with a
requirements notation. In spite of this, there does not
appear to be any fundamental diiference between the
process of refinement of high-level abstract policies into
implementable cnes, and the refinement of goals into
detailed requirements specifications, as supported in the
worl of [6], [54], [38]. Our new project (see http://www-
dse.doc.ic.ac.uk/projects/secpol/SecPol-overview.html)
will investigate the applicability of the Requirements
Engineering approach, the KAOS method and associated
GRAIL environment [7] to refinement and consistency
analysis of our policies. This will permit checking whether
policies satisfy goals or if there are mistakes in the
refinement process. Qur policies currently maintain only
primitive dependency relationships between them. The
models of Strategic Dependency and Strategic Rationale
described in [58], [59] will prove useful to represent the
intentional and means-ends relationships. Note that many
conflicts between management policies arise from policy
overlap due to the various different functions (e.g.,
configuration, security management, fault handling, per-
formance management, monitoring) which have to be
performed by a management system. Clearly, an adequate
representation of the organizational framework is necessary
for specifying nonfunctional requirements and dependency
models. Qur role-based framework [25] can be used to this
end since in addition to policy specification it also caters for
structured conversational interaction (e.g., negotiation)
between the management roles,

ACKNOWLEDGMENTS

The authors gratefully acknowledge financial support from
Fujitsu Laboratories and British Telecom. Also, the authors
acknowledge contributions from their colleagues to the
concepts described in this paper—particularly Nicholas
Yialelis and Damian Marriott. Additionally, the authors
thank the referees for their useful comments and sugges-
tions that improved this paper. A preliminary version of
this paper was published under the title “Conflict Analysis

for Management Policies,” Proceedings of the Fifth IEEE/IFIP
International Symposium on Integrated Network Management,
San Diego, May 1997. :

REFERENCES

[11 H. Andreka, M. Ryan, and P.-Y. Schobbens, “Operators and Laws
for Combining Preference Relations Extended Abstract,” Proc. Int'l
Workshop Information Systems Correctiess and Reusability (Selected
Papers), R.J. Wieringa and R.B. Feenstra, eds., World Scientific,
1595,

[2] B. Biddle and E. Thomas, eds., Role Theory: Concepts and Research.
New York: Robert E. Krieger Co., 1997.

[31 R.FE. Bruynooghe et al., “PADM: Towards a Total Process
Modelling System,” . Software Process Modelling Technology, A
Finkelstein, J. Kramer, and B. Nuseibeh, eds., ch. 12, pp. 293-334,
Sumerset, England: Research Studies Press, 1994,

[4] D. Clark and D. Wilson, “A Comparison of Commercial and
Military Compuiter Security Policies,” Proc. IEEE Symp. Security
and Privacy, pp. 184-194, Apr. 1987. ‘

[5] “DSOM'94” Proc. IEEE/FIP Distributed Systems Operations and
Management Warkshop, Toulouse, France, 1994.

[6] A, Dardenne, A. van Lamsweerde, and 5. Fickas, “Goal-Directed
Requirements Acquisition,” Science of Computer Progmmmmg,
vol. 20, pp. 3-50, 1993,

[71 R. Darimont et al,, “GRAIL/KAQS: An Environment for Goal-
Driven Requirements Engineering,” Proc, 20th Int'l Conf. Software
Eng. (ICSE’98), vol. 2, pp. 58-62, Kyoto, Japan, Apr. 1998.

[8] E. Dubois et al, “Agent-Oriented Requirements Engineering: A
Case-Study Using the Albert Language,” Proc, Fourth Int'l Working
Conf. Dynamic Medelling and Information Systems (DYNMOL'94),
Noordwijkerhout, The Netherlands, Sept. 1994. ‘

[# P.DuBois, E. Dubois, and].-M. Zeippen, “On the Use of a Formal
RE Language: The Generalized Railroad Crossing Problem,” Proc.
Third Int'l Symp. Requirements Eng. (RE'97), Annapolis, Md., Jan.
1997.

[10] M. Feblowilz et al., “ACME/PRIME: Requirements Acquisition
for Process-Driven Systems,” Proc. Eighth Int'l Workshop Software
Specification and Design, pp. 36-45, Schloss Velen, Germany, Mar.
1996,

[11] LR, Forman, “Raddle: An Informal Introduction,” Technical
Report No. STP-182-85, Microelectronics and Computer Technol-
ogy Corp. (MCC), Austin, Tex., Feb. 1986.

[12] IR. Forman, “On the Design of Large, Distributed Systems,”
Technical Report No. STP-098-86, Microelectronics and Computer
Technology Corp. (MCC), Austin, Tex., Mar., 1986.

[t3] S. Greenspan,]. Mylopoulos, and A. Borgida, “On Formal

Requirements Modelling Languages,” Proc. 16th Int'l Conf. Soft-

ware Eng, (ICSE'94), pp. 135-147, Sorrento, Italy, May 1994,

N. Griffeth and H. Velthuijsen, “Reasoning about Goals to Resolve

Conflicts,” Proc. Int’l Conf. Intelligent Cooperative Information

Systems, pp. 197-204, Los Alamitos, Calif., 1993.

AL Jones and M. Sergot, “On the Characterization of Law and

Computer Systems: The Normative Systems Perspective,” Deontic

Logic in Computer Science,].-J.Ch. Meyer and R.J. Wietinga, eds.,

John Wiley & Sons, 1993.

[16] G. Junkerman et al, “MERLIN: Supporting Cooperation in
Software Development through a Knowledge-Based Environ-
ment,” Software Process Modelling Technology, A. Finkelstein, J.
Kramer, and B. Nuseibeh, eds., ch. 5, pp. 103-130, Somerset,
England: Research Studies Press, 1994.

[17] A. Heydon et al., “Mird: Visual Specification of Security,” IFEE

 Trans. Software Eng vol. 16, no. 10, pp. 1,185-1,197, 1990.

[18] T.P. Kehler and G.D. Clemenson, “An Application Development

System for Expert Systems,” Systems and Software, vol. 3, no. 1, Jan,

1984.

T. Koch et al, “Policy Definition Language for Automated

Management of Distributed System,” Proc. Second IEEE Int'l

Workshop Systems Management, pp. 55-64, Toronto, Canada, June

1996.

[20]].C. Kuntz, T.P. Kehler , and M.D. Williams, “Applications
Development Using a Hybrid Al Development System,” The AT
Magazine, vol. 5, no, 1, Fall 1984,

[21] S.E. Lander, “Distributed Search and Conflict Management
Among Reusable Heterogeneous Agents,” PhD dissertation, Univ.
of Mass., Amherst. 1994

{14]

[15]

19

868

[22]
23]
[24)
(23]
[26]
[27)

[28]
[29]

(30

1]

[32]

[34]
[35]

[36]

[371
[38]

[39]

[40]
[41]
[42]

[43]

[44]

(43]

IEEE TRANSACTIONS ON, SOFTWARE ENGINEERING, VOL. 25, NO.8 NOVEMBER/DECEMBER 1999

i

M. Larrondo-Petrie et al., “Security Policies in Object-Oriented
Databases,” IFIP Database Security, I Status and Prospects, North
Holland: Elsevier Scienice, 1990,

E, Lupu and M. Slomaun, “Towards a Role-Based Framework for
Distributed - Systems Management,” *J. Network and Syslems
Manngement, vol. 5, no. 1, pp. 5-30, Plenum Press, Mar, 1997.

E. Lupu and M. Sloman, “A Policy-Based Role Object Model,”
Proc. First Enterprise Distribited Object Computing Workshop
(EDOC37), pp. 36-47, Gold Coast, Australia, IEEE, Oct. 1997.

E. Lupu, “A Role-Based Framework for Distributed Systems
Management,” PhD dissértation, Imperial College, Dept. of
Computing, London, July 1998.

]. Magee and]. Moffett, eds. Special Issue of 1EE/BCS/IOP
Distributed - Systems Engineering J.,- Services for Managing Dis-
tributed Systems, vol. 3, no. 2, June 1996,

M. Mansouri-Samani and M. Sloman, “GEM: A Generalised Event
Monitering Language for Distributed Systems,” IEE/BCS/IOP
Distributed Systems Eng., vol. 4, no. 2, pp. 96-108, June 1997,

D. Marriott and M. Sloman, “Management Policy Service for
Distributed Systems,” Proc. Third IEEE Int’t Workshop Services in
Distributed and Networked Environments {SDNE96), pp. 2-9,
Macau, 1996.

D. Marriott and M. Sloman, “Implementation of a Management
Agent for Interpreting Obligation Policy,” Proc, [EEEAFIPDistrib-
uted Systems Operations and Management Workshop (DSOM'96),
I’ Aquila, Ttaly, Oct. 1996. ’

D. Marriott, “Management Policy for Distributed Systems,.” PhD
dissertation, Dept. of Computing, Imperial College, London, July
1997.

J. Michael, “A Formal Process for Testing Consistency of
Composed Security Policies,” PhD dissertation, George Mason
Univ., Fairfax, Va., 1993. '
J. Michael, E. Sibley, and D. Littman, “Integration of Formal and
Heuristic Reasoning as a Basis for Testing and Debugging
Computer Security Policy,” Proc, New Security Paradigms Workshop,
pp. 69-75. 1993, . :
NH. Mingky and A.D. Lockman, “Ensuring Integrity by Adding
Obligations to Privileges,” Proc. Eighth Int'l Conf. Software Eng.,
pp. 92-102, London, Aug. 1985,

N.H. Minsky et al., “Building Reconfiguration Primitives into the
Law of a System,” Proc. Third IEEE Int’l Conf, Configurable
Distributed Systems (ICCDS'96), pp. 89-97, Annapolis, Md. 1996,
N.H. Minsky and P. Pal, "Law—Governed Regularities in Object
Systems Part 2: A Concrete Implementation,” Theory and Practice of
Object Systems (TAPOS), vol. 3, no. 2, John Wiley. & Sons, 1997

J. Moffett ef al, “The Policy Obstacle Course: A Framework for
Policies Embedded within Distributed Computer Systems,”
Technical Report, Schema/York/93/1, Dept of Computer Science,
Univ. of York, UK, 1993,

J. Moffett. and M. Sloman, “Policy Conflict Analysis in Distributed
Systemn Management,” |, Organizational Computing, vol. 4, no.l,
pp. 1-22, Ablex Publishing, 1994.

J. Mylepoulos, L. Chung, and B. Nixon, “Representing and Using
Non-Functional Requirements: A Process-Oriented Approach,
IEEE Trans. Software Eng., vol. 18, June 1992,

OMG, “The Common Object Request Broker: Architecture and
Specification,rev. 2, 1995,

KL Ong and RM. Lee , "A Logic Model for Maintaining
Consistency of Bureaucratic Policies,” Proc. 26th Ann. Hawaii Int’l
Conf. System Sciences, vol. 111, pp. 503-512, 1993.

OORam, “OORam Professional: A Method Guide for Real Time/
Telecommunication System Development,” Numerica Task on AS,
Oslo, Norway, Sept. 1996.

H. Prakken, Logical Tools for Medelling Legal Argument, A Study of
Defeasible Reasoning in Law. Dordrecht, The Netherlands: Kluwer
Academic, 1997,

G.L. Rein, B. Singh, and]. Knutson, “The Grand Chailenge:
Building Evolutionary Technologies,” Proc, 26t Ann. Hawaii Int'l
Conf. System Sciences, vol. 4, pp. 23-31, Information Systems:
Collaboration Technology and Organizational Systems & Tech-
nology Track, 1992,

W.N. Robinson and S. Volkov, A Meta-Model for Restructuring
Stakeholder Requirements,” Proc, 19h Ini'l Conf. Software Eng.
(ICSE’97), pp. 140-160, Boston, May 1997.

M. Ryan, “Defaults in-Specifications,” Proc. IEEE Int! Symp.
Requireinents Eng. (RE'93), A. Finkelstein, ed., pp. 142-149, San
Diego, Calif., 1993.

[46]
[47)

[48]

[49]

(0]

(31

(52]

(53]

(54]

[55]

71

[58]

[>9]

R.S5. Sandhu et al,, “Role-Based Access Control Models,” Computer,
val. 29, no. 2, pp. 38-47, 1996,

E. Sibley, J. Michacl, and R. Wexelblat, “Use of an Experimental
Policy Workbench: Description and Preliminary Results,” Database
Security V: Status and Prospects, C. Landwehr and S. Jajodia, eds.,
pp- 47-76, Elsevier Science, 1992. '

E. Sibley, “Experiments in Organizational Policy Representation:
Results te Date,” Proc. IEEFE Int't Conf. Systems Main and Cybernetics,
pp. 337-342, Los Alamitos, Calif., 1993.

E. Sibley, R.L. Wexelblat J.B. Michael, M.C, Tanner, and D.C.
Littman, “The Role of Policy in Requirements Definition,” IEEE
Int’l Symp, Requirements Eng., Los Alamitos, Calif.; IEEE CS Press,
pp. 277-280, 1993,

B. Singh and G.L. Rein, “Role Interaction Nets (RINs): A Process
Description Pormalism,” Technical Report No, CT-083-92, Micro-
electronics and Computer Technology Corporation (MCC),
Austin, Tex., July 1992,

M. Sloman, “Policy Driven Management for Distributed Systems,”
J. Network and Systems Management, vol. 2, no. 4, pp. 333-360,
Plenum Press, 1994.)

M. Sloman and K. Twidle, “Domains: A Framework for Structur-
ing Management Policy,” Neltwork and Distributed Systems Manage-
ment, M. Sloman, ed., pp. 433-453, Addison-Wesley, 1994.

G. Spanoudakis and P. Constantopoulos, “Integrating Specifica-
tions: A Similarity Reasoning Approach, Awforated Software Eng.,
vol, 2, no. 4, pp. 311-342, Kluwer Academic, Dec. 1995,

A. van Lamsweerde, R. Darimont, and P. Massonet, “Goal-
Directed Elaboration of Requirements for a Meeting Scheduler:
Problems and Lessons Leamnt,” Proc, IEEE Second Int'l Symp.
Requirements Eng, (RE'95), pp. 194-203, York, U.K., Mar. 1995.

A, van Lamsweerde, R. Darimont, and E. Letier, “Managing
Conflicts in Goal-Driven Requitements Engineeving,” IEEE Trans.
Software Eng., vol. 24, no. 11, Nov. 1998,

H. Velthuijsen, “Distributed Artificial Intelligence for Runtime
Feature Interaction Resolution,” Computer, vol. 26, no. 8, pp. 48-55,
Aug. 1993,

N. Yialelis and M. Sloman, “A Security Framework Supporting
Domain-Based Access Control in Distributed Systems,” Proe. IEEE
ISOC Syunp. Network and Distributed Systems Security, pp. 26-34, San
Diego, Calif., Feb. 1996.

E. Yu, P. Du Bois, E. Dubeis, and]. Mylopoulos, “From
Organizational Models to System Requirements: A ‘Cooperative
Agents” Approach,” Proc. Third Int'l Conf. Cooperntive Information
Systems (CoopIS-95), pp. 194-202, Vienna, Austria, May 1995, .

E. Yu, “Towards Modelling and Reasoning Support for Early-
Phase Requirements Engineering,” Proc. Third In¥'l Symp. Reguire-
ments Eng. (RE'97), Washington D.C., Jan. 1997,

LUPU AND SLOMAN: CONFLICTS IN POLICY-BASED DISTRIBUTED SYSTEMS MANAGEMENT 869

Emil C. Lupu obtained his Dipldme d'Ingénieur
from the Ecole Nationale Supérieure d'Informa-
tique et de Mathematiques Appliquées de
Granoble (ENSIMAG), France, in 1994 and his
PhD degree in computer science from Imperial
College, London, in 1898. Dr. Lupu is currently a
research associate in the Department of Com-
puting at Imperial College. His research interasts
include network and distributed systems man-
agement, design, security, multimedia, and
mobility issues in large distributed systems. Dr. Lupu serves on

numerous conference program committees, including the IFIP/IEEE"

Symposium on Integrated Network Management (IM'98), the IFIF/IEEE
Network Operations and Management Symposium (NOMS'2000), the
IFIP/|IEEE Workshep on Distributed Systems: Operations and Manage-
ment (DSOM'99), and the ACM Workshop on Role-Based Access
Control (RBAC'98, RBAC'99). He is a member of the |IEEE and a
member of the IEEE Computer Socisty

Morrls Sloman obtained his BSc (Eng) degree
in electronic engineering from the University of
Cape Town, South Africa and a PhD degree in
computing from the University of Essex, United
Kingdom. Dr. Sloman has been with the Depart-
ment of Gemputing at Imperial Collage since
1876. He has managed many research projects
funded by the United Kingdom Engineering and
Physical Science Research Council (EPSRC),

et — European Union, and various cther industries on
management, security, and design of distributed systems, multimedia
systems, and mobility. He is editor of a reference book on Management
of Network and Distributed Systems (Addison-Wesley), coeditor of the
IEE/OP/BCS Distributed Systems Engineering Journal , and a member
of the editorial board for the Journal of Network and Systems
Management. He was program cochair of the First IEEE Enterprise
Distributed Object Computing {(EDCC) workshop and is a member of the
EDOCC steering committee. He was program cochair of the 1999 IEEE/
IFIP Integrated Management Symposium (IM'99). Dr. Sloman is chair
for the EPSRC Multimedia and Network Applications Funding Pro-
gramme. He is a member of the IEEE Computer Scciety.

