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ABSTRACT
Associating meaningful label or category information with
every document in a search collection could help in improv-
ing retrieval effectiveness. However, identifying the right
choice of category tags for organizing and representing a
large digital library of documents is a challenging task. A
completely automated approach to category creation from
the underlying collection could be prone to noise. On the
other hand, an absolutely manual approach to the creation
of categories could be cumbersome and expensive. Through
this work, we propose an intermediate solution, in which, a
global, collaboratively-developed Knowledge Graph of cat-
egories can be adapted to a local document categorization
problem over the search collection effectively. We model our
classification problem as that of inferring structured labels
in an Associative Markov Network meta-model over SVMs,
where the label space is derived from a large global category
graph.

Keywords
Large scale text classification, Text categorization, Topic
identification, Multi-label classification, Personalization

1. INTRODUCTION
With the growth of digital data in the form of news, blogs,

web pages, scientific articles, books, images, sound, video,
social networks and so on, the need for effective categoriza-
tion systems to organize, search and extract information be-
comes self-evident.

Categories associated with a document can act as seman-
tic summaries which can help in catering to the user inten-
tion behind a query [3], diversifying the search results [1],
semantic search [7], personalized search [12], grouping search
results for effective presentation and/or access [5] and better
weighting terms in IR [9], to name a few.

An important aspect in building a categorization system
is the choice of categories. Categories that are very generic,
such as News, Entertainment, Technical, Politics, Sports,
and the like may not be useful. Thousands of articles could
accumulate under each such category and searching for the
required piece of information could still be a challenge. For
semantic search to be useful, it can be expected that the
category space covers a reasonably wide range of queries
that might be expected. Creation of fine-grained categories
and assigning them to documents needs domain experts and
is a laborious task.

Adopting predefined categories from an existing classifi-
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Figure 1: A part of the Knowledge Graph

cation system (such as Reuters text classification dataset)
may not be always suitable. Such a strategy could lead to
(i) under or over specific categories (ii) failure to capture
user intention (iii) failure to evolve with time.

In this paper we present our attempts to address these
practical issues in designing a document categorization sys-
tem to semantically cover a given document collection. Through-
out this paper, we refer to our system as EVO. We assume as
input to our system, an extremely large Knowledge Graph
(KnG) whose nodes are categories, and edges are relation-
ship between the categories. Each category is accompanied
by some description of that category. Every edge is also
associated with a score between 0.0 to 1.0 indicating the
strength of the relationship. This score can be generated
using document similarity measurement techniques (such as
Jaccard, Cosine, Kernels or semantic similarity methods).
Such a knowledge graph can be built collaboratively. For
experimental purposes we treat Wikipedia as a knowledge
graph. Wikipedia’s 4M articles cover the terminology of
nearly any document collection [15], which could make it a
good candidate for KnG. A part of KnG is shown in Figure
1. Next, we need sound techniques for adopting the cate-
gories in this KnG to a given collection of documents. In
this paper, we propose a technique to solve this problem by
learning a model to project the documents into a localized
subset of the categories in KnG; this is done by capturing
various signals from the documents, exploiting the knowl-
edge in KnG and evolving the category specific classifiers
(say SVMs) via user feedback.



2. FORMAL PROBLEM STATEMENT AND
SOLUTION PROPOSAL

We assume that a knowledge graph exists with very large
collection of possible categories (that can cover the terminol-
ogy of nearly any document collection; for example, Wikipedia)

C = {Ci}i=f
i=1 as nodes, and the relationship between them as

edges. There is a description associated with each category
and each edge between selected pairs of categories is associ-
ated with a score reflecting the strength of the relationship
between the two categories. We further assume that an orga-
nization receives documents in batchesD1, D2, ... where each
batch Dj is received at jth time period (say, jth week/month
and the like.) The organization needs to adopt (subset) the
categories in KnG to logically build an organization-specific
category catalog Corg ⊆ C and at the same time, evolve
some models to classify all di ∈ Dj into Corg. More specifi-
cally, we assume the following goals:

1. Learning a personalised model for the association of
the categories in KnG to a document collection through
knowledge propagation and feature design

2. Building an evolving multi-label categorization system
to categorize documents into Corg.

The eventual goal is to accurately identify suitable cate-
gories {Ci1 , ...CiT } for every input document di ∈ Dj ∀i, j.
If one could learn an SVM classier for every category in
the KnG, identifying all suitable categories for a document
would entail determining which classifiers label the docu-
ment as positive. However, learning such classifiers upfront
is prohibitively expensive because, the KnG is usually very
large (for example, Wikipedia has four million titles) making
it impractical to learn a classifier (SVM) for every category
in KnG using limited training data. Hence, it is a chal-
lenging task to develop a classification system which can
identify a subset of the millions of categories that suit an
organization. We attempt to solve this problem from a new
perspective of knowledge propagation techniques, where the
categories in KnG exchange the knowledge of similarity to
the documents and the classifier scores (when available) to
draw a collective inference on the categories relevant to the
document. We explain our technique in detail throughout
the rest of this paper. Figure 3 illustrates the overall process
of evolving a personalized classifier.

It has been observed that a document that is tagged with a
category is expected to contain features such as keywords/phrases
that are indicative of that category [13, 8]. For example,
the text shown in Figure 2, contains several words/phrases
that are indicative of some of the category titles in the KnG
(Wikipedia, in our examples.) Techniques such as [14, 8,
13] can be used for spotting such keywords/phrases. We
refer to such categories as candidate categories. “Keywords
Spotter”component in Figure 3 detects candidate categories.
However, some of these categories could be either (a) mis-
leading or (b) not relevant in determining the “interesting
categories.” As an illustration of (a), consider, in Figure 2,
the category “Jikes RVM” (which is picked up due to the
spotted keyword RVM,) which means Java JVM—not rele-
vant to the document. Thus, the word “RVM” is misleading
as a feature. On the other hand, while the category“Cancer”
is relevant to the document, the user may want to restrict
the choice of categories to the computer science domain, and
may therefore, not be interested in categories like “Cancer,”

thus making a case for (b). Our goal is to develop a person-
alized categorization system that has the capacity to evolve
and learn how to accurately identify only relevant categories.
This can be achieved by incrementally learning a classier for
each class, based on user feedback. We expect the classifier
training to result in feature weights such that the effect of
misleading and irrelevant features described above is mini-
mized.

Another benefit of having a candidate categories identifi-
cation phase is that, it allows us to evolve Corg with more
categories when the documents with new categories are seen
by our system. The spotter can recognize these new cate-
gories which can become part of Corg eventually. By this
process, we overcome the problem of under-specified cate-
gories that prevails in the classification systems with prede-
fined categories. However, in the process, we may result in
over-specified categories, if we do not control the addition
of new categories to Corg. We observed that, simple heuris-
tics such as generating a histogram of categories with the
number of documents classified under them and then prun-
ing the categories that have very few or very high number
of documents can work reasonably well in practice. In addi-
tion, our user feedback mechanism, which we explain later
in the paper, will also help in limiting the number of cat-
egories in Corg. More sophisticated approaches to address
under or over specified categories using category hierarchies
from KnG, which we are exploring currently, will form the
part of our future work.

We also observe that categories that get assigned to a
document either exhibit semantic relations such as “associ-
ations,”1 “descriptions overlap,” and the like or tend to be
frequently assigned together (that is, tend to co-occur) in a
particular instance of the classification exercise. For exam-
ple, with the Reuters RCV1-v2 dataset, we observe that all
pairs of categories that co-occur even once in the training
set, co-occur multiple times in test set. In other instances of
classified data such as DMOZ or the Yahoo! Directory, we
make an additional observation that co-occurring categories
exhibit semantic relations such as “association.” For exam-
ple, the category “Linear Classifier” is related to categories
such as “Kernel Methods in Classifiers,” “Machine Learn-
ing,” and the like, and are observed to co-occur as labels
for a document on “Classifiers.” Another illustration: cat-
egories “Support Vector Machines” and “Kernel Methods”
exhibit a lot of overlap in their textual descriptions. To sum
up, we identify two types of informative features to iden-
tify relevant categories for each document: (i) a feature that
is a function of the document and a category, such as the
category-specific classifier scoring function evaluated on a
document and (ii) a feature that is a function of two cate-
gories, such as their co-occurrence frequency or textual over-
lap between their descriptions. We find Associative Markov
Network (AMN) [17], a very natural way of modeling these
two types of features. Next, we provide a more detailed de-
scription of our modeling of this problem as an Associative
Markov Network.

For every input document d, we construct a Markov Net-
work (MN) from the candidate categories, such that, each
node represents a candidate category Ci ∈ C and edges
represent the association between the categories. Model-
ing inter-category relations through edges serves two impor-

1http://marciazeng.slis.kent.edu/Z3919/44association.htm
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Figure 2: Document with detected keywords (in yellow) and sample candidate categories (in blue)

tant purposes in our approach: i) When a new organization
starts categorizing documents, the classifier models are ini-
tially not tuned. The only information available to the cat-
egorization system are the category descriptions. It is not
practical to assume that perfect descriptions will be available
for every category. In such cases, the relationship between
the categories can help propagate descriptions across cate-
gories via their neighbors. ii) As part of learning the model
parameters, the system solicits user feedback on some of the
suggested categories for a document. Based on the feedback,
the category-specific model (SVM) is updated. The cate-
gory relationship helps in propagating the learning to the
neighbors. This reduces the number of feedbacks needed to
learn the model parameters. We will illustrate both these
advantages in our experimental section.

Our aim is to learn to assign a binary label (0/1) for every
category node Ci in the above MN. Label 1 indicates that
the category Ci is valid for the document d and 0 indicates
invalid. The collective assignment of labels for all the nodes
in the Markov network produces relevant categories for the
document d. As we see later in the paper, optimal assign-
ment of these labels can be achieved through MAP inference
using Integer Linear Programming.

The “Amn + SVM classifier” component in Figure 3 per-
forms the AMN inference using the learned model parame-
ters and user feedback (along with user defined constrains,
explained later in this paper.)

The “Classifier Trainer” component in Figure 3 helps in
training the category specific classifiers and updates model
parameters.

3. LEARNING PERSONALIZED CLASSIFIER

3.1 Building AMN model from categories
For a given document d, we create an MN G = (N,E),

whose nodes N are the candidate categories from the KnG
and edges E are the association between them, as present
in KnG.

In an AMN, only node and edge potentials are consid-
ered. For an AMN with a set of nodes N and edges E, the
conditional probability of label assignment to nodes is given

by

P (y|x) =
1

Z

∏
ϕ (xi, yi)

∏
ψ (xij , yi, yj) (1)

We use notation xi to denote a set of node features for
the candidate category node Ci and xij to denote the set of
edge features for the edge connecting Ci and Cj . yi and yj
are the binary labels for nodes Ci and Cj .

The node features in AMN determine the relevance of a
category to the input document d and the edge features cap-
ture the strength of the various associations between the
categories. Note, here the node features xi are computed by
considering the node description and the input document
text. Hence the above distribution is for a given document
d.
Z denotes the partition function given by
Z =

∑
y′
∏
ϕ (xi, y

′
i)
∏
ψ
(
xij , y

′
i, y

′
j

)
.

A simple way to define the potentials ϕ and ψ is the log-
linear model. In this model, a weight vector is introduced
for each class label k = 1..K. The node potential ϕ is then
defined as logϕ (xi, yi) = wk

n ·xi where k = yi . Accordingly,
the edge potentials are defined as logψ (xij , yi, yj) = wk,l

e ·
xij where k = yi and l = yj . Note that there are different
weight vectors wk

n ∈ Rdn and wk,l
e ∈ Rde for the nodes and

edges.
Using the indicator variables yki we can express the poten-

tials as: logϕ (xi, yi) =
∑K

k=1

(
wk

n · xi

)
yki and logψ (xi,j , yi, yj) =∑K

k=1

(
wk,l

e · xij

)
yki y

l
j ; where yki is an indicator variable which

is 1 if node Ci has label k and 0, otherwise.
To bring in the notion of association, we introduce the

constraints wk,l
e = 0 for k 6= l and wk,k

e ≥ 0. This results in
ψ (xij , k, l) = 1 for k 6= l and ψ (xij , k, k) ≥ 1. The idea here
is that edges between nodes with different labels should be
penalized over edges between equally labeled nodes.

Learning feature weight vectors is based on Max Margin
training, which is of the form

argmin
w,c

1

2
‖w‖2 + cξ

s.t. wXŷ + ξ ≥ max
y

wXy + (|N | − y.ŷn) ; we ≥ 0
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Figure 3: Architecture of KnG category Personalization

Using compact representation, we define the node and
edge feature weight vectors wn =

(
w1

n, ...,w
K
n

)
and we =(

w1,1
e , ...,wK,K

e

)
, and let w = (wn,we) be the vector of all

the weights. Also, we define the node and edge labels vec-
tors, yn = (..., y1i , ..., y

K
i , ...)

T and ye = (..., y1,1ij , ..., y
K,K
ij , ...)T,

where yk,lij = yki y
l
j , and the vector of all labels y = (yn,ye).

The matrix X contains the node feature vectors xi and edge
feature vectors xij repeated multiple times (for each label
k or label pair k, l respectively), and padded with zeros ap-
propriately. ŷ is the vector of true label assignments given
by the training instance. |N | is the number of nodes in the
graph G.

We request the reader to refer to[17] for details of solving
this optimization.

3.2 Inferring categories for a document
The problem of inference is to select a subset of nodes

(that is, categories) from G that have the highest probability
of being relevant to the input document. To model this
selection, we attach a binary label {0, 1} to a node. A node
Ci with label 1 is considered to be a valid category for the
input document and invalid if its label is 0.

Correctly determining the categories for the input docu-
ment is equivalent to solving the MAP optimization problem
in (2).

max
y

N∑
i=1

1∑
k=0

(
wk

n · xi
)
yki +

∑
(ij)∈E

1∑
k=0

(
wk

e · xij
)
ykij(2)

s.t. yki ≥ 0, ∀i, k ∈ {0, 1} ;∑1
k=0 y

k
i = 1, ∀i

ykij ≤ yki , ykij ≤ ykj , ∀ij ∈ E, k ∈ {0, 1}
y0i = 1 ∀i with Hard Constraints

The variables ykij represent the labels of two nodes con-
nected by an edge. The inequality conditions on the fourth
line are a linearization of the constraint ykij = yki ∧ ykj ; We
explain Hard Constraints in section 3.4.

The above MAP inference produces the optimum assign-
ment of labels yki that maximizes the probability function in
Equation 1. It can be shown that the Equation 2 produces
integer solution when unique solution exists. When y1i = 1,
we attach the label 1 to the node Ci, and when y0i = 1,we

attach the label 0 to the node Ci. (Note, both y0i and y1i
cannot be 0 or 1 simultaneously, due the second constraint.)

3.3 Defining AMN Node and Edge features

3.3.1 Node Features for knowledge propagation
We divide the node features xi into two types : i) Global

node features xs
i and ii) Local node features SVM0

i and
SVM1

i . The node feature vector becomes
xi =

[
xs
i ;SVM0

i ;SVM1
i

]
.

Global features: These features aid in capturing the
structural similarity of a node to the input document through
a combination of different kernels such as Bag of Words ker-
nels, N-gram kernels, Relational kernels, among others. The
values of global features do not change over time. An ex-
ample of global feature could be, cosine similarity between
the bag of words representations of a document and the de-
scription associated with a node in the KnG.

Local features: These features aid in the personalization
of KnG. Essentially, we learn an SVM model for a category
based on user feedback. It is very much possible to consider
the use of other machine learning models such as decision
trees, logistic regression, etc. Our choice of SVM was based
partly on the fact that all our baselines employ SVMs and
partly on the fact that SVMs are known to yield high ac-
curacies. We employ the decision function of the classifier
as a node feature in the AMN. The SVM decision function
for each category node takes as input, the document d (as
a TF-IDF vector), and evaluates SvmCi (d) = wT

Ci
d + bCi ,

where wCi and bCi are the SVM parameters learnt for the
category Ci. The output of the SVM decision function is
positive if Ci is relevant for the document d and negative if
not relevant. We also treat the output of decision function
to be 0 if the SVM model is not available for the category
Ci. We introduce two features in the node feature vector xi,
viz, SVM1 and SVM0, denoted using the notation SVM1

i

and SVM0
i .

The feature value is computed as follows:

SVM1
i =

{
γiSvmCi (d) if SvmCi (d) ≥ 0

0 Otherwise

SVM0
i =

{
−γiSvmCi (d) if SvmCi (d) < 0

0 Otherwise
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Figure 4: Knowledge Propagation: 1. Nodes B and C with label 1 force the strongly associated neighbor node A to assume
label 1. We say that, knowledge from node B and C propagates to node A. 2. Though node I seems to be valid for the
document (with high node potential), given the context, it is not. Strongly associated neighbors of I, that is, nodes J,K,L,M
which have low node potentials force the node N to attain label 0. Here again we say that, knowledge flows from J,K,L,M to
I.

γi is the damping factor, which reflects the confidence in
SVM classifier for the category Ci. When the classification
system is initially deployed, we believe that the SVM models
would not have been sufficiently trained. Hence, the SVM
feature values might not initially provide reliable signals in
deciding the relevance of a category to the input document.
As the categorization system matures by training via user
feedback, the SVM models get trained so that we can in-
creasingly start trusting the SVM scores. We can control
this through the damping factor γi, that increases for a cat-
egory with the number of feedbacks received for that cate-
gory. We define γi to be:

γi =

{
0 if confidence (SvmCi) < T
confidence (SvmCi) otherwise

,

where T is the user defined threshold, confidence (SvmCi)
is the ξα − estimator of F1 score of SvmCi computed as
in [10]. These estimators are developed based on the idea
of leave-one-out estimation of error rate. However, leave-
one-out or cross validation estimation is a computationally
intensive process. On the other hand, ξα − estimator [10]
can be computed at essentially no extra cost immediately
after training every SvmCi using the slack variables ξi in
the SVM primal objective and αi Lagrange variables in the
SVM dual formulation.

Due to the associative property of AMN, the SVM param-
eters learned for a node can also influence the label assign-
ments of its neighbors. In other words, if there is a strong
edge potential between categories Ci and Cj , the SVM score
propagates from Ci to Cj . This helps in correct detection of
the label of node Cj even though there may not be a trained
SVM classifier available for node Cj . The example in Fig-
ure 4 illustrates the knowledge propagation between highly
associated (that is, with high edge potential) nodes. This is
precisely what we aim to model using an AMN.

3.3.2 Edge features for knowledge propagation
Edges between categories in a Markov Network represent

some kind of association between them. An Edge feature
vector (xij) contains feature values that encourage the cate-
gories Ci and Cj connected by the edge to have same label if
there is a strong relationship between them. The strength of

relationship is discovered through combinations of multiple
Kernels. Let K1 (Ci, Cj) · · ·KM (Ci, Cj) be M Kernels that
measure the similarity between Ci and Cj . Example Ker-
nels include Bag-of-Words Kernel, Bi-gram Kernel, Trigram
Kernel, Relational Kernel, etc. Further we assume (without
loss of generality) that these Kernels return normalized val-
ues (between 0 and 1). We define the feature vector xij to
have M features that signal yi = 1, yj = 1 and M features
that signal yi = 0, yj = 0. The feature vector xij is defined
as follows ∀1 ≤ m ≤M

xij [m] = Km (Ci, Cj)× (logϕ (xi, 1) + logϕ (xj , 1))

xij [M +m] = Km (Ci, Cj)× (logϕ (xi, 0) + logϕ (xj , 0))

Note that logϕ (xi, 1) is the node potential of Ci when it
is labeled 1 and logϕ (xi, 0) is the node potential when it
is labeled 0. Essentially, when the similarity between nodes
Ci and Cj is high, these features collectively favour similar
labels on both the nodes Ci and Cj .

3.4 Enforcing category Constraints
In the process of personalizing the KnG, users can indicate

(via feedback) that a category Ci suggested by the system
should never reappear in future categorization, because the
organization is not interested in that category. For exam-
ple, an organization working in the core area of Computer
Science may not be interested in a detailed categorization
of cancers, even though there may be some documents on
classification algorithms for different types of cancers. The
system remembers this feedback as a hard constraint. By
hard constraint for a category Ci, we mean the inference
that is subject to a constraint set that includes y0i = 1, as in
Equation 2. If categories Ci and Cj are related, we would ex-
pect the effect of this constraint to propogate from Ci to Cj

and encourage y0j also to become 1. As shown in the exam-
ple in Figure 5, if the user suppresses the category Cancer
by introducing a hard constraint, the AMN inference will
try to suppress related categories as well. This is precisely
what we aim to model using an AMN.

3.5 Inferring Corg
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Figure 5: Constraint Propagation: By applying a “never
again” constraint on node N, the label of Node N is forced
to 0. This forces labels of strongly associated neighbors
(O,P,Q,R) to 0. This is due to the AMN MAP inference,
which attains maximum value when the labels of these neigh-
bors (with high edge potentials) are assigned label 0.

So far, we have shown how to infer a set of categories
for a document d. We have indicated that these categories
come from Corg. Essentially, Corg ⊆ C is hidden behind our
model parameters (AMN and SVM) and hard constraints,
which keeps updating with every feedback. For any new doc-
ument d, when we apply our inference logic, we essentially
derive the categories for d from Corg. However, if all the
members of Corg need to be enumerated, we need to infer
all the categories of all the documents seen by the organi-
zation so far, with the current set of model parameters and
hard constraints. However, in practice, we may not have to
enumerate Corg for the functioning of our system.

Evolving Corg over time has two dimensions: (i) evolving
Corg when new documents with new categories (which exist
in KnG) are seen by our system, and (ii) evolving Corg when
new categories are added to KnG. For the first case, assum-
ing that the collaboratively built knowledge graph KnG is
up-to-date with all the categories, our spotting phase iden-
tifies the features in the document corresponding to the new
categories and adds them to the candidate categories. If
these categories get label 1 during the inference, they are
considered to be part of Corg. For the second case, the chal-
lenge lies in updating the already classified documents with
the new categories added to KnG. One strategy of handling
this could be to look at the neighborhood of newly added
categories in KnG, retrieve the already classified documents
that have categories present in this neighborhood and reas-
sign categories to these documents by repeating our infer-
ence algorithm. In our current work, we limit the evolution
Corg to case (i). Handling of case (ii) will be part of our
future work.

3.6 A note on user feedback and training per
category classifiers

Well trained category specific classifiers (SVMs in our
case) can boost the accuracy of classifiers. Note that, it
is not required to train the classifiers attached to every cat-
egory. Whenever available, the knowledge of classifier’s de-
cision propagates to the neighboring nodes in KnG. This is
the whole point setting up AMN inference over KnG. This
minimizes the number of classifiers to be trained. However,
this training can lead to significant cognitive load on the

users. To reduce this cognitive load and to achieve a bet-
ter learning rate, we can adopt the Active Learning strategy,
where we seek feedback from the user on select categories for
select documents. Development of effective Active Learning
strategy will be part of our future work.

4. EXPERIMENTS AND EVALUATION

4.1 Global Knowledge Graph (KnG)
We extract Wikipedia Page/Article titles and add them

to our KnG. We also construct description text for each
category in KnG from the first few paragraphs (gloss) of
Wikipedia’s page. We introduced edges between the nodes
connected via hyperlinks to capture the association in terms
of text overlap, title overlap, gloss overlap and anchor text
overlap.

4.2 Data-sets
We report experiments on the RCV1-v2 benchmark dataset.

Our choice of datasets was based on the existence of at least
100 class labels in the dataset. The Reuters RCV1-v2 col-
lection consists of 642 categories and a collection of 23,149
documents in the training set and 781,265 documents in the
test set.

4.3 Evaluation Methodology
In these experiments we demonstrate how, on a standard

classification dataset, the Markov network helps propagate
learnings from a category to other related categories. While
the AMN model exploits inter-class correlation, the per-class
SVM model incorporates feedback on document labels more
directly. In the absence of inter-class correlation, our model
degenerates to a multiclass SVM classifier. To demonstrate
this, we report experiments with two different strategies for
sampling documents: (i) clustered sampling and (ii) random
sampling.

Experiments on correlated categories (Clustered Sam-
pling).

In this setting, we selected 66 pairs of related Reuters cate-
gories, spanning 96 categories. For e.g., the categories MAN-
AGEMENT and MANAGEMENT MOVES are related. So
are LABOR and LABOR ISSUES. Two clategories were con-
sidered related if the number of training documents carrying
both labels, exceeded certain threshold. Our clustered sam-
pling entailed sampling of documents that were labeled with
both categories in any of the 66 pairs. We picked 5000 train-
ing documents and 2000 test documents using this clustered
sampling procedure. We further divided the training set
into 100 batches of 50 documents each. We iterated through
the batches and in the kth iteration, we trained our model
(SVMs, γi, AMN feature weights) using training documents
from all batches upto the kth batch. For each iteration, we
performed AMN inference on the sample of 2000 test docu-
ments. In Figure 6, we report the average F1 score on the
test sample for each of 100 iterations.

The curves labeled EVO correspond to the F1 score of
our system whereas the curves labeled mSVM are for the F1
score of a plain multiclass SVM. These graphs are plotted
for experiments with different choices (0.1, 1, 10, 100; shown
only for 1 and 10 here) of the SVM hyper-parameter C. As
we expect, after around 20 iterations, some of the better-
trained SVMs start propagating their learning to their cor-
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Figure 6: Comparison of avg (macro) F1 scores of our system
(EVO) with SVM on different c values

related neighbors (enforced by AMN), hence boosting the
overall F1 score. In other words, we can say that the learning
rate in our model is faster than that of a plain SVM model.
Hence, with a fewer training examples we can achieve the
same level of accuracy/recall as that of a plain multiclass
SVM trained with significantly more examples.

Experiments on uncorrelated/loosely correlated cate-
gories (Random Sampling).

When there is no correlation or very little correlation be-
tween the categories, the AMN will not contribute much to
the inference. To study this case, we selected all the Reuters
categories and randomly sampled 2000 test documents from
the Reuters standard test split and 5000 training documents
from the training split. Rest of the evaluation procedure is
same as in the previous case.

Figure 7a shows the avg F1 score over 100 iteration. Since
there is not much correlation between the categories, in most
of the iterations, F1 score of our model (EVO) follows the
F1 score of multiclass SVM (mSVM). Due to the presence
of small number of correlated categories in the test set, we
see a small increase in the F1 score after about 40 iterations.

Figure 7b depicts the avg F1 scores of EVO and mSVM
over the entire Reuters collection of test and train docu-
ments. EVO performs about 2− 5% better.

5. PRIOR WORK
Text classification/categorization is a well studied area in

machine learning under a variety of settings such as super-
vised, unsupervised, and semi-supervised.

[16] present an algorithm to build a hierarchical classifica-
tion system with predefined class hierarchy. Their classifica-
tion model is a variant of the Maximum Margin Markov Net-
work framework, where the classification hierarchy is repre-
sented as a Markov tree.
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Figure 7: Comparison of avg (macro) F1 scores of our system
(EVO) with SVM (random sampling)

Topic Modeling in an unsupervised setting has been stud-
ied in CTM[4], PAM[11], NMF[2], which identify topics as
a group of prominent words. Discovering several hundred
topics using these techniques turns out be practically chal-
lenging with a moderately sized system. In addition, finding
a good representative and grammatically correct topic name
for a group needs additional effort.

Nadia and Andrew [6] explore multi-label conditional ran-
dom field (CRF) classification models that directly parame-
terize label co-occurrences in multi-label classification. They
show that such models outperform their single label counter-
parts on standard text corpora. We draw inspiration from
[6] and jointly make use of relations between the categories
in KnG along with the category similarity to the document
to learn the categories relevant to a document.

Medelyan [15] detect topics for a document using Wikipedia
article names as category vocabulary. However, their system
does not adapt to the user perspective. Whereas, our pro-
posed techniques support personalized category detection.

6. CONCLUSION
We presented an approach for evolving an organization-

specific multi-label document categorization system by adapt-
ing the categories in a global Knowledge Graph to a lo-
cal document collection. It not only fits the documents
in the digital library, but also caters to the perceptions of
users in the organization. We address this by learning an
organization-specific document categorization meta-model
using Associative Markov Networks over SVM by blend-
ing (a) global features that exploit the structural similar-
ities between the categories in the global category catalog
and input document and (b) local features including ma-
chine learned discriminative SVM models in an AMN setup
along with user defined constraints that help in localization



of the global category catalog (Knowledge Graph). In the
process, we also curate the training data. Currently our sys-
tem works only with a flat category structure. We believe
that our technique can be improved to handle a hierarchical
category structure, which will form part of our future work.
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