Skip to main content

Tackling Dynamic Problems with Multiobjective Evolutionary Algorithms

  • Chapter
Multiobjective Problem Solving from Nature

Part of the book series: Natural Computing Series ((NCS))

Summary

In this chapter, we discuss the use of multiobjective evolutionary algorithms (MOEAs) for solving single-objective optimization problems in dynamic environments. Specifically, we investigate the consideration of a second (artificial) objective, with the aim of maintaining greater population diversity and adaptability. The paper suggests and compares a number of alternative ways to express this second objective. An empirical comparison shows that the best alternatives are competitive with other evolutionary algorithm variants designed for handling dynamic environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. H. A. Abbass and K. Deb. Searching under multi-evolutionary pressures. In Zitzler et al., editor, Proceedings of the Fourth Conference on Evolutionary Multi-Criterion Optimization, Spain, 2003.

    Google Scholar

  2. H. A. Abbass, K. Satry, and D. Goldberg. Oiling the wheels of change: The role of adaptive automatic problem decomposition in non-stationary environments. Technical report, IlliGAL, University of Illinois at Urbana-Champaign, 2004.

    Google Scholar 

  3. J. Branke. Memory enhanced evolutionary algorithms for changing optimisation problems. In In Congress on Evolutionary Computation CEC99, pages 1875–1882. IEEE, 1999.

    Google Scholar 

  4. J. Branke. Evolutionary optimization in dynamic environments. Kluwer Academic Publishers, Massachusetts USA, 2002.

    Book  Google Scholar 

  5. L. T. Bui, J. Branke, and H. Abbass. Multiobjective optimization for dynamic environments. In Congress on Evolutionary Computation, pages 2349–2356. IEEE Press, 2005.

    Google Scholar 

  6. H.G. Cobb. An investigation into the use of hypermutation as an adaptive operator in genetic algorithms having continuous, time-dependent nonstationary environments. Technical Report AIC-90-001, Naval Research Laboratory, 1990.

    Google Scholar 

  7. C. A. C. Coello, D. A. V. Veldhuizen, and G. B. Lamont. Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer Academic Publishers, New York USA, 2002.

    Book  Google Scholar 

  8. D. Dasgupta. Incorporating redundancy and gene activation mechanisms in genetic search. In L. Chambers, editor, Practical Handbook of Genetic Algorithms, pages 303–316. CRC Press, 1995.

    Google Scholar 

  9. K. Deb. Multiobjective Optimization using Evolutionary Algorithms. John Wiley and Son Ltd, New York, 2001.

    MATH  Google Scholar 

  10. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2):182–197, 2002.

    Article  Google Scholar 

  11. D.E. Goldberg and R.E. Smith. Nonstationary function optimisation using genetic algorithms with dominance and diploidy. In J.J. Grefenstette, editor, Second International Conference on Genetic Algorithms, pages 59–68. Lawrence Erlbaum Associates, 1987.

    Google Scholar 

  12. J.J. Grefenstette. Genetic algorithms for changing environments. In R. Männer and B. Manderick, editors, Parallel Problem Solving from Nature, pages 137–144. Elsevier Science Publisher, 1992.

    Google Scholar 

  13. B.S. Hadad and C.F. Eick. Supporting polyploidy in genetic algorithms using dominance vectors. In International Conference on Evolutionary Programming, volume 1213 of Lecture Notes in Computer Science, pages 223–234, 1997.

    Google Scholar 

  14. M.T. Jensen. Helper-objectives: Using multiobjective evolutionary algorithms for single-objective optimization. Journal of Mathematical Modelling and Algorithms, 1(25), 2004.

    Google Scholar 

  15. Y. Jin and J. Branke. Evolutionary optimization in uncertain environments – a survey. IEEE Transactions on Evolutionary Computation, to appear.

    Google Scholar 

  16. J. Knowles, R. A. Watson, and D. Corne. Reducing local optima in single-objective problems by multi-objectivization. In Zitzler et al., editor, Proceedings of the First Conference on Evolutionary Multi-Criterion Optimization, pages 269–283, Zurich Switzerland, 2001.

    Google Scholar 

  17. J. Lewis, E. Hart, and G. Ritchie. A comparison of dominance mechanisms and simple mutation on non-stationary problems. In A. E. Eiben, T. Bfddotack, M. Schoenauer, and H.-P. Schwefel, editors, Parallel Problem Solving from Nature, number 1498 in LNCS, pages 139–148. Springer, 1998.

    Google Scholar

  18. N. Mori, S. Imanishia, H. Kita, and Y. Nishikawa. Adaptation to changing environments by means of the memory based thermodynamical genetic algorithms. In T. Bäck, editor, Seventh International Conference on Genetic Algorithms, pages 299–306. Morgan Kaufmann, 1997.

    Google Scholar 

  19. N. Mori, H. Kita, and Y. Nishikawa. Adaptation to changing environments by means of the thermodynamical genetic algorithms. In H.-M. Voigt, editor, Parallel Problem Solving from Nature, volume 1411 of Lecture Notes in Computer Science, pages 513–522, Berlin, 1996. Elsevier Science Publisher.

    Google Scholar 

  20. R. W. Morrison. Designing Evolutionary Algorithms for Dynamic Environments. Springer, 2004.

    Google Scholar 

  21. R.W. Morrison and K. A. DeJong. A test problem generator for non-stationary environments. In Proceedings of 1999 Congress on Evolutionary Computation, 1999.

    Google Scholar 

  22. The moving peaks benchmark. http://www.aifb.uni-karlsruhe.de/ jbr/MovPeaks

    Google Scholar 

  23. A. Toffolo and E. Benini. Genetic diversity as an objective in multi-objective evolutionary algorithms. Evolutionary Computation, 11(2):151–168, 2003.

    Article  Google Scholar 

  24. K. Trojanowski and Z. Michalewicz. Evolutionary algorithms for non-stationary environments. In Proc. of 8th Workshop: Intelligent Information systems, pages 229–240, Porland, 1999. ICS PAS Press.

    Google Scholar 

  25. R.K. Ursem. Multinational GAs: multimodal optimization techniques in dynamic environments. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2000), pages 19–26. San Francisco, CA: Morgan Kaufmann, 2000.

    Google Scholar 

  26. F. Vavak, K. Jukes, and T.C. Fogarty. Learning the local search range for genetic optimisation in nonstationary environments. In IEEE International Conference on Evolutionary Computation, pages 355–360. IEEE Publishing, 1997.

    Google Scholar 

  27. K. Weicker. Evolutionary Algorithms and Dynamic Optimization Problems. Der Andere Verlag, 2003.

    Google Scholar 

  28. K. Yamasaki. Dynamic Pareto optimum GA against the changing environments. In J. Branke and T. Bäck, editors, Evolutionary Algorithms for Dynamic Optimization Problems, pages 47–50, San Francisco, California, USA, 7 2001.

    Google Scholar 

  29. S. Yang. Memory-based immigrants for genetic algorithms in dynamic environments. In Hans-Georg Beyer et al., editors, Genetic and Evolutionary Computation Conference, pages 1115–1122. ACM, 2005.

    Google Scholar 

  30. S. Yang. Associative memory scheme for genetic algorithms in dynamic environments. In F. Rothlauf et al., editors, Applications of Evolutionary Computing, volume 3907 of LNCS, pages 788–799. Springer, 2006.

    Google Scholar 

  31. S. Yang and X. Yao. Population-based incremental learning algorithms for dynamic optimization problems. Soft Computing, 9(11):815–834, 2005.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

� 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bui, L.T., Nguyen, MH., Branke, J., Abbass, H.A. (2008). Tackling Dynamic Problems with Multiobjective Evolutionary Algorithms. In: Knowles, J., Corne, D., Deb, K. (eds) Multiobjective Problem Solving from Nature. Natural Computing Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72964-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72964-8_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72963-1

  • Online ISBN: 978-3-540-72964-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics