Skip to main content
Log in

Encoding and Constructing 1-Nested Phylogenetic Networks with Trinets

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

Phylogenetic networks are a generalization of phylogenetic trees that are used in biology to represent reticulate or non-treelike evolution. Recently, several algorithms have been developed which aim to construct phylogenetic networks from biological data using triplets, i.e. binary phylogenetic trees on 3-element subsets of a given set of species. However, a fundamental problem with this approach is that the triplets displayed by a phylogenetic network do not necessarily uniquely determine or encode the network. Here we propose an alternative approach to encoding and constructing phylogenetic networks, which uses phylogenetic networks on 3-element subsets of a set, or trinets, rather than triplets. More specifically, we show that for a special, well-studied type of phylogenetic network called a 1-nested network, the trinets displayed by a 1-nested network always encode the network. We also present an efficient algorithm for deciding whether a dense set of trinets (i.e. one that contains a trinet on every 3-element subset of a set) can be displayed by a 1-nested network or not and, if so, constructs that network. In addition, we discuss some potential new directions that this new approach opens up for constructing and comparing phylogenetic networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.�1
Fig.�2
Fig.�3
Fig.�4
Fig.�5
Fig.�6
Fig.�7
Fig.�8
Fig.�9
Fig.�10
Fig.�11
Fig.�12

Similar content being viewed by others

Notes

  1. Note that in [7], 1-nested networks are defined in such a way that every hybrid vertex has indegree 2—we do not make this assumption, but we will use the same name rather than introducing a new term.

References

  1. Aho, A.V., Sagiv, Y., Szymanski, T.G., Ullman, J.D.: Inferring a tree from lowest common ancestors with an application to the optimization of relational expressions. SIAM J. Comput. 10, 405–421 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bryant, D.: Building trees, hunting for trees, and comparing trees: theory and methods in phylogenetic analysis. PhD Thesis, University of Canterbury, Christchurch, New Zealand (1997)

  3. Byrka, J., Guillemot, S., Jansson, J.: New results on optimizing rooted triplets consistency. Discrete Appl. Math. 158, 1136–1147 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cardona, G., Llabrés, M., Rosselló, F., Valiente, G.: A distance metric for a class of tree-sibling phylogenetic networks. Bioinformatics 24, 1481–1488 (2008)

    Article  Google Scholar 

  5. Cardona, G., Llabrés, M., Rosselló, F., Valiente, G.: Metrics for phylogenetic networks I: generalization of the Robinson-Foulds metric. IEEE/ACM Trans. Comput. Biol. Bioinform. 6, 46–61 (2009)

    Article  Google Scholar 

  6. Cardona, G., Llabrés, M., Rosselló, F., Valiente, G.: Metrics for phylogenetic networks II: nodal and triplets metrics. IEEE/ACM Trans. Comput. Biol. Bioinform. 6, 454–469 (2009)

    Article  Google Scholar 

  7. Cardona, G., Llabrés, M., Rosselló, F., Valiente, G.: Comparison of galled trees. IEEE/ACM Trans. Comput. Biol. Bioinform. 8, 410–427 (2011)

    Article  Google Scholar 

  8. Cardona, G., Rosselló, F., Valiente, G.: Tripartitions do not always discriminate phylogenetic networks. Math. Biosci. 211, 356–370 (2008)

    Article  MathSciNet  MATH  Google Scholar

  9. Choy, C., Jansson, J., Sadakane, K., Sung, W.K.: Computing the maximum agreement of phylogenetic networks. Theor. Comput. Sci. 335, 93–107 (2005)

    Article  MathSciNet  Google Scholar 

  10. Gambette, P., Huber, K.T.: On encodings of phylogenetic networks of bounded level. J. Math. Biol. 65(1), 157–180 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gasieniec, L., Jansson, J., Lingas, A., Ostlin, A.: On the complexity of computing evolutionary trees. In: COCOON, pp. 134–145 (1997)

    Google Scholar 

  12. Gasieniec, L., Jansson, J., Lingas, A., Ostlin, A.: On the complexity of constructing evolutionary trees. J. Comb. Optim. 3(2–3), 183–197 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Huber, K.T., van Iersel, L., Kelk, S., Suchecki, R.: A practical algorithm for reconstructing level-1 phylogenetic networks. IEEE/ACM Trans. Comput. Biol. Bioinform. 8, 635–649 (2011)

    Article  Google Scholar 

  14. Huson, D., Rupp, R., Scornavacca, C.: Phylogenetic Networks. Cambridge University Press, Cambridge (2011)

    Google Scholar 

  15. van Iersel, L., Keijsper, J., Kelk, S., Stougie, L., Hagen, F., Boekhout, T.: Constructing level-2 phylogenetic networks form triplets. IEEE/ACM Trans. Comput. Biol. Bioinform. 6, 667–681 (2009)

    Article  Google Scholar 

  16. van Iersel, L.J.J., Kelk, S.M.: Constructing the simplest possible phylogenetic network from triplets. Algorithmica 60, 207–235 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jansson, J.: On the complexity of inferring rooted evolutionary trees. Electron. Notes Discrete Math. 7, 50–53 (2001)

    Article  MathSciNet  Google Scholar 

  18. Jansson, J., Nguyen, N.B., Sung, W.K.: Algorithms for combining rooted triplets into a galled phylogenetic network. SIAM J. Comput. 35, 1098–1121 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jansson, J., Sung, W.K.: Inferring a level-1 phylogenetic network from a dense set of rooted triplets. Theor. Comput. Sci. 363, 60–68 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jin, G., Nakhleh, L., Snir, S., Tuller, T.: Maximum likelihood of phylogenetic networks. Bioinformatics 22, 2604–2611 (2006)

    Article  Google Scholar 

  21. Jin, G., Nakhleh, L., Snir, S., Tuller, T.: Parsimony score of phylogenetic networks: hardness results and a linear-time heuristic. IEEE/ACM Trans. Comput. Biol. Bioinform. 6, 495–505 (2009)

    Article  Google Scholar 

  22. Koblmüller, S., Duftner, N., Sefc, K.M., Aibara, M., Stipacek, M., Blanc, M., Egger, B., Sturmbauer, C.: Reticulate phylogeny of gastropod-shell-breeding cichlids from lake tanganyika—the result of repeated introgressive hybridization. BMC Evol. Biol. 7, 7 (2007)

    Article  Google Scholar 

  23. Lengauer, T., Tarjan, R.E.: A fast algorithm for finding dominators in a flowgraph. ACM Trans. Program. Lang. Syst. 1, 121–141 (1979)

    Article  MATH  Google Scholar 

  24. Lott, M., Spillner, A., Huber, K.T., Petri, A., Oxelman, B., Moulton, V.: Inferring polyploid phylogenies from multi-labeled gene trees. BMC Evol. Biol. 9, 216 (2009)

    Article  Google Scholar 

  25. Nakhleh, L.: Evolutionary phylogenetic networks: models and issues. In: Heath, L.S., Ramakrishnan, N. (eds.) Problem Solving Handbook in Computational Biology and Bioinformatics. Springer, Berlin (2011)

    Google Scholar 

  26. Page, R.D.M.: Modified mincut supertrees. In: Proceedings of Workshop on Algorithms in Bioinformatics (WABI 2002). Lecture Notes in Computer Science, vol. 2452, pp. 537–552 (2002)

    Chapter  Google Scholar 

  27. Planet, P.J., Kachlany, S.C., Fine, D.H., DeSalle, R., Figurski, D.H.: The widespread colonization island of actinobacillus actinomycetemcomitans. Nat. Genet. 34, 193–198 (2003)

    Article  Google Scholar 

  28. Semple, C., Steel, M.: A supertree method for rooted trees. Discrete Appl. Math. 105, 147–158 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Semple, C., Steel, M.: Phylogenetics. Oxford Lecture Series in Mathematics and its Applications, vol. 24. Oxford University Press, Oxford (2003)

    MATH  Google Scholar 

  30. Song, Y.S., Hein, J.: Constructing minimal ancestral recombination graphs. J. Comput. Biol. 12, 147–169 (2005)

    Article  Google Scholar

  31. Strimmer, K., von Haeseler, A.: Quartet puzzling: a quartet maximum likelihood method for reconstructing tree topologies. Mol. Biol. Evol. 13, 964–969 (1996)

    Article  Google Scholar 

  32. To, T.H., Habib, M.: Level-k phylogenetic networks are constructable from a dense triplet set in polynomial time. In: Combinatorial Pattern Matching (CPM). Lecture Notes in Computer Science, vol. 5577, pp. 275–288 (2009)

    Chapter  Google Scholar 

  33. Tusserkani, R., Eslahchi, C., Poormohammadi, H., Azadi, A.: TripNet: a method for constructing phylogenetic networks from triplets. arXiv:1104.4720v1 [cs.CE]

  34. Willson, S.: Regular networks can be uniquely constructed from their trees. IEEE/ACM Trans. Comput. Biol. Bioinform. 8, 785–796 (2011)

    Article  Google Scholar 

  35. Wu, B.Y.: Constructing the maximum consensus tree from rooted triples. J. Comb. Optim. 8, 29–39 (2004)

    Article  MathSciNet  MATH  Google Scholar

Download references

Acknowledgements

The authors thank Mike Hendy, David Penny, Charles Semple, Peter Stadler and Mike Steel for hosting them during their sabbatical, during which this work was conceived and undertaken. They also thank the anonymous referee for his/her helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. T. Huber.

Additional information

V.M. thanks the Royal Society for supporting his visit to New Zealand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huber, K.T., Moulton, V. Encoding and Constructing 1-Nested Phylogenetic Networks with Trinets. Algorithmica 66, 714–738 (2013). https://doi.org/10.1007/s00453-012-9659-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-012-9659-x

Keywords

Navigation