
Sequence Types for Hereditary Permutators
Pierre Vial
Inria, Nantes, France
pierre.vial@inria.fr

Abstract
The invertible terms in Scott’s model D∞ are known as the hereditary permutators. Equivalently,
they are terms which are invertible up to βη-conversion with respect to the composition of the
λ-terms. Finding a type-theoretic characterization to the set of hereditary permutators was problem
20 of TLCA list of problems. In 2008, Tatsuta proved that this was not possible with an inductive
type system. Building on previous work, we use an infinitary intersection type system based on
sequences (i.e., families of types indexed by integers) to characterize hereditary permutators with a
unique type. This gives a positive answer to the problem in the coinductive case.

2012 ACM Subject Classification Theory of computation → Type theory

Keywords and phrases hereditary permutators, Böhm trees, intersection types, coinduction, ridigity,
sequence types, non-idempotent intersection

Digital Object Identifier 10.4230/LIPIcs.FSCD.2019.33

Funding This research has been partially funded by the CoqHoTT ERC Grant 637339.

0 Introduction

The study of βη-invertible terms goes back to Curry and Feys [7], who showed that the only
regular combinators having an inverse are of the form λxx1 . . . xn.x xσ(1) . . . xσ(n) with σ a
permutation. Building on this work, Dezani [9] gave a characterization of the normal forms
of all the invertible normalizing terms. This characterization was extended by Bergstra
and Klop [3] for any term: βη-invertible terms were proved to have Böhm trees of a
certain form, generalizing that given by Curry and Feys and suggesting to name them
hereditary permutators.

On another hand, intersection types systems were introduced by Coppo and Dezani [6, 12]
around 1980 (see [16] for a survey). They were extensively used to characterize various sets
of terms having common semantic properties (including head, weak, strong normalization)
in different calculi. Yet, hereditary permutators resisted such a characterization, so that the
problem of finding a type system assigning a unique type to all hereditary permutators (and
only to them) was inscribed in TLCA list of open problems by Dezani in 2006 (Problem #
20). Two years later, Tatsuta [14] proved that the set HP of hereditary head permutators
is not recursively enumerable. This entails that HP cannot be characterized in an inductive
type system.

However, in [17], using a coinductive intersection type system named system S, we
characterized the so-called set of hereditary head normalizing (HHN) terms which is also a
set of terms having Böhm trees of certain form (without the constant ⊥), whereas this set
was also proved not to be recursively enumerable by Tatsuta [13]. As in the finitary case,
infinite types bring simpler semantic proofs of well-known theorems, e.g., system S helps
proving that an asymptotic reduction strategy produces the infinitary normal form of a term
when it exists. In this paper, we extend system S with a type constant characterizing the set
of hereditary permutators and we thus give a positive answer to TLCA Problem # 20 in the
coinductive case. This also proves that infinitary type systems may be used to characterize
other sets of Böhm trees.

© Pierre Vial;
licensed under Creative Commons License CC-BY

4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019).
Editor: Herman Geuvers; Article No. 33; pp. 33:1–33:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pierre.vial@inria.fr
https://doi.org/10.4230/LIPIcs.FSCD.2019.33
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

33:2 Typing Hereditary Permutators

Before properly starting the article, a few words should be said on system S and infinitary
typing: intersections are represented by families of types indexed by sets K of integers > 2.
These indexes are called tracks. Thus, system S is close to non-idempotent intersection,
introduced by Gardner [10] and de Carvalho [5], for which A ∧ A 6= A. In the finite case,
non-idempotency gives very simple proofs of normalization (see [4] for a survey). Tracks allow
tracing occurrences of a given type in a derivation (rigidity) while ensuring syntax-direction,
whereas having both is not possible when non-idempotent intersection is represented by lists
or multisets. Rigidity is crucial in the infinitary case, because coinductive type grammars give
birth to unsound derivations, e.g., the unsolvable term Ω := (λx.x x)(λx.x x) becomes typable.
However, rigidity allows defining a validity criterion, called approximability, which brings
back semantic soundness. This is why system S provides a good framework to characterize
hereditary permutators.

Last, Tatsuta defines a type system with a family of type constants ptypd (with d ∈ N)
such that t : ptypd iff t is a hereditary permutator on d levels. Then, a term is a hereditary
permutator iff t : ptypd is derivable for all d ∈ N. However, given a hereditary permutator t,
there is no explicit relation between the different typings t : ptypd when d ranges over N.
We reuse this idea here, but the notion of approximability hinted at above allows formally
expressing the typing derivations concluding with t : ptypd as extensions of those concluding
with t : ptypd0

with d0 < d. Actually, we define a type constant ptyp, which can be assigned
to hereditary permutators and to them only, which is the “supremum” of all ptypd i.e., such
that a typing t : ptyp is an extension of typings t : ptypd for all d ∈ N.

Structure of the paper. We conclude this introduction with some technical background
on hereditary permutators. Section 1 recalls some basic definitions about Böhm trees and
the infinite λ-calculus, but also on system S and infinite types. In Section 2, we give a
type-theoretic characterization of hereditary permutations in system S. In Section 3, we
introduce system Shp, an extension of system S, such that hereditary permutators have a
unique type. The technical contributions of this paper are found mainly in Section 2 and 3.1.

Hereditary Permutators
Let V be a set of term variables. For all n ∈ N, Sn denotes the set of permutations of
{1, . . . , n}, →h denotes head reduction and the reflexive-transitive closure of a reduction
→R is denoted →∗R. To define hereditary permutators, we first consider headed hereditary
permutators, i.e., hereditary permutators whose head variables have not been bound yet.

I Definition 1.
For all x ∈ V, the sets HP(x) of x-headed Hereditary Permutators (x-HP) (x ∈ V)
are defined by mutual coinduction:

h1 ∈ HP(x1) . . . hn ∈ HP(xn) (n > 0, σ ∈ Sn, xi 6= x, xi pairwise distinct)
and h→∗h λx1 . . . xn.x hσ(1) . . . hσ(n)

h ∈ HP(x)

A closed hereditary permutator, or simply, a Hereditary Permutator (HP) is a term
of the form h = λx.h0 with h0 ∈ HP(x) for some x.

A headed hereditary permutator is the head reduct of a hereditary permutator applied to
a variable.

P. Vial 33:3

I Theorem 2 ([3]). A λ-term t is a hereditary permutator iff t is invertible modulo βη-
conversion for the operation · defined by u · v = λx.u (v x), whose neutral element is I = λx.x.

Thus, u is invertible when there exists v such that λx.u(v x) =βη= λx.v(ux) =βη I. An
extensive presentation of hereditary permutators and their properties is given in Chapter 21
of [2].

1 Infinite terms and types

In this section, we present Böhm trees (Chapter 10 of [2]) and the construction of one
of the infinitary calculi introduced in [11]. See also [8, 1] for alternative presentations.
We then present system S, an infinitary intersection type system with a validity criterion
(approximability) discarding unsound coinductive derivations and using sequences to represent
intersection. Some more details can also be found in [17].

General notations. The set of finite words on N is denoted with N∗, ε is the empty word,
a · a′ the concatenation of a and a′. The prefix order � is defined on N∗ by a � a′ if there is
a0 such that a′ = a · a0, e.g., 2·3 � 2·3·0·1.

Intuitively, 0 is dedicated to the constructor λx, 1 is dedicated to the left-hand side
of applications and all the k > 2 to the possibly multiple typings of the arguments of
applications. This also explains why 0 and 1 will have a particular status in the definitions
to come. For instance, the applicative depth ad(a) of a ∈ N∗ is the number of nestings
inside arguments, i.e., ad(a) is defined inductively by ad(ε) = 0, ad(a · k) = ad(a) if k = 0
or k = 1 and ad(a · k) = ad(a) + 1 if k > 2. The collapse is defined on N by k = min(k, 2)
and on N∗ inductively by ε = ε, a · k = a · k, e.g., 7 = 2, 1 = 1 and 2·3·0·1 = 2·2·0·1. These
notions are straightforwardly extended to words of infinite length, e.g., 2ω, which is the
infinite repetition of 2.

1.1 Infinite Lambda Terms
The set Λ∞ of infinitary λ-terms is coinductively defined by:

t, u := x ∈ V ‖ (λx.t) ‖ (t u)

When there is no ambiguity, we usually just write λx.t and t u1 . . . un instead of (λx.t)
and (. . . (t u1) . . . un). If t is an infinitary term, then supp(t), the support of t (the set of
positions in t) is defined in the usual way, i.e., coinductively, supp(x) = {ε}, supp(λx.t) =
{ε} ∪ 0 · supp(t) and supp(t u) = {ε} ∪ 1 · supp(t) ∪ 2 · supp(u). If a ∈ supp(t), the subterm
(resp. the constructor) of t at position a is denoted t|a (resp. t(a)), e.g., if t = λx.(x y)z and
a = 0 · 1 (resp. a = 0 · 4), then t|a = x y and t(a) = @) (resp. t|a = t(a) = z).

I Definition 3 (001-Terms). Let t ∈ Λ∞. Then t is a 001-term, if, for all infinite branches
γ in supp(t), ad(γ) =∞.

Once again, the vocable “001-term” comes from [11]. For instance, the 001-term fω

is formally defined as the tree such that supp(fω) = {2n | n ∈ N} ∪ {2n · 1 |n ∈ N},
fω(2n) = @ and fω(2n · 1) = f for all n ∈ N. Its unique infinite branch is 2ω (since all
the finite prefixes of 2ω are in supp(fω)), which satisfies ad(2ω) = ∞. In contrast, the
infinite term t defined by t = t x, so that t = (((. . .)x)x)x, is not a 001-term: indeed,
supp(t) = {1n |n ∈ N} ∪ {1n · 2 |n ∈ N}, so supp(t) has the infinite branch 1ω (this indicates
a leftward infinite branch), which satisfies ad(1ω) = 0 since 2 does not occur in 1ω.

FSCD 2019

33:4 Typing Hereditary Permutators

1.2 The computation of Böhm trees
The notation t[u/x] denotes the term obtained from t by the capture-free substitution of
the occurrences of x with u ([11] gives a formal definition in the infinitary calculus). The
β-reduction→β is obtained by the contextual closure of (λx.t)u→β t[u/x] and t b→β t′ denotes
the reduction of a redex at position b in t, e.g., λy.((λx.x)u)v 0·1→β λy.u v. A 001-Normal
Form (001-NF) is a 001-term that does not contain a redex. A 001-term is solvable if
t→∗h λx1 . . . xp.x t1 . . . tq, which is a head normal form (HNF) of arity p.

I Definition 4 (Böhm tree of a term). Let t be a 001-term.
The Böhm tree BT(t) of t is coinductively defined by:

BT(t) = λx1 . . . xp.x BT(t1) . . . BT(tq) if t→∗h λx1 . . . xp.x t1 . . . tq.
BT(t) = ⊥ if t is unsolvable.

For instance, BT(Ω) = ⊥ where Ω = (λx.x x)(λx.x x) and BT(t) = t if t a 001-normal
form. Definition 1 can be read as the specification of a set of terms whose Böhm trees have a
particular form. Intuitively, the computation of Böhm trees is done by a possibly infinite
series of head reductions at deeper and deeper levels. This corresponds to an asymptotic
reduction strategy known as hereditary head reduction.

Some reduction paths are of infinite length but asymptotically produce a term.

I Definition 5 (Productive reduction paths). Let t = t0
b0→β t1

b1→β t2 . . . tn
bn→β tn+1 . . . be a

reduction path of length ` 6 ω.
Then, this reduction path is said to be productive if either it is of finite length (` ∈ N), or
` =∞ and ad(bn) tends to infinity (recall that ad(·) is applicative depth).

A productive reduction path is called a strongly converging reduction sequence in [11], in
which numerous examples are found. When BT(t) does not contain ⊥, the hereditary head
reduction strategy on a term t gives a particular case of productive path.

I Lemma 6 (Limits of productive paths). Let t = t0
b0→β t1

b1→β t2 . . . tn
bn→β tn+1 . . . be a

productive reduction path of infinite length.
Then, there is a 001-term t′ such that, for every d > 0, there is N ∈ N such that, for all
n > N , supp(tn) ∩ {b ∈ {0, 1, 2}∗ | ad(b) 6 d} = supp(t′) ∩ {b ∈ {0, 1, 2}∗ | ad(b) 6 d}.

The term t′ in the statement of Lemma 6 is called the limit of the productive path.
Intuitively, when t′ is the limit of (tn)n>0, then t′ induces the same tree as tn at fixed
applicative depth after sufficiently many reduction steps. We then write t→∞β t′ if t→∗β t′
or t is the limit of a productive path starting at t. For instance, if ∆f = λx.f(xx),
Yf = ∆f ∆f (with f ∈ V), then Yf

ε→β f(Yf), which gives the productive path Yf
ε→β

f(Yf) 2→β . . . fn(Yf) 2n

→β fn+1(Yf) . . . since ad(2n) −→ ∞. The limit of this path – which
implements hereditary head reduction on Yf – is fω, i.e., Yf →∞β fω and also BT(Yf) = fω.

A 001-term t is said to be infinitary weakly normalizing (WN∞) if there is a 001-NF
t′ such that t→∞β t′. It turns out that t is WN∞ iff its Böhm tree does not contain ⊥. The
result is proved in [11] in a syntactical way, but we give a semantic proof of this fact in [17].

1.3 System S (sequential intersection)
A sequence of elements of a set X is a family (xk)k∈K with K ⊆ N \ {0, 1}. In this case, if
k0 ∈ K, xk0 is the element of (xk)k∈K on track k. We often write (k·xk)k∈K for (xk)k∈K ,
which, for instance, allows us to denote by (2 · a, 4 · b, 5 · a) or (4 · b, 2 · a, 5 · a) the sequence

P. Vial 33:5

(xk)k∈K with K = {2, 4, 5}, x2 = x5 = a and x4 = b. In this sequence, the element on track
4 is b. Sequences come along with a disjoint union operator, denoted]. Let (xk)k∈K and
(x′k)k∈K′ be two sequences:

If K ∩K ′ = ∅, then (xk)k∈K] (x′k)k∈K′ is (x′′)k∈K′′ with K ′′ = K ∪K ′ and x′′k = xk
when k ∈ K and x′′k = x′k when k ∈ K ′.
If K ∩K ′ 6= ∅, (xk)k∈K] (x′k)k∈K′ is not defined.

The operator] is partial, associative and commutative.
Let O be a set of type atoms o. The set of S-types is coinductively defined by:

T, Sk ::= o ∈ O ‖ (Sk)k∈K → T

A sequence of types (Sk)k∈K is called a sequence type and it represents an intersection of
types. The types of system S collapse on usual non-idempotent intersection types built on
multisets [4], e.g., the S-types (2 · o, 3 · o′, 4 · o) → o and (2 · o′, 8 · o, 9 · o) → o collapse on
[o, o, o′]→ o. The system is strict [12, 15, 16] since intersections occur only on left-hand sides
of arrows. The domain and codomain of an arrow type are defined by dom((Sk)k∈K →
T) = (Sk)k∈K and codom((Sk)k∈K → T) = T . The arity of a type is coinductively
defined by ar(o) = 0 and ar((Sk)k∈K → T) = ar(T) + 1. For instance, if T is defined by
T = (2 · o)→ T = (2 · o)→ (2 · o)→ . . ., then ar(T) =∞.

The support of a type or a sequence type U is coinductively defined by supp(o) = {ε},
supp((Sk)k∈K) = ∪k∈Kk · supp(Sk) and supp((Sk)k∈K → T) = {ε} ∪ supp((Sk)k∈K) ∪ 1 ·
supp(T). Since 1 /∈ K by convention, this definition is correct. If c ∈ supp(U), then U |c
denotes the type or sequence type rooted at position c in U (U |c is a type when U is a type or
c 6= ε). For instance, if U = (2 · o)→ (2 · o, 3 · o′)→ o and c = 1, then U |c = (2 · o, 3 · o′)→ o.
Likewise, U(c) denotes the type constructor (o ∈ O or →) at position c. With the same
example, U(ε) = U(1) =→, U(2) = o and U(1·3) = o′

A 001-type is a S-type T such that, for all c ∈ supp(T), ar(T |c) < ∞, where T |c is
the subtree rooted at c in T (T |c is a type). The target type targ(T) of a 001-type S is
inductively defined by targ(o) = o and targ((Sk)k∈K → T) = targ(T).

An S-context C (or D) is a total function from V to the set of S-types. The operator] is
extended point-wise. An S-judgment is a triple C ` t : T , where C, t and T are respectively
an S-context, a 001-term and an S-type. A sequence judgment is a sequence of judgments
(Ck ` t : Tk)k∈K with K ⊆ N \ {0, 1}. For instance, if 8 ∈ K, the judgment C8 ` t : T8 is
specified on track 8. The set of S-derivations is defined coinductively by:

ax
x : (k · T) ` x : T

C;x : (Sk)k∈K ` t : T
abs

C ` λx.t : (Sk)k∈K → T

C ` t : (Sk)k∈K → T (Dk ` u : Sk)k∈K
app

C] (]k∈KDk) ` t u : T
In app, K may be empty, and then u is untyped. We call S0, the restriction of system S

to finite types and contexts, but allowing infinite terms. The derivation Pex below is in S0.
Let P be a S-derivation typing a term t. The support of P is the set of positions of

judgments inside P defined in the expected way: 0 to visit the premise of an abs-rule, 1 to
visit the left-hand side of an app-rule and k > 2 to visit an argument judgment on track k on
the right-hand side of the app-rule. Thus, if a ∈ supp(P), P (a), which denotes the judgment
at position a in P , types the subterm t|a. We denote the type and the context of P (a) by
TP (a) and CP (a), so that P (a) = CP (a) ` t|a : TP (a). Moreover:

If a ∈ supp(P) and c ∈ supp(TP (a)), then the pair (a, c) is a right biposition of P and
P (a, c) denotes TP (a)(c), which is a type constructor (o ∈ O or →).

FSCD 2019

33:6 Typing Hereditary Permutators

If a ∈ supp(P), x ∈ V and k · c ∈ supp(CP (a)(x)), then the triple (a, x, k · c) is a left
biposition in P and P (a, x, c) denotes CP (a)(x)(c).

The set of bipositions of P is called the bisupport of P and is denoted by bisupp(P). An
S-derivation P is finite, i.e., is a derivation of system S0, iff bisupp(P) is a finite set. If
a ∈ supp(P) and t(a) = x, P (a) is an ax-rule and CP (a) = x : (k · TP (a)).

I Example 7. In the derivation, the notation [7] indicates that the judgment f : 2·()→o `
fω : o is on track 7.

Pex =
ax

x : (2·(7 · o)→ o′) ` x : (7 · o)→ o′

ax
f : (2·()→ o) ` f : ()→ o

app
f : (2 · ()→ o) ` fω : o [7]

app
x : (2 · (7 · o)→ o′), f : (2 · ()→ o) ` x fω : o′

abs
x : (2 · (7 · o)→ o′) ` λf.x fω : (2 · ()→ o)→ o′

We have supp(Pex) = {ε, 0, 0·1, 0·7, 0·7·1}. Remark how fω is typed in the derivation
using the type () → o. We have Pex(0·7·1) = f : (2·()→o) ` f : ()→o and TPex(0·1) =
(7·o)→o. Since supp(TPex) = {ε, 7, 1} and TPex(ε) =→, TPex(7) = o and TPex(1) = o′, we
have (0·1, ε), (0·1, 7), (0·1, 1) ∈ bisupp(Pex) and Pex(0·1, ε) =→, Pex(0·1, 7) = o, Pex(0·1, 1) =
o′. Likewise, TPex(0·7) = o and CPex(0) = x : (2·(7·o)→o), f : (2·()→o), so that, e.g.,
(0, x, 2·7), (0, f, 2) ∈ bisupp(Pex), Pex(0, x, 2·7) = o, Pex(0, f, 2) =→.

A derivation P is quantitative when the context is computable from the axiom rules:

I Definition 8 (Quantitative derivation). Let P be a S-derivation. Then P is quantitative
if, for all a ∈ supp(P), x ∈ V, k ∈ N \ {0, 1} such that (a, x, k) ∈ bisupp(P), there is a0 � a
such that P (a0) = x : (k · S) ` x : S.

Observe that, in a quantitative derivation P B C ` t : T , if C(x) = (k · S) i.e., x is
assigned a singleton sequence type, then there is exactly one ax-rule typing x (we use this in
the proof of Claim 21).

An example of non-quantitative derivations is given by the family (Pk)k>2 defined by:

Pk =
ax

f : (k·(2·o)→o) ` f : (2·o)→o Pk+1Bf : (`·(2·o)→o)`>k+1, x:(2·o) ` fω : o [2]
app

f : (`·(2·o)→o)`>k, x : (2·o) ` fω : o

The Pk type fω with o but they assign a non-empty sequence type to x /∈ fv(fω): this is
why there are not quantitative. Indeed, (ε, x, 2) ∈ bisupp(Pk), but there is no a0 ∈ supp(Pk)
such that Pk(a0) = x : (2·o) ` x : o. Remark how the infinite branch of fω is used to assign
a type to x whereas it does not occur in the subject. In contrast, if t is a finite λ-term, every
derivation typing t is quantitative. However, Lemma 16 below states that quantitativity is a
sufficient condition for soundness for normal forms.

1.4 Approximability

I Definition 9 (Approximation). Let P0 and P be two S-derivations typing the same term t.
Then P0 is an approximation of P if bisupp(P0) ⊆ bisupp(P) and, for all p ∈ bisupp(P0),
P0(p) = P (p). When this holds, we write P0 6 P .

P. Vial 33:7

Intuitively, P0 6 P if the derivation P0 can be obtained from the derivation P by erasing
some symbols inside P . For instance, let:

P 0
ex =

ax
x : (2·()→ o′) ` x : ()→ o′

app
x : (2 · ()→ o′) ` x fω : o

abs
x : (2 · ()→ o′) ` λf.x fω : ()→ o′

Then P 0
ex 6 Pex, since P 0

ex has been obtained from Pex by erasing all typing information
on fω. Indeed, we check that supp(P 0

ex) ⊆ supp(Pex), bisupp(P 0
ex) ⊆ bisupp(Pex) and

P 0
ex(p) = Pex(p) for all p ∈ bisupp(P 0

ex).
The relation 6 is an order. There are S-derivations P that do not have finite approx-

imations, e.g., any derivation typing Ω (see [17] for an example), but these derivation are
unsound: they do not ensure any form of finitary or infinitary normalization. In contrast, a
finite derivation is sound.

To retrieve validity, we must specify that infinitary derivations should be obtained as
asymptotic extensions of finite derivations:

I Definition 10 (Approximability). Let P be a S-derivation. Then P is approximable if P
is the supremum of its finite approximations i.e., if, for all finite sets B ⊆ bisupp(P), there
is a finite derivation P0 such that P0 6 P and B ⊆ bisupp(P0).

A term that is in the conclusion of an approximable derivation is said to be approximably
typable. Quantitativity is of course a necessary condition for approximability, and types of
infinite arity are unsound:

I Lemma 11. If P is approximable, then P is quantitative and contains only 001-types.

1.5 Soundness and completeness for system S

The main characterization theorem of system S states the equivalence between infinitary
weak normalization and typability: more precisely, t is WN∞ iff there is an unforgetful and
approximable S-derivation typing P . This characterization is proved by the propositions
below, that we will also use in this article. One recognizes usual properties that are expected
from an intersection type system (subject reduction, expansion, typing of the normal forms),
except that they pertain to infinitary objects and computations.

I Proposition 12 (Infinitary subject reduction). If P BC ` t : T is approximable and t→∞β t′,
then there is an approximable derivation P ′ B C ` t′ : T .

If a term is approximably typable, then, in particular, it is finitely typable, so that it is
HN, as for usual, inductive intersection type systems:

I Lemma 13 (Approximability and Head Normalization). If P B C ` t : T is approximable,
then t is head normalizing.

Approximable S-derivations ensure only head normalization because of the empty sequence
(), which allows us to leave an argument untyped. For instance, if x is assigned ()→ o, then
x t is typed with o for any term t. To ensure WN∞, one needs to control the occurrences
of (): by definition, the empty sequence type () occur negatively in ()→ T (base case), ()
occurs negatively (resp. positively) in (Sk)k∈K → T if it occurs negatively (resp. positively)
in T or positively (resp. negatively) in one of the Sk (inductive case).

FSCD 2019

33:8 Typing Hereditary Permutators

I Definition 14 (Unforgetfulness). Let P B C ` t : T be a derivation. Then P is unforgetful
when () does not occur negatively in C and does not occur positively in T .

In particular, when () does not occur in C nor in T , then P is unforgetful.

I Proposition 15 (Correctness for system S). If P BC ` t : T is approximable and unforgetful,
then t is infinitary weakly normalizing.

Completeness for infinitary normal forms – i.e., the fact that they are approximably and
unforgetfully typable – is proved in two steps: one shows that every quantitative derivation
typing a normal form is approximable (this is not true for non-normal forms). Since one
finds quantitative unforgetful derivations for each normal form, one concludes:

I Lemma 16 (Completeness for Normal Forms). Let t be a NF∞.
If P B C ` t : T and P is quantitative, then P is approximable.
t is approximably typable by derivation P such that supp(P) = supp(t).

Subject expansion holds for productive reduction paths:

I Proposition 17 (Infinitary subject expansion). If t→∞β t′ and P ′BC ` t′ : T is approximable,
then there is an approximable derivation concluding with C ` t : T .

From Lemma 16 and Proposition 17, one concludes that every infinitary weakly normaliz-
ing term is approximably and unforgetfully typable.

Last, Propositions 12 and 17 entail:

I Lemma 18. If t is WN∞, then t and BT(t) have the same approximable typings.

2 Characterizing hereditary permutators

We now want to define the permutator pairs (S, T) (with S, T types of system S) so that the
judgments of the form x : (2 · S) ` t : T characterize the x-HP (i.e., there is an approximable
P B x : (2 · S) ` t : T iff t is an x-HP). Informally, if h = λx1 . . . xn.x hσ(1) . . . hσ(n) and h is
typed with a type of arity n and x1, . . . , xn are the respective head variables of h1, . . . , hn,
then we have:

Type of h = (type of x1) → . . .→ (type of xn) → o (eq1)
Type of x = (type of hσ(1)) → . . .→ (type of hσ(n)) → o (eq2)

Since x1, . . . , xn are the respective head variables of the headed hereditary permutators
h1, . . . , hn, the equations (eq1) and (eq2), which are the golden thread of the proofs to come
in the remainder of the paper, suggest the following coinductive definition:

I Definition 19 (Permutators pairs).
When o ranges over O (the set of type atoms), the set PP(o) of o-permutator pairs
(S, T), where S and T are S-types, is defined by mutual coinduction:

(S1, T1) ∈ PP(o1), . . . , (Sn, Tn) ∈ PP(on) o1, . . . , on, o pairwise distinct σ ∈ Sn

((2 · Tσ(1))→ . . .→ (2 · Tσ(n))→ o, (2 · S1)→ . . . (2 · Sn)→ o) ∈ PP(o)

A pair (S, T) ∈ PP(o) is said to be proper, if, for all o′ ∈ O, o′ occurs at most once in S
and in T . The set of proper o-permutator pairs is denoted PPP(o).

P. Vial 33:9

x〈b0 · 0p · 1p〉

S = Tσ(1)→ . . .→Tσ(n)→ob0

C1 ` t1 : Tσ(1)

@
Cp−1 ` tp−1:Tσ(p−1)

@

Cp ` tp : Tσ(p)

@〈b0 · 0p〉 : Tσ(p+1)→ . . .→ Tσ(p) → o

= Sp+1→ . . .→ Sp → o

λxp Sp→ . . .→Sn→o

λx1〈b0〉

t : T = S1→ . . .→Sn→o

Arguments (part 1):
ti has type Tσ(i) (proper)
so ti is free-headed
so the head var. of ti is one of the xj
so the head var. of ti is xσ(i) : Sσ(i)

Arguments (part 2):
C1] . . .] Cp = x1 : (2·S1), . . . , xp : (2·Sp)
the head var. of ti is x : Sσ(i)

so Ci = x : (2·Sσ(i)).

Figure 1 Hereditary permutators and permutator pairs.

Actually, we could allow other tracks than 2 in the definition (e.g., T = (`1 · S1)→ . . .→
(`n · Sn)→ o would be fine), but it is more convenient to consider this restriction, so that we
are relieved of the care of specifying the values of `1, . . . , `n.

The condition of properness is here to ensure that every term variable occurs at exactly
one level deeper than its binder and to distinguish them from one another: it is a key point
of the proof of Claim 21, because two distinct variables will have types with distinct targets.

The first implication of the characterization is quite natural to prove:

B Claim 20 (From hereditary permutators to permutator pairs). Let y ∈ V and t be a y-head
hereditary permutator. Then there is an approximable S-derivation P and a permutator pair
(S, T) such that P B y : (2 · S) ` h : T .

Proof. We skip the proof of this property. Observe that Definition 19 is designed so that it
holds. The converse claim (Claim 21) is more difficult to prove and requires to be carefully
verified. C

B Claim 21 (From permutator pairs to hereditary permutators). Let t ∈ Λ001 be a 001-normal
form and (S, T) a permutator pair and P a quantitative S-derivation typing t.

If PB ` t : (2 · S)→ T , then t is a hereditary permutator.
If P B x : (2 · S) ` T , then t is a x-headed hereditary permutator.

In both cases, supp(P) = supp(t).

Proof. The proof uses the following observation: let us say that a HNF is free-headed when
its head variable is free. If (S, T) is a proper permutator pair and t = λx1 . . . xp.xi t1 . . . tq
(with 1 6 i 6 p) is a HNF which is not free headed, then t cannot have the types S and T ,
since the target of the type of xi appears twice in the type of t.

We now start the proof, whose main stages are summarized in Fig. 1, in which we
abusively write S instead of (2·S). Assume S = (2 · Tσ(1)) → . . . → (2 · Tσ(n)) → o and
T = (2 · S1)→ . . .→ (2 · Sn)→ o. We first prove that the first point of the claim reduces to
the second one.

Since the context in ` t : (2 · S) → T is empty, the head variable of t is bound and
the arity of t is > 1. Thus, t = λx0.λx1 . . . xp.x t1 . . . tq with t1, . . . , tq normal forms whose
respective head variables are denoted y1, . . . , yq. Note that:

FSCD 2019

33:10 Typing Hereditary Permutators

x is x1, . . . , xp or x0 since x is bound.
The type assigned to x0 is S. The respective types assigned to x1, . . . xp are S1, . . . , Sp.
The common target type of T and the type of x0 is o.

Since (S, T) is proper, o does not occur in S1, . . . , Sn, so necessarily, x = x0 and x :
(2 · S) ` λx1 . . . xp.x t1 . . . tq : T is derivable by means of a quantitative derivation P∗. Thus,
we are now in the second case. The type of x t1 . . . tq is both Tσ(q+1) → . . . → Tσ(n) → o

since x : S and Sp+1 → . . . → Sn → o since t : T , so p = q and for p+ 1 6 i 6 n, σ(i) = i

and Si = Ti. Let us denote o1, . . . , on the respective target types of S1, . . . , Sn. Since the
type of x is S, the respective types of t1, . . . , tp must be Tσ(1), . . . , Tσ(p). Moreover, since
the “tail” of T is made of singleton sequence types (2·Si), t1, . . . , tp are typed once in P and
the head variables y1, . . . , yp of t1, . . . tp are also typed exactly once. In particular, P∗ has a
subderivation at depth n of the form:

ax
x : (2·S) ` x : S P1 B C1 ` t1 : Tσ(1) [2]

app
x : (2·S), C1 ` x t1 : (2·Sσ(2))→ . . .→ o . . .

app
. . . Pp B Cp ` tp : Tσ(p) [2]

app
x : (2·S), C1] . . .] Cp ` x t1 . . . tp : T ′

where T ′ = Tσ(p+1) → . . .→ Tσ(n) → o = Sp+1 → . . .→ Sn → o.
Let us prove now that, for all 1 6 i 6 p, the unique argument derivation of x in P typing

ti, that we denote Pi, concludes with xσ(i) : (2 · Sσ(i)) ` ti : Tσ(i).
First, since ti is normal, ti = λz1 . . . zp′ .yi u1 . . . u

′
q. Since ti : Tσ(i), ti is free-headed by

the observation above. Moreover, the head variable of ti is typed once in P∗ since ti is typed
once. Thus, yi is one of the x1, . . . , xp. The only possibility is yi = xσ(i) since the types of
x1, . . . , xp have pairwise distinct targets.

Since P is quantitative and (2 ·Si) is a singleton sequence type, x1, . . . , xp must be exactly
typed once in P∗, the subderivation of P typing x t1 . . . tp. This entails that the ax-rule
typing xσ(i) as the head variable of ti concludes with xσ(i) : (2 · Sσ(i)) ` xσ(i) : Sσ(i). Thus,
Pi concludes with a judgment of the form xσ(i) : (2 · Sσ(i))] C ′i ` ti : Tσ(i) (2nd argument).

Since]16i6p(xσ(i) : (2 · Sσ(i))] C ′i) = x1 : (2 · S1), . . . , xp : (2 · Sp), we deduce that C ′i is
empty for all 1 6 i 6 p (3rd argument). Thus, Pi concludes with xσ(i) : (2 · Sσ(i)) ` ti : Tσ(i).

This easily implies that x1 : (2·S1) ` tσ−1(1) : T1, . . . xp : (2·Sp) ` tσ−1(p) : Tp are
judgments of P∗. In particular, they are approximably derivable. Thus, t1, . . . , tp also satisfy
the hypothesis of point 2 of the claim. Since t = λx1 . . . xp.x t1 . . . tp, we conclude using
Definition 1. C

The two claims, which are valid for 001-normal forms, along with infinitary subject
reduction and expansion, give a type-theoretical characterization of hereditary permutators
in system S:

I Theorem 22. Let t ∈ Λ001. Then t is a hereditary permutator iff ` t : (2 · S) → T is
approximably derivable for some proper permutator pair (S, T).

Proof.
The implication ⇐ is given by Claim 21 and Proposition 17.
Implication ⇒: let t be a hereditary permutator. By Definition 1, its Böhm tree is
of the form λx.h where h is a normal x-headed hereditary permutator. By Claim 20,
there is a proper permutator pair (S, T) and an approximable derivation P such that
P B x : (2 · S) ` h : T . By Proposition 17, ` t : (2 · S) → T is also approximably
derivable. J

P. Vial 33:11

3 A unique type to rule them all

In this section, we explain how to enrich system S with type constants and typing rules so
that there is one type characterizing the set of hereditary permutators, as expected.

In Section 2, we proved that a term t is a hereditary permutator iff it can be assigned a
type of the form (2·S)→ T where (S, T) is a proper permutator pair. To obtain a unique type
for all the hereditary permutators, one idea is to identify all the types of the form (2·S)→ T ,
where (S, T) ranges over PPP with a type constant ptyp. However, since quotienting types
may bring unsoundness (e.g., if o and o→ o are identified), one must then verify that the
correctness and the completeness of system S is preserved, and that the approximability
criterion can be suitably extended. The main argument, given by Lemma 26, is that the
notions of hereditary permutators and permutators pairs, which are infinitary, have arbitrarily
big finite approximations, which are defined as trucations at some applicative depth d. Thus,
we may express hereditary permutators and permutator pairs as asymptotic limits and adapt
the general methods of system S.

Our approach parallels that of Tatsuta [14], which uses a family of constants ptypd, with
a few differences: in the finite restriction of our system, it is easier to deal with hereditary
permutators (normalization is simple to prove in finite non-idempotent type systems), but of
course we have to treat the infinitary typings and we consider the constant ptyp, which is
subsumed under all the ptypd, which represent hereditary permutators under level d.

3.1 Permutator schemes
Before presenting the system giving a unique type to all hereditary permutators, we must
first explain how the typings of hereditary permutators are approximated in system S.

I Definition 23 (Permutator schemes). Let d > 0. A term t is a x-headed (resp. closed)
permutator scheme of degree d if its Böhm tree is equal to that of a hereditary permutator
on {b ∈ {0, 1, 2}∗ | ad(b) 6 d}. The set of x-headed (resp. closed) permutators schemes of
degree d is denoted PSd(x) (resp. PSd).

The sequence (PSd) is decreasing, i.e., PSd ⊇ PSd+1, and HP = ∩d>0PSd.

I Definition 24 (Permutator pairs of degree d). Let d ∈ N.
When o ranges over O, the set PPd(o) of o-permutator pairs of degree d (S, T), where
S and T are S-types, is defined by induction on d:

(()→ . . . ()︸ ︷︷ ︸
n

→ o, ()→ . . .→ ()︸ ︷︷ ︸
n

→ o) ∈ PP0(o)

(S1, T1) ∈ PPd−1(o1), . . . , (Sn, Tn) ∈ PPd−1(on) o1, . . . , on, o pairwise distinct σ ∈ Sn

((2 · Tσ(1))→ . . .→ (2 · Tσ(n))→ o, (2 · S1)→ . . . (2 · Sn)→ o) ∈ PPd(o)

A pair (S, T) ∈ PPd(o) is said to be proper if every type variable occurs at most once in
S and T . The set of proper permutator pairs of degree d is denoted PPPd.

We can also see permutator pairs of degree d as truncation of permutator pairs: let U
be a S-type or a sequence type and d ∈ N. We denote by (U)6d the truncation of T at
depth d i.e., supp((U)6d) = supp(U) ∩ {c ∈ N∗ | ad(c) 6 d} and (U)6d(c) = U(c) for all
c ∈ supp((U)6d). It is easy to check that (U)6d is a correct type or sequence type. We extend
the notation to S-contexts. Note that, if d > 1, ((Sk)k∈K → T)6d = ((Sk)6d−1)k∈K → (T)6d

FSCD 2019

33:12 Typing Hereditary Permutators

and d = 1, then ((Sk)k∈K → T)6d = () → (T)61. By induction on d, this entails that, if
(S, T) ∈ PPP, then ((S)6d, (T)6d) ∈ PPPd. Indeed, the base case (d = 0) is obvious and if
d > 1, T = (2 · S1) → . . . → (2 · Sn) → o and S = (2 · Tσ(1)) → . . . → (2 · Tσ(n)) → o with
σ ∈ Sn, (Si, Ti) ∈ PPP for 1 6 i 6 n, then:

(T)6d = (2 · (S1)6d−1)→ . . .→ (2 · (S1)6d−1)→ o (eq3)
(S)6d = (2 · (Tσ(1))6d−1)→ . . .→ (2 · (Tσ(n))6d−1)→ o (eq4)

so that, by Definition 24, ((S)6d, (T)6d) ∈ PPPd(o).

I Proposition 25 (Characterizing permutation schemes). Let d > 1 and t be a 001-term. Then
t ∈ PSd iff ` t : (2 · S)→ T is approximably derivable for some (S, T) ∈ PPPd.

Proof.
⇒ Straightforward induction on the structure of t.
⇐ The proof is the same as Claim 21, we also obtain that xi : (2 · Si) ` tσ−1(i) : Ti are

judgments of P , except that (Si, Ti) ∈ PPPd−1 instead of (Si, Ti) ∈ PPP. J

It is not enough to know that a x-headed hereditary permutator t is approximably typable
in a judgment x : (2 · S) ` t : T with (S, T) ∈ PPP, which implies that T is the supremum of
a direct family of finite types which be assigned to t: in order to prove soundness regarding
quotienting, we must prove that this typing is the supremum of typings ensuring that t is a
permutator scheme of degree d, i.e., by Proposition 25, one must type t with (Sd, Td) ∈ PPPd
for all d. The lemma below is the missing third ingredient (along with Claims 20 and 21)
of this article and will allow us to define in Section 3.2 an extension of system S giving a
unique type to hereditary permutators:

I Lemma 26 (Approximations and permutator pairs). If P B x : (2·S) ` t : P is approximable,
where (S, T) ∈ PPP, then, for all d ∈ N, there is a finite Pd 6 P such that Pd B x : (2 · Sd) `
t : Td with (Sd, Td) ∈ PPPd.

Proof. Since () does not occur in S and T , by Lemma 18, we can assume that t is a
001-normal form without loss of generality. We then reason by induction on d.

Let us present the argument informally. Say that t = λx1 . . . xp.x t1 . . . tp, S = Tσ(1)→ . . .

→Tσ(n)→o and T = S1→ . . .→Sn→o. Intuitively, t : T with x : S and for 1 6 i 6 p,
ti : Tσ(i) is a hereditary permutator headed by xσ(i) : Sσ(i), as specified by Fig. 1. When we
truncate the type of t at applicative depth d, we have now t : (T)6d with x : (S)6d. But, by
(eq3) and (eq4), we must truncate the types of t1, . . . , tp and x1, . . . , xp at applicative depth
d− 1. Inductively, this demands that we truncate the types of the arguments of t1, . . . , tp at
applicative depth d− 2. By proceeding so, we obtain a finite derivation Pd 6 P concluding
with x : (2 · (S)6d) ` t : (T)6d. J

3.2 System Shp

Let ptyp and ptypd (d ∈ N) be a family of type constants. The set of Shp-types is defined by:

T, Sk ::= o ‖ ptypd ‖ ptyp ‖ (Sk)k∈K → T

System Shp has the same typing rules as system S with the addition of:

x : (2 · S) ` t : T (S, T) ∈ PPPd
hpd` λx.t : ptypd

x : (2 · S) ` t : T (S, T) ∈ PPP
hp

` λx.t : ptyp

P. Vial 33:13

Thus, rule hpd allows assigning the constant ptypd to any normal permutator scheme of
degree d and rule hp assign the constant ptyp to any normal hereditary permutator by
Claims 20 and 21. Intuitively, ptyp = ptyp∞ and we will make this idea more precise with
Definition 27. Note also that if t : ptypd or t : ptyp, t cannot be applied to an argument u,
even if t is an abstraction: the rules hpd/hp freeze the terms.

The notions of support, bisupport, permutator pairs etc naturally extend to Shp. We
define an order 6 on O ∪ {→, ptyp} ∪ {ptypd | d ∈ N} by o 6 o, →6→, ptypd 6 ptyp and
ptypd 6 ptypd′ for d 6 d′.

I Definition 27 (Approximation and Approximability in system Sh).
Let P0 and P be two Shp-derivations. We write P0 6 P (P0 is an approximation of P) if
bisupp(P0) ⊆ bisupp(P) and, for all p ∈ bisupp(P0), P0(p) 6 P (p).
Let P be a Shp-derivation. Then P is approximable if P is the supremum of its finite
approximations.

This extends Definition 10: for all S-derivations P , P is approximable for system S iff it
is approximable for system Shp. We first notice that rules hp(d) are invertible for HNF:

I Lemma 28 (Inverting rules (hpd) for head normal forms). Let t be a HNF. If ` t : ptypd
(resp. PB ` t : ptyp) is approximably derivable, then t = λx.t0 with x : (2 · S) ` t0 : T
approximably derivable, for some (S, T) ∈ PPPd (resp. (S, T) ∈ PPP).

Proof. We consider the case ptyp (the case ptypd is similar), i.e., we assume that P ′B ` t :
ptyp is approximable. For one, t = x t1 . . . xn is impossible, because we would have C(x) 6= ()
since the head variable x is free in x t1 . . . tn. So, t is an abstraction, i.e., t = λx.t0 and thus,
the last rule of P is either abs, hpd, hp. But it is neither abs (we would have an arrow type)
nor hpd, so it is hp and thus, P ′ is of the form:

P ′ =
P B x : (2 · S) ` t0 : T (S, T) ∈ PPP

hp
` t : ptyp

Since P ′ is approximable, P also is. J

All is now in place to obtain the expected properties of system Shp:

I Lemma 29 (Characterizing normal hereditary permutators). Let t be a 001-normal form.
t ∈ PSd iff ` t : ptypd is approximably derivable.
t ∈ HP iff ` t : ptyp is approximably derivable.

Proof. The two points are handled similarly. We do not prove the first one, which uses
Proposition 25:

If t = λx.h is a HP, then, by Claim 20, there is (S, T) ∈ PPP and P a S-derivation such
that P B x : (2 · S) ` h : T . We then set:

P ′ =
P B h : (2 · S) ` p : T

hp
` t : ptyp

By Lemma 26, for all d ∈ N, there is a finite S-derivation Pd 6 P such that Pd B x :
(2 · Sd) ` h : Td with (Sd, Td) ∈ PPPd and P = supd Pd. We then set:

P ′d =
Pd B x : (2 · Sd) ` h : Td

hpd` t : ptypd

By construction, supd P ′d = P ′.

FSCD 2019

33:14 Typing Hereditary Permutators

Conversely, assume that P ′B ` t : ptyp is approximable. By Lemma 28, P ′ concludes
with the hp-rule, so P ′ is of the form:

P ′ =
P B x : (2 · S) ` t0 : T (S, T) ∈ PPP

hp
` t : ptyp

Let d ∈ N. Since P ′ is the supremum of its finite approximations, there is a finite
approximation P ′0 6 P ′ concluding with1 ` t : ptyp or ` t : ptypd′ with d′ > d. Thus,
t ∈ PSd′ ⊆ PSd or t ∈ HP. This proves that t ∈ ∩d>0PSd = HP. J

I Lemma 30 (Soundness of system Shp). If t is approximably typable in system Shp, then t is
head normalizing.

Proof. If t is approximably typable, there is a finite Shp-derivation P B C ` t : T . If t is a
HNF, we are done. In the other case, t→h t

′ for some t′. It is routine work in non-idempotent
intersection type theory (see [4]) to prove a weighted subject reduction property, i.e., that
there is P ′ B C ` t′ : T such that |supp(P ′)| < |supp(P)|, i.e., P ′ contains strictly less
judgments than P does. The only unusual rules are hpd and hp, which are easily handled.

Since |supp(P)| ∈ N and N is well-founded, weighted subject reduction entails that head
reduction terminates on t. J

I Corollary 31. If ` t : ptyp is approximably derivable, then t is WN∞.

Proof. By Lemma 30, t reduces to a HNF t′. By subject reduction, ` t′ : ptyp is also
approximably derivable. Then, Lemma 28 entails that t = λx.t0 and x : (2 · S) ` t0 : T is
approximably derivable in system S for some t0 and permutation pair (S, T). Since this latter
judgment is ()-free, Proposition 15 entails that t0 is WN∞. Thus, t also is WN∞. J

More generally, the dynamic properties of system S are preserved in system Shp.

I Proposition 32 (Infinitary subject reduction). If t →∞β t′ and P B C ` t : T is an
approximable Shp-derivation, then there exists an approximable derivation P ′ B C ` t′ : T .

I Proposition 33 (Infinitary subject expansion). If t →∞β t′ and P ′ B C ` t′ : T is an
approximable Shp-derivation, then there exists an approximable derivation P B C ` t : T .

Proof. The proofs of infinitary subject reduction and expansion in system Shp do not differ
of those for system S, which can be found in [17] (in particular, Section II.D. and VI.D.) or
in Chapter 10 of [18], so we do not give the details. Once again, the only new rules are hp
and hpd, which are easily handled in the one step case, then in the asymptotic case.

Infinitary subject reduction is easy to prove, but infinitary subject expansion holds
because we can expand finite approximations of a derivation P ′ concluding a productive
reduction path. Why? Because, if t→∞β t′ and P ′f is finite and types t′, then there is a term
t→k

β tk obtained from t after a finite number k of β-reduction steps such that, on supp(P ′),
tk and t′ induce the same subtree (this is a consequence of Definition 5). Thus, we can
substitute t′ with tk in P ′f : we then obtain P kf typing tk. After k expansion steps, we obtain
from P kf a derivation Pf typing t. To conclude this dense summary, let us just say that the
infinitary subject expansion is not so about the rules than about the possibility to replace a
derivation by its finite approximations, which is precisely what Definition 27 captures for
system Shp. J

1 The case P ′0B ` t : ptyp is possible: there are finite HP and PPP, e.g., λx.x and (o, o).

P. Vial 33:15

We now give a positive answer to TLCA Problem # 20:

I Theorem 34 (Characterizing hereditary permutators with a unique type). Let t ∈ Λ001. Then
t is a hereditary permutator iff ` t : ptyp is approximably derivable in system Shp.

Proof.
⇒ If t is a HP, let t′ be its 001-NF. By Lemma 29, there is an approximable derivation

P ′B ` t′ : ptyp. By Proposition 33, there is PB ` t′ : ptyp approximable.
⇐ Given by Corollary 31. J

Future work
We plan to adapt system S to characterize other sets of Böhm trees and other notions of
infinitary normalization, including weak normalization in the calculi Λ101 and Λ111 of [11].

References
1 Patrick Bahr. Strict Ideal Completions of the Lambda Calculus. In FSCD 2018, July 9-12,

Oxford, pages 8:1–8:16, 2018.
2 Henk Barendregt. The Lambda-Calculus: Its Syntax and Sematics. Ellis Horwood series in

computers and their applications. Elsevier, 1985.
3 Jan A. Bergstra and Jan Willem Klop. Invertible Terms in the Lambda Calculus. Theor.

Comput. Sci., 11:19–37, 1980.
4 Antonio Bucciarelli, Delia Kesner, and Daniel Ventura. Non-Idempotent Intersection Types

for the Lambda-Calculus. Mathematical Structures in Computer Science., 2017.
5 Daniel De Carvalho. Sémantique de la logique linéaire et temps de calcul. PhD thesis, Université

Aix-Marseille, November 2007.
6 Mario Coppo and Mariangiola Dezani-Ciancaglini. An extension of the basic functionality

theory for the λ-calculus. Notre Dame Journal of Formal Logic, 4:685–693, 1980.
7 Haskell B. Curry and Robert Feys. Combinatory Logic, volume I. North-Holland Co.,

Amsterdam, 1958. (3rd edn. 1974).
8 Lukasz Czajka. A Coinductive Confluence Proof for Infinitary Lambda-Calculus. In Rewriting

and Typed Lambda Calculi - Joint International Conference, RTA-TLCA, Vienna, Austria,
July 14-17, pages 164–178, 2014.

9 Mariangiola Dezani-Ciancaglini. Characterization of Normal Forms Possessing Inverse in the
lambda-beta-eta-Calculus. Theor. Comput. Sci., 2(3):323–337, 1976.

10 Philippa Gardner. Discovering Needed Reductions Using Type Theory. In TACS, Sendai,
1994.

11 Richard Kennaway, Jan Willem Klop, M. Ronan Sleep, and Fer-Jan de Vries. Infinitary
Lambda Calculus. Theor. Comput. Sci., 175(1):93–125, 1997.

12 Betti Venneri Mario Coppo, Mariangiola Dezani-Ciancaglini. Functional Characters of Solvable
Terms. Mathematical Logic Quarterly, 27:45–58, 1981.

13 Makoto Tatsuta. Types for Hereditary Head Normalizing Terms. In FLOPS, Ise, Japan, April
14-16, pages 195–209, 2008.

14 Makoto Tatsuta. Types for Hereditary Permutators. In LICS, 24-27 June, Pittsburgh, pages
83–92, 2008.

15 Steffen van Bakel. Complete Restrictions of the Intersection Type Discipline. Theor. Comput.
Sci., 102(1):135–163, 1992.

16 Steffen van Bakel. Intersection Type Assignment Systems. Theor. Comput. Sci., 151(2):385–435,
1995.

17 Pierre Vial. Infinitary intersection types as sequences: a new answer to Klop’s problem. In
LICS, Reykjavik, 2017.

18 Pierre Vial. Non-Idempotent Typing Operator, beyond the Lambda-Calculus. Phd thesis,
Université Sorbonne Paris-Cité, 2017, available on http://www.irif.fr/~pvial.

FSCD 2019

http://www.irif.fr/~pvial

	Introduction
	Infinite terms and types
	Infinite Lambda Terms
	The computation of Böhm trees
	System {S} (sequential intersection)
	Approximability
	Soundness and completeness for system {S}

	Characterizing hereditary permutators
	A unique type to rule them all
	Permutator schemes
	System {S}_{{hp}}

