Skip to main content

An Uncertainty Approach for Fixture Layout Optimization Using Monte Carlo Method

  • Conference paper
Intelligent Robotics and Applications (ICIRA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6425))

Included in the following conference series:

Abstract

The fixture layout is well known as an important factor that influen-ces the localization accuracy of the workpiece in mass production. Meanwhile, due to the existence of the uncertain errors that originated from assembly and manufacture process, the positional variability which depends on the tolerance allocation has statistical features. In this work, we propose an uncertainty approach of optimizing the fixture layout to improve overall product quality. Firstly, we analyze the deterministic localization model and static equilibrium condition by introducing related uncertainty errors. Then, using the Monte Carlo Method (MCM), we randomly assign the fixture parameters from corresponding probability distributions. Further, we compute the norm of position error of critical point according to the principles of minimum potential energy and the Nonlinear Least Square Method (NLSM). After we sequentially search the minimal mean and variance of the position error in discrete point set domain, the optimal solution of the fixture layout is obtained. Finally, a numerical example is illustrated and compared with the result of FEA simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ramesh, R.M., Mannan, A., Poo, A.N.: Error compensation in machine tools — a review. Part I: Geometric, cutting-force induced and fixture-dependent errors. International Journal of Machine Tools and Manufacture 40(9), 1235–1256 (2000)

    Article  Google Scholar 

  2. Asada, H., By, A.B.: Kinematic analysis of workpart fixturing for flexible assembly with automatically reconfigurable fixtures. IEEE Trans. Robot. Autom. 1(2), 86–93 (1985)

    Article  Google Scholar 

  3. Wang, M.Y.: Characterizations of positioning accuracy of deterministic localization of fixtures. IEEE Trans. Robot. Autom. 18(6), 976–981 (2002)

    Article  Google Scholar 

  4. Liu, Y.H.: Qualitative test and force optimization of 3-D frictional formclosure grasps using linear programming. IEEE Trans. Robot. Autom. 15, 163–173 (1999)

    Article  Google Scholar 

  5. Zhu, X.Y., Ding, H.: Optimality Criteria for Fixture Layout Design A Comparative Study. IEEE Trans. Robot. Autom. 6(4), 658–669 (2009)

    Google Scholar 

  6. Yu, Z., Chew, C.M.: Efficient Procedures for Form-Clousure Grasp Planning and Fixture Layout Design. ASME J. Manuf. Sci. Eng. 131, 041010:1–11 (2009)

    Google Scholar 

  7. Xiong, Y.L., Xiong, X.R.: Algebraic structure and geometric interpretation of rigid complex fixture systems. IEEE Trans. Robot. Autom. 4(2), 252–264 (2007)

    Google Scholar 

  8. Cai, W., Hu, S.J., Yuan, J.X.: Deformable sheet metal fixturing: Principles, algorithms, and simulation. ASME J. Manuf. Sci. Eng. 118, 318–324 (1996)

    Article  Google Scholar 

  9. Malluck, J.A., Melkote, S.N.: Modeling of deformation of ring shaped workpieces due to chucking and cutting forces. ASME J. Manuf. Sci. Eng. 126, 141–147 (2004)

    Article  Google Scholar 

  10. Johnson, K.L.: Contact Mechanics. Cambridge Univ. Press, Cambridge (1985)

    Book  MATH  Google Scholar 

  11. Xiong, C.H., Ding, H., Xiong, Y.L.: On Clamping Planning in Workpiece-Fixture Systems. IEEE Trans. Robot. Autom. 5(3), 407–419 (2008)

    Google Scholar 

  12. Kulankara, K., Satyanarayana, S., Melkote, S.N.: Iterative fixture layout and clamping force optimization using the Genetic Algorithm. ASME J. Manuf. Sci. Eng. 124, 119–125 (2002)

    Article  Google Scholar 

  13. Goldberg, K.Y., Mason, M.T., Requicha, A.: Geometric Uncertainty in Motion Planning: Summary Report and Bibliography, Catalina Island, CA, June 15-17 (1992)

    Google Scholar 

  14. Xiao, J., Zhang, L.: Towards obtaining all possible contacts — growing a polyhedron by its location uncertainty. IEEE Transactions on Robotics and Automation 12(4), 553–565 (1996)

    Article  Google Scholar 

  15. Cheah, C.C., Han, H.Y., Sawamura, S., Arimoto, S.: Grasping and position control for multi-fingered robot hands with uncertainty Jacobian Matrices. In: Proceeding of the IEEE International Conference on Robotics and Automation, pp. 2403–2408 (1998)

    Google Scholar 

  16. Wang, M.Y.: An optimal design for 3D fixture synthesis in a point-set domain. IEEE Trans. Robot. Autom. 16(6), 839–846 (2000)

    Article  Google Scholar 

  17. Zheng, Y., Qian, W.H.: Coping with uncertainties in Force-closure analysis. International Journal of Robotics Research 24(4), 311–327 (2005)

    Article  Google Scholar 

  18. Sanchez, H.T., Estrems, M., Faura, F.: Determination of Key workpiece product characteristics in a machining fixture using uncertainty analysis and loss cost function implementations. International Journal of Advanced Manufacturing Technology 41, 452–460 (2009)

    Article  Google Scholar 

  19. Slocum, A.H.: Precision Machine Design. Prentice-Hall International Inc., Englewood Cliffs (1992)

    Google Scholar 

  20. Barlow, R.E., Proschan, F.: Mathmetical Theory of Reliability. Society for Industrial and Applied Mathematics (1987)

    Google Scholar�

  21. Tripp, J.: Hertian Contact in two and three Dimension. Paper NASA Tech. 2473 (1985)

    Google Scholar�

  22. Timoshenko, S.P., Goodier, J.N.: Theory of Elasticity. The Macgraw-Hill Companys Inc., New York (1970)

    MATH� Google Scholar�

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

� 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, X., Yang, W., Li, M. (2010). An Uncertainty Approach for Fixture Layout Optimization Using Monte Carlo Method. In: Liu, H., Ding, H., Xiong, Z., Zhu, X. (eds) Intelligent Robotics and Applications. ICIRA 2010. Lecture Notes in Computer Science(), vol 6425. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16587-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16587-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16586-3

  • Online ISBN: 978-3-642-16587-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics