Skip to main content

On the Development of a Classification Based Automated Motion Imagery Interpretability Prediction

  • Conference paper
  • First Online:
Pattern Recognition. ICPR International Workshops and Challenges (ICPR 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12668))

Included in the following conference series:

  • 1800 Accesses

Abstract

Motion imagery interpretability is commonly represented by the Video National Imagery Interpretability Rating Scale (VNIIRS), which is a subjective metric based on human analysts’ visual assessment. Therefore, VNIIRS is a very time-consuming task. This paper presents the development of a fully automated motion imagery interpretability prediction, called AMIIP. AMIIP employs a three-dimensional convolutional neural network (3D-CNN) that accepts as inputs many video blocks (small image sequences) extracted from motion imagery, and outputs the label classification for each video block. The result is a histogram of the labels/categories that is then used to estimate the interpretability of the motion imagery. For each training video clip, it is labeled based on its subjectively rated VNIIRS level; thus, the required human annotation of imagery for training data is minimized. By using a collection of 76 high definition aerial video clips, three preliminary experimental results indicate that the estimation error is within 0.5 VNIIRS rating scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This is based on the standard MISB ST 0901.2. However, in the newest standard MISB ST 0901.3, criteria are defined for three orders of battle.

  2. 2.

    The five channels are defined as gray, gradient-x, gradient-y, optflow-x and optflow-y.

  3. 3.

    Different video block sizes are experimented in this paper.

References

  1. MISB ST 0901.2: Video-National Interpretability Rating Scale, Feb 2014

    Google Scholarďż˝

  2. MISB RP 1203.3: Video Interpretability and Quality Measurement and Prediction, Feb 2014

    Google Scholarďż˝

  3. ITU-T Recommendation P.912, Subjective Video Quality Assessment Methods for Recognition Tasks, Aug 2008

    Google Scholarďż˝

  4. Blasch, E., Kahler, B.: Application of VNIIRS for target tracking. In: Proceedings of SPIE vol. 9473 (2015)

    Google Scholarďż˝

  5. Blasch, E., Kahler, B.: V-NIIRS fusion modeling for EO/IR systems. In: IEEE National Aerospace and Electronics Conference (2015)

    Google Scholarďż˝

  6. Blasch, E., Chen, H-M., Wang, Z., Jia, B., et al.: Target broker compression for multi-level fusion. In: IEEE National Aerospace and Electronics Conference (2016)

    Google Scholarďż˝

  7. Blasch, E., Chen, H-M., Wang, Z., Jia, B., et al.: Compression induced image quality degradation in terms of NIIRS. In: IEEE Applied Imagery Pattern Recognition Workshop (AIPR) (2016)

    Google Scholarďż˝

  8. Zheng, Y., Dong, W., et al.: Qualitative and quantitative comparisons of multispectral night vision colorization techniques. Opt. Eng. 51(8), 08004 (2012)

    Articleďż˝ Google Scholarďż˝

  9. Zheng, Y., Blasch, E., Liu, Z.: Multispectral Image Fusion and Colorization. SPIE Press (2018)

    Google Scholar 

  10. Palaniappan, K., et al.: Moving object detection for vehicle tracking in wide area motion imagery using 4D filtering. In: International Conference on Pattern Recognition (ICPR) (2016)

    Google Scholar 

  11. Snidaro, L., GarcĂ­a, J., Llinas, J., Blasch, E. (eds.): Context-Enhanced Information Fusion. ACVPR, Springer, Cham (2016). https://doi.org/10.1007/978-3-319-28971-7

    Book  Google Scholar 

  12. Wu, R., Liu, B., Chen, Y., et al.: A Container-based elastic cloud architecture for pseudo real-time exploitation of wide area motion imagery (WAMI) stream. J. Signal Process. Syst. 88(2), 219–231 (2017)

    Article  Google Scholar 

  13. Al-Shakarji, N.M., Bunyak, F., Seetharaman, G., Palaniappan, K.: Robust multi-object tracking for wide area motion imagery. In: IEEE Applied Imagery Pattern Recognition Workshop (AIPR) (2018)

    Google Scholar 

  14. Aktar, R., AliAkbarpour, H., Bunyak, F., Seetharaman, G., Palaniappan, K.: Performance evaluation of feature descriptors for aerial imagery mosaicking. In: IEEE Applied Imagery Pattern Recognition (AIPR) Workshop (2018)

    Google Scholar 

  15. Zheng, Y., Chen, G., Wang, Z., et al.: Image quality (IQ) guided multispectral image compression. In: Proceedings of SPIE, vol. 9871 (2016)

    Google Scholar 

  16. Blasch, E., et al.: Prediction of compression-induced image interpretability degradation. Opt. Eng. 57(4), 043108 (2018)

    Article  MathSciNet  Google Scholar 

  17. Gao, K., Yao, S., AliAkbarpour, H., Agarwal, S., Seetharaman, G., Palaniappan, K.: Sensitivity of multiview 3D point cloud reconstruction to compression quality and image feature detectability. In: IEEE Applied Imagery Pattern Recognition (AIPR) Workshop (2019)

    Google Scholar 

  18. Al-Shakarji, N.M., Bunyak, F., AliAkbarpour, H., Seetharaman, G., Palaniappan, K.: Performance evaluation of semantic video compression using multi-cue object detection. In: IEEE Applied Imagery Pattern Recognition (AIPR) Workshop (2019)

    Google Scholar 

  19. Prasath, V.B.S., Pelapur, R., Seetharaman, G., Palaniappan, K.: Multiscale structure tensor for improved feature extraction and image regularization. IEEE Trans. Image Process. 28(12), 6198–6210 (2019)

    Article  MathSciNet  Google Scholar 

  20. Çetin, M., Stojanović, I., Önhon, N.O., Varshney, K., Samadi, S., et al.: Sparsity-driven synthetic aperture radar imaging: reconstruction, autofocusing, moving targets, and compressed sensing. IEEE Signal Process. Mag. 31(4), 27–40 (2014)

    Article  Google Scholar 

  21. Majumder, U., Blasch, E., Garren, D.: Deep Learning for Radar and Communications Automatic Target Recognition. Artech House, Norwood (2020)

    Google Scholar 

  22. Huynh-Thu, Q., Garcia, M.N., Speranza, F., et al.: Study of rating scales for subjective quality assessment of high-definition video. IEEE Trans. Broadcast 57(1), 1–14 (2011)

    Article  Google Scholar 

  23. Zhang, Y., Gao, X., He, L., et al.: Blind video quality assessment with weakly supervised learning and resampling strategy. IEEE Trans. Circuits Sys. Video Tech. 29(8), 2244–2255 (2018)

    Article  Google Scholar 

  24. Li, Y., et al.: No-reference video quality assessment with 3D shearlet transform and convolutional neural networks. IEEE Trans Circuits Sys Video Tech. 26(6), 1044–1057 (2016)

    Article  Google Scholar 

  25. Shahid, M., Rossholm, A., Lövström, B., Zepernick, H.-J.: No-reference image and video quality assessment: a classification and review of recent approaches. EURASIP J. Image Video Process. 2014(1), 1–32 (2014). https://doi.org/10.1186/1687-5281-2014-40

    Article  Google Scholar 

  26. Vega, M.T., Sguazzo, V., Mocanu, D.C., et al.: An experimental survey of no-reference video quality assessment methods. Int. J Pervasive Comp. Comm 12(1), 66–86 (2016)

    Article  Google Scholar 

  27. Xu, L., Lin, W., Kuo, C.C.J.: Visual quality assessment by machine learning. Springer, Berlin (2015)

    Book  Google Scholar 

  28. Varga, D.: No-reference video quality assessment based on the temporal pooling of deep features. Neural Process. Lett. 50(3), 2595–2608 (2019)

    Article  Google Scholar 

  29. Ji, S., Xu, W., et al.: 3D convolutional neural networks for human action recognition. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 221–231 (2012)

    Article  Google Scholar 

  30. Karpathy, A., Toderici, G., et al.: Large-scale video classification with convolutional neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition (2014)

    Google Scholar 

  31. Tran, D., Bourdev, L., et al.: Learning spatiotemporal features with 3D convolutional networks. IEEE International Conference on Computer Vision (2015)

    Google Scholar 

  32. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  33. Blasch, E., Seetharaman, G., et al.: Wide-area motion imagery (WAMI) exploitation tools for enhanced situation awareness. In: IEEE Applied Imagery Pattern Recognition Workshop (2012)

    Google Scholarďż˝

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Genshe Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, Hm., Chen, G., Blasch, E. (2021). On the Development of a Classification Based Automated Motion Imagery Interpretability Prediction. In: Del Bimbo, A., et al. Pattern Recognition. ICPR International Workshops and Challenges. ICPR 2021. Lecture Notes in Computer Science(), vol 12668. Springer, Cham. https://doi.org/10.1007/978-3-030-68793-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68793-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68792-2

  • Online ISBN: 978-3-030-68793-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics