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Abstract
Consider the following simple coloring algorithm for a graph on n vertices. Each vertex chooses a
color from t1, . . . , ∆pGq ` 1u uniformly at random. While there exists a conflicted vertex choose one
such vertex uniformly at random and recolor it with a randomly chosen color. This algorithm was
introduced by Bhartia et al. [MOBIHOC’16] for channel selection in WIFI-networks. We show that
this algorithm always converges to a proper coloring in expected Opn log ∆q steps, which is optimal
and proves a conjecture of Chakrabarty and de Supinski [SOSA’20].
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1 Introduction

It is well known that an undirected graph G “ pV,Eq with maximum degree ∆ “ ∆pGq can
be properly colored by using ∆` 1 colors. In fact, a simple greedy algorithm which assigns
the colors successively achieves this bound by just touching each vertex once. Note that the
bound ∆` 1 is tight, as cliques and odd cycles require this number of colors.

In [1] Bhartia et al. introduced the use of a simple decentralized coloring algorithm as an
efficient solution to the channel selection problem in wireless networks. Their algorithm can
be formulated as follows.
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17:2 An Optimal Decentralized p∆ ` 1q-Coloring Algorithm

Decentralized Graph Coloring

For a graph G “ pV,Eq
1. choose for each vertex v P V a color from t1, . . . ,∆ ` 1u independently and

uniformly at random;
2. choose a vertex v P V uniformly at random among all vertices which have a

neighbor in the same color;
3. recolor v into a color chosen from t1, . . . ,∆` 1u uniformly at random;
4. repeat steps 2 and 3 until a proper coloring of G is found.

They showed that this algorithm finds a proper coloring in Opn∆q rounds in expectation.
Chakrabarty and de Supinski [2] introduced a variant of the coloring algorithm: instead of
recoloring a vertex v once as above, in their “Persistent Decentralized Coloring Algorithm”
such a vertex v persistently (hence the name) gets recolored until it has no neighbor in the
same color. They showed that this modified algorithm only requires Opn log ∆q recolorings
and conjectured that the same bound also holds for the original algorithm. In this paper we
prove their conjecture.

I Theorem 1.1. The decentralized coloring algorithm converges in expectation to a proper
p∆` 1q-coloring in Opn log ∆q recoloring steps.

In fact, our argument shows that the same runtime bound holds true if the initial coloring
is chosen adversarially. This is in contrast with the persistent version of the algorithm
mentioned above, as that one takes Θpn∆q recolorings in expectation when starting with
an adversarial coloring (see [1, Theorem 3]). However, the question raised in [2] of ‘which
algorithm is faster in the random setting’ remains open.

We note that the bound in Theorem 1.1 is best possible, as for the complete graph Kn

the decentralized coloring algorithm essentially performs a Coupon Collector process. Indeed,
once a color (coupon) has been acquired it remains in the graph until the end of the process
and we need to see all colors. The claim thus follows from the well known fact that in
expectation the coupon collector process with n coupons requires nHn “ Θpn lognq rounds,
where Hk “

řk
i“1

1
i is the k-th Harmonic number. Moreover, the result is tight for every

combination of n and ∆. Namely, consider a vertex-disjoint union of n{∆ complete graphs
K∆ and by the same argument the process requires Θpn{∆ ¨∆ log ∆q “ Θpn log ∆q rounds.

Our proof of Theorem 1.1 is short and elegant, and is based on drift analysis [8]. It
is presented in an expository way and provides insight in why our potential function is
appropriate for the analysis. We complement the analyis by tail bounds in Section 3.

Finally, we conclude the paper by a brief discussion of the parallelized version of this
algorithm, where all “conflicted” vertices get recolored simultaneously (instead of Step 3),
and we prove that this variant takes exponential time.

2 Proof of Theorem 1.1

We start with introducing some notation. We use ct to denote the coloring of the graph
after t recoloring steps, that is ct is a function ct : V pGq Ñ t1, . . . ,∆` 1u. With Mt Ď E we
denote the set of monochromatic edges in ct. Observe that ct is a proper coloring of G if and
only if |Mt| “ 0. Our main goal is thus to establish good bounds on (the reduction of) the
size of the sets Mt. In order to do so it is helpful to view the recoloring step(s) (i.e. Step 2
and Step 3) as a (slightly different) three step process:
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Recoloring Step

For every t ě 1,
S1 choose a monochromatic connected component C ĎMt´1 at random proportional

to the number of vertices in C;
S2 choose a vertex v P V pCq uniformly at random;
S3 let ctpvq be a uniformly at random chosen color from t1, . . . ,∆ ` 1u and set

ctpuq “ ct´1puq for all u ‰ v.

As a main tool in bounding the expected number of recoloring steps we use a so-called
drift theorem (see [8, Theorem 2.3.1]).

I Theorem 2.1 (Additive Drift Theorem [6]). Let pXtqtě0 be a sequence of non-negative
random variables with a finite state space S Ă R`0 such that 0 P S. Let T :“ inftt ě 0 | Xt “

0u. If there exists δ ą 0 such that for all s P S r t0u and for all t ą 0,

ErXt ´Xt´1 | Xt “ ss ď ´δ, (1)

then

ErT s ď ErX0s { δ.

By drift we refer to the expectation ErXt ´ Xt´1 | Xt “ ss. (For a more extensive
introduction to drift analyis, we refer the reader to [8].) Our goal is to apply Theorem 2.1 by
assigning to each coloring ct a real value Φptq (which we plug in for Xt) so that Φptq “ 0 if
and only if ct is a proper coloring. The potential function Φp¨q we eventually use to prove
Theorem 1.1 consists of several terms (see equation (3) below) and in order to motivate each
of the terms we introduce them one by one. The simplest and most natural choice is to
consider just the number of monochromatic edges, i.e. Φptq :“ |Mt|. (Mind that this is only
for explanatory purposes and will not be the final definition of Φ.) To apply Theorem 2.1
we need to estimate the drift from a single recoloring step. In the following claim (and in
fact all similar ones in this section), the expectation is always taken with respect to a single
recoloring step. That is, we (implicitly) condition on the coloring ct´1 without stating it
every time. Note that this formulation implies what is required by equation (1).

As it turns out, in the case of Φptq :“ |Mt| we do not need to make use of the fact that the
component C is chosen randomly, we may assume that the component C is given arbitrarily
or even by an adversary.

B Claim 2.2. For all t ě 1 and any connected component C in Mt´1 we have

E
“

|Mt|
ˇ

ˇ C
‰

ď |Mt´1| ´ d̄pCq ` 1´ 1
∆` 1 ,

where d̄pCq denotes the average degree of the graph induced by V pCq.

Proof. The claim follows easily from the following two observations. As v is chosen uniformly
at random within C (as in Step 2), we decrease the number of monochromatic edges within
C by d̄pCq whenever the newly chosen color is different from the current color of C, which
happens with probability ∆{p∆` 1q. All edges incident to v that do not belong to C become
monochromatic with probability 1{p∆` 1q. Thus we have

E
“

|Mt|
ˇ

ˇ C
‰

ď |Mt´1| ´ d̄pCq ¨
∆

∆` 1 `
∆´ d̄pCq

∆` 1 “ |Mt´1| ´ d̄pCq ` 1´ 1
∆` 1 ,

as claimed. C

ESA 2020



17:4 An Optimal Decentralized p∆ ` 1q-Coloring Algorithm

As the average degree of every monochromatic component in Mt is at least one, Claim 2.2
implies Er|Mt|s ď |Mt´1| ´ 1{p∆` 1q whenever |Mt´1| ą 0. The following proposition then
easily follows from Theorem 2.1.

I Proposition 2.3. Let D ą 0 be any fixed constant. For every graph G and every coloring
c0 of G such that |M0| ď Dn{∆ the decentralized coloring algorithm reaches a proper
p∆` 1q-coloring in expectation after Opnq recoloring steps.

Unfortunately, a random coloring of a graph G with ∆` 1 colors has in expectation Θpnq
monochromatic edges, so Proposition 2.3 is not immediately applicable. Instead, Claim 2.2
together with Theorem 2.1 only provide us with the bound of Opn∆q (see Bhartia et al. [1]).
In order to go beyond this, observe that Claim 2.2 actually gives a drift of ´1{3 whenever
|V pCq| ě 3, as the average degree of a connected graph on s ě 3 vertices is at least 4{3.
Thus, the only critical case are components C that consist of only one edge. To handle these
we introduce some more notation.

We denote by It ĎMt the set of isolated edges, that is all edges which are monochromatic
components of size two. We also let Pt Ď V stand for the set of all properly colored vertices,
i.e. the vertices that are not incident to any edge in Mt. Akin to Claim 2.2, the next claim
gives a bound on the expected change in the number of isolated edges in one recoloring step.

B Claim 2.4. For all t ě 1 and any connected component C in Mt´1 we have

E
“

|It|
ˇ

ˇ C
‰

ď |It´1| ` d̄pCq ` 1.

For components C that form an isolated edge, we have in addition

E
“

|It|
ˇ

ˇ C “ uw
‰

ď |It´1| ´
∆

∆` 1 `
|Npuq X Pt´1| ` |Npwq X Pt´1|

2p∆` 1q .

Proof. By recoloring a vertex v, the only isolated edges that can be created are edges that
are incident to neighbors of v within C (at most one isolated edge per neighbor of v) and
edges between v and Pt´1 (naturally at most one edge incident to v can be isolated and
monochromatic). This proves the first inequality. For the second assume that C “ uw.
Clearly, after recoloring one of u and w with a different color (which happens with probability
∆{p∆` 1q), the isolated edge C “ uw disappears. Observe, also that a new isolated edge can
only be generated if we choose as a new color for u (or w) a color of a vertex in Npuq X Pt´1
(or Npwq X Pt´1) respectively. This, together with the fact that each of u or w is chosen in
Step 2 with probability 1{2, proves the second inequality. C

We pause for a moment from the proof of Theorem 1.1 to showcase the use of previous
claims for proving a positive result about complete bipartite graphs.

I Proposition 2.5. For complete bipartite graphs G “ Kn,m the decentralized coloring
algorithm reaches a proper p∆ ` 1q-coloring in expectation after Opmintn,muq recoloring
steps.

Proof. Observe that for complete bipartite graphs vertices of Pt´1 XA and Pt´1 XB need
to be colored with different colors (here A and B denote the two parts of the bipartite
graph). Also note that an isolated edge can only be generated if a color appears only
once in Pt´1 X A (and Pt´1 X B). Therefore, for a monochromatic edge uv we have
|Npuq XPt´1| ` |Npwq XPt´1| ď ∆. We can thus replace the bound in the second inequality
of Claim 2.4 by

E
“

|It|
ˇ

ˇ C “ uw
‰

ď |It´1| ´
∆

∆` 1 `
∆

2p∆` 1q ď |It´1| ´
∆

2p∆` 1q . (2)
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Consider now the potential function Φptq :“ |Mt|`
1
10 |It|. In case |V pCq| ě 3, from Claim 2.2

and Claim 2.4, we get (with room to spare)

E
“

Φptq
ˇ

ˇ C, |V pCq| ě 3
‰

ď |Mt´1| ´ d̄pCq ` 1´ 1
∆` 1 `

1
10 |It´1| `

1
10 d̄pCq `

1
10

ď Φpt´ 1q ´ 9
10 d̄pCq `

11
10 ď Φpt´ 1q ´ 1

20 ,

where we used the fact that d̄pCq ě 4{3. On the other hand, if C “ uw then by Claim 2.2
and (2) we have

E
“

Φptq
ˇ

ˇ C “ uw
‰

ď |Mt´1| ´ d̄pCq ` 1´ 1
∆` 1 `

1
10 |It´1| ´

1
10

∆
2p∆` 1q

ď Φpt´ 1q ´ 1
20

´ 20
∆` 1 `

∆
∆` 1

¯

ď Φpt´ 1q ´ 1
20 .

In conclusion,

E
“

Φptq
ˇ

ˇ C
‰

ď Φpt´ 1q ´ 1
20 ,

for every component C. The proposition now follows from Theorem 2.1 together with the
fact that in a random x-coloring an edge is monochromatic with probability 1{x and thus

ErΦp0qs ď Er|M0|s ` Er|I0|s ď 2 ¨ n ¨m

maxtn,mu ` 1 ď 4 mintn,mu,

with room to spare. J

We note that this proof actually shows that the assertion of Proposition 2.5 remains true,
for sufficiently small ε ą 0, if we reduce the number of colors to be used by the algorithm to
p1´ εq∆, that is p1´ εqmaxtn,mu. We do not elaborate further on this.

After this short detour we come back to the proof of Theorem 1.1. What one could
conclude from the two claims above is that if we were to choose a component C in Step 1
which is of size at least three throughout the process, then the drift obtained (Claim 2.2)
would always be less than ´1{3. However, this is far too optimistic to hope for.

Consider an isolated edge uv and assume we recolor v. If the new color chosen does not
belong to its properly-colored neighborhood NpvqXPt´1, then the number of monochromatic
isolated edges decreases by one. This happens with constant probability unless the size of
Npvq X Pt´1 is close to ∆.

Since in Step 1 we choose C randomly, we expect a strong drift “towards the target” as
long as we are in one of the situations from the paragraphs above. In other words, we have a
desired drift unless Mt´1 comprises mostly of isolated edges and most vertices u P V pIt´1q

have almost ∆ neighbors in Npuq X Pt´1.
Let us hence analyze what happens if in such a case we recolor a vertex v belonging

to an isolated edge uv. Suppose we set ctpvq :“ ct´1pxq for some x P Npvq X Pt´1. If the
color ct´1pxq appears multiple times in Npvq X Pt´1, we do not create a new isolated edge.
Otherwise, the edge xv becomes isolated and Pt :“ pPt´1 r txuq Y tuu. However, crucially,
as we assumed that every vertex u P V pIt´1q had roughly ∆ neighbors in Pt´1, we conversely
have that an average vertex in Pt´1 has roughly ∆|V pIt´1q|{|Pt´1| neighbors in V pIt´1q.
Thus, we may expect that Npxq X Pt is smaller than ∆. In other words, we expect that
epV pItq, Ptq is smaller than epV pIt´1q, Pt´1q. Here and throughout we use epX,Y q to denote
the number of edges between two disjoint vertex sets X and Y .

ESA 2020



17:6 An Optimal Decentralized p∆ ` 1q-Coloring Algorithm

Previous considerations motivate keeping track of epV pItq, Ptq as well and lead us to
formulate the following potential function:

Φptq :“ |Mt| `
|It|

10 `
epV pItq, Ptq

100∆ . (3)

Note that the value of Φptq is always proportional to the number of monochromatic edges.

B Claim 2.6. For all t ě 1 we have

|Mt| ď Φptq ď 2|Mt|.

Proof. The first inequality is trivial. The second follows, with room to spare, as It ĎMt and
epV pItq, Ptq ď 2|It| ¨∆. C

With Claim 2.6 at hand we deduce from Proposition 2.3 that in order to complete the
proof of Theorem 1.1 it suffices to show that the algorithm reduces the potential Φ to a value
of Dn{∆ in Opn log ∆q steps, for some arbitrarily large but fixed constant D ą 0. This is
what we do in the remainder of this section.

Note also that there is no hope to always get a constant drift, as by Theorem 2.1 this
would then lead to a bound of Opnq recoloring steps, which would contradict the bound of
Ωpn lognq for Kn. Instead we show a multiplicative drift.

B Claim 2.7. For any t ě 1 with Φpt´ 1q ą 0, we have

ErΦptqs ď Φpt´ 1q
´

1´ 1
1000n

¯

.

Proof. By linearity of expectation we can consider each term of Φp¨q in (3) independently.
The first two terms are handled by Claim 2.2 and Claim 2.4, so we first establish some
bounds on the third. Observe that in order for an edge to be counted in epV pItq, Ptq but not
in epV pIt´1q, Pt´1q it must be incident to a vertex in either V pItq r V pIt´1q or Pt r Pt´1.
Let C be a component chosen in Step 1 and v a vertex chosen in Step 2. For any vertex in
tvuY pNpvq XV pCqq, we either get one new isolated edge or one new properly colored vertex
(or neither). In the former, the other endpoint of that edge potentially contributes by ∆ to
epV pItq, Ptq, and in the latter each monochromatic edge with one endpoint in Npvq X V pCq
potentially contribute by ∆ to epV pItq, Ptq for each of its endpoints. Thus we have

ErepV pItq, Ptq | Cs ď epV pIt´1q, Pt´1q ` pd̄pCq ` 1q ¨ 2∆,

where as before d̄pCq denotes the average degree of the component C. Together with Claim 2.2
and Claim 2.4, for all components C on at least three vertices we get

E
“

Φptq
ˇ

ˇ C, |V pCq| ě 3
‰

ď Φpt´ 1q ´
´

1´ 1
10 ´

2
100

¯

d̄pCq ` 1` 1
10 `

2
100

ď Φpt´ 1q ´ 1
25 d̄pCq,

(4)

where the last inequality follows from d̄pCq ě 4{3.
Next we consider the third term of Φp¨q conditioned on choosing a component C Ď It´1,

i.e. C is an isolated edge. We first let dpv,Xq :“ |Npvq XX| for all v P V and sets X Ď V

and denote by

d̄IP :“ 1
|V pIt´1q|

ÿ

uPV pIt´1q

dpu, Pt´1q and d̄PI :“ 1
|Pt´1|

ÿ

uPPt´1

dpu, V pIt´1qq
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the average degree of vertices in V pIt´1q into Pt´1, and the average degree of vertices
in Pt´1 into V pIt´1q, respectively. Note that, of course, we have

ř

uPV pIt´1q
dpu, Pt´1q “

ř

uPPt´1
dpu, V pIt´1qq, and hence d̄IP |V pIt´1q| “ d̄PI |Pt´1|.

Consider an isolated edge wv and assume v gets recolored with a new color. Then,
since w is now properly colored, all dpw,Pt´1q edges incident to w which contributed to
epV pIt´1q, Pt´1q are not counted in epV pItq, Ptq, except possibly one in case v forms a new
isolated edge with a neighbor of w. Moreover, any new edge counted in epV pItq, Ptq must
be incident to either v, w, or a vertex x P Pt´1 for which vx P It. There are at most
∆´ dpv, Pt´1q, ∆´ dpw,Pt´1q, and ∆´ dpx, V pIt´1qq such edges respectively not already
counted in epV pIt´1q, Pt´1q. Combining all this we get

epV pItq, Ptq ď epV pIt´1q, Pt´1q ´ dpw,Pt´1q ` 1`∆´ dpv, Pt´1q

`∆ ´ dpw,Pt´1q `
ÿ

xPPt´1

1vxPIt

`

∆ ´ dpx, V pIt´1q
˘

,

if ctpvq ‰ ct´1pvq, and of course epV pItq, Ptq “ epV pIt´1q, Pt´1q if ctpvq “ ct´1pvq.
We conclude that

E
“

epV pItq, Ptq
ˇ

ˇ C Ď It´1
‰

ď epV pIt´1q, Pt´1q `
∆

∆` 1 p2∆` 1´ 3d̄IP q

`
1

|V pIt´1q|

ÿ

xPPt´1

ÿ

vPV pIt´1qXNpxq

1
∆` 1

`

∆ ´ dpx, V pIt´1qq
˘

,

where the last term can be rewritten as

1
|V pIt´1q|

ÿ

xPPt´1

dpx, V pIt´1qq
`

∆´ dpx, V pIt´1qq
˘

∆` 1 .

We note that the summand above can be written as fpdpx, V pIt´1qq where fpyq :“ yp∆´

yq{p∆ ` 1q is a concave function. Hence, by Jensen’s inequality, we can upper bound the
expression by |Pt´1|fpd̄PIq{|V pIt´1q| “ d̄IP p∆´ d̄PIq{p∆` 1q. Altogether we get

E
“

epV pItq, Ptq
ˇ

ˇ C Ď It´1
‰

ď epV pIt´1q, Pt´1q `
∆p2∆` 1´ 3d̄IP q

∆` 1 `
d̄IP p∆´ d̄PIq

∆` 1

ď epV pIt´1q, Pt´1q `
∆

∆` 1 p2∆` 1´ 2d̄IP ´ d̄IP d̄PI{∆q.

Finally, by combining this with Claim 2.2 and Claim 2.4 (and some tedious calculation) we
deduce

E
“

Φptq
ˇ

ˇ C Ď It´1
‰

ď Φpt´ 1q ´ 1
∆` 1 ´

1
10

∆´ d̄IP
∆` 1 `

1
100

2∆` 1´ 2d̄IP ´ d̄IP d̄PI{∆
∆` 1

ď Φpt´ 1q ´ 2
25

∆´ d̄IP
∆` 1 ´

1
100

d̄IP d̄PI
∆p∆` 1q .

(5)

With all these preparations we are now in a position to bound ErΦptqs. As seen in (4) and
(5), both conditioning on components of size at least three or on vertices in isolated edges
lead to a non-positive contribution to the drift. In order to derive an upper bound on ErΦptqs
we may thus ignore one of the terms for convenience. If we assume |It´1| ď |Mt´1|{2 one
would expect that the larger contribution to the change of Φpt´ 1q comes from components
which are not isolated edges. Indeed, in that case we may ignore the term from (5) and use
(4) only to get

ESA 2020



17:8 An Optimal Decentralized p∆ ` 1q-Coloring Algorithm

ErΦptqs
(4)
ď Φpt´ 1q ´

ÿ

C, |V pCq|ě3

|V pCq|

|V pMt´1q|

d̄pCq

25 “ Φpt´ 1q ´ 2|Mt´1 r It´1|

25|V pMt´1q|

ď Φpt´ 1q ´ |Mt´1|

25n ď Φpt´ 1q
´

1´ 1
50n

¯

,

where the last inequality follows from Claim 2.6.
On the other hand, suppose |It´1| ě |Mt´1|{2 and observe that this implies |V pIt´1q| ě

|V pMt´1q|{2. This means that the probability of picking a vertex in V pIt´1q to recolor is at
least 1{2 and one may hope that the larger contribution to the change of Φpt ´ 1q comes
from the isolated edges. Indeed, similarly as above, we now ignore the contribution from
components of size at least three to get:

ErΦptqs
(5)
ď Φpt´1q´ 1

25
∆´ d̄IP
∆` 1 ´

1
200

d̄IP d̄PI
∆p∆` 1q ď Φpt´1q´ 1

50
∆´ d̄IP

∆ ´
1

400
d̄IP d̄PI

∆2 . (6)

If d̄IP ď ∆´∆Φpt´ 1q{p30nq, then the claim follows just from the first term. Otherwise,
by Claim 2.6

Φpt´ 1q ď 2|Mt´1| ď 4|It´1| ď 2n,

which in turn implies d̄IP ě ∆p1 ´ Φpt ´ 1q{p30nqq ě 14∆{15. Recall, d̄PI |Pt´1| “

d̄IP |V pIt´1q|, and note that |V pIt´1q|{|Pt´1| ě 2|It´1|{n ě Φpt´ 1q{p2nq. Therefore,

1
400

d̄IP d̄PI
∆2 “

1
400

|V pIt´1q| ¨ d̄IP d̄IP
|Pt´1|∆2 ě Φpt´ 1q 1

800n ¨
´14

15

¯2

and the second term in (6) is enough to conclude the proof of Claim 2.7. C

As mentioned in the paragraph before Claim 2.7, in order to make use of the assertion of
Claim 2.7, we need a slightly different drift theorem, one for multiplicative drift.

I Theorem 2.8 (Multiplicative Drift Theorem [4]). Let pXtqtě0 be a sequence of non-negative
random variables with a finite state space S Ă R`0 such that 0 P S. Let smin :“ mintS r t0uu,
let s0 P S r t0u, and let T :“ inftt ě 0 | Xt “ 0u. If there exists δ ą 0 such that for all
s P S r t0u and for all t ą 0,the case of

ErXt ´Xt´1 | Xt´1 “ ss ď ´δs,

then

ErT | X0 “ s0s ď
1` lnps0{sminq

δ
.

Now we are ready to put things together to prove Theorem 1.1.

Proof of Theorem 1.1. For every t ě 0, we define

Φ1ptq “
#

Φptq, if Φptq ě n{∆,
0, otherwise.

Note that, as long as Φpt ´ 1q ě n{∆, we have Φ1pt ´ 1q “ Φpt ´ 1q and Φ1ptq ď Φptq, so
the deduced bound on Φptq in Claim 2.7 is also a bound for Φ1ptq. Using Theorem 2.8 with
Claim 2.7 for T 1 :“ inftt ě 0 | Φ1ptq “ 0u “ inftt ě 0 | Φptq ă n{∆u, we get for all s0 ą 0

ErT 1 | Φ1p0q “ s0s ď
1` ln

´

s0
n{∆

¯

p1000nq´1 .
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By Claim 2.6 we have Φ1p0q ď 2|M0| ď n∆, and therefore

ErT 1s ď 1000n
`

1` 2 ln ∆
˘

“ Opn log ∆q.

Finally, as by Claim 2.6 we then have |MT 1 | “ Opn{∆q, we conclude from Proposition 2.3
that the expected number of steps after T 1 to reach a legal coloring is Opnq. Therefore, the
total number of required steps to reach a legal coloring is Opn log ∆q, which finishes the proof
of Theorem 1.1. J

3 Tail Bounds

In this section, we prove that the runtime of the decentralized coloring algorithm is of order
Opn log ∆q not only in expectation, but also with high probability. It turns out that this does
not require much additional work, as the drift theorems are accompanied with suitable tail
bounds. In many situations, concentration bounds require conditions beyond the drift, for
example bounds on the step size. Notably, for multiplicative drift such additional conditions
are not necessary, as the following theorem holds.

I Theorem 3.1 (Multiplicative Drift Tail Bound [3]). Let pXtqtě0 be a sequence of non-negative
random variables with a finite state space S Ă R`0 such that 0 P S. Let smin :“ mintS r t0uu,
let s0 P S r t0u, and let T :“ inftt ě 0 | Xt “ 0u. Suppose that X0 “ s0, and that there
exists δ ą 0 such that for all s P S r t0u and for all t ą 0,

ErXt ´Xt´1 | Xt´1 “ ss ď ´δs.

Then, for all r ě 0

Pr
”

T ą
Q

r`lnps0{sminq
δ

Uı

ă e´r.

The following proposition is a straightforward application of this theorem.

I Proposition 3.2. Suppose ∆ “ Ωpncq for some constant c ą 0. Then, the decentralized
coloring algorithm terminates after Opn log ∆q steps with high probability.

Proof. By Claim 2.6 we know that s0 ď n∆. In the proof of Theorem 1.1 we analyzed the
process with multiplicative drift until the potential Φ hits n{∆. Here, we track this potential
until the end of the algorithm. Note that the smallest nonzero value Φ can attain is at least
1. Thus, under the assumption ∆ “ Ωpncq, we also have lnps0{sminq ď C log ∆ for large
enough n, even if we do not truncate Φ. Here, C ą 0 is a suitable constant, for example
C “ 2p1` 1{cq. Setting r “ log ∆, we can apply Theorem 3.1 to get

Pr
“

T ą rp1` Cq1000n log ∆s
‰

ď e´ log ∆ “ Opn´cq “ op1q,

where we used δ “ p1000nq´1 as before, due to Claim 2.7. J

The proof of Proposition 3.2 fails when logn “ ωplog ∆q. In the proof of Theorem 1.1 we
switched to additive drift to analyze the second phase of the process. We use this approach
again. The following tail bound for additive drift will be useful. It is a rather straightforward
consequence of Azuma’s inequality. Note that there is an additional assumption, namely
that we have bounded step size.
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I Theorem 3.3 (Additive Drift Tail Bound [7]). Let pXtqtě0 be a sequence of non-negative
random variables with a finite state space S Ă R`0 such that 0 P S. Let T :“ inftt ě 0 | Xt “

0u. Suppose there are c, δ ą 0 such that for all s P S r t0u and for all t ą 0, we have both
ErXt ´Xt´1 | Xt “ ss ď ´δ and |Xt`1 ´Xt| ă c. Then, for all r ě 2X0{δ,

PrrT ě rs ď exp
´

´
rδ2

8c2
¯

.

The smaller ∆ is, the less the potential changes at each step. Using this fact, the theorem
above allows us to prove the next proposition. It gives us that the runtime of the algorithm
is Opn log ∆q for smaller ∆.

I Proposition 3.4. If ∆ “ Opn1{4q, the decentralized coloring algorithm terminates after
Opn log ∆q steps with high probability

Proof. We go back to splitting the process in two phases as in the proof of Theorem 1.1.
Let T1 and T2 be the duration of Phase 1 and 2 respectively. We consider Phase 1 first. To
be able to apply Theorem 3.3, we use the potential function Ψptq :“ maxtlogp∆Φptq{nq, 0u.
As we will see, the logarithm converts multiplicative drift into additive drift. Note that
T1 “ inftt ě 0 | Ψptq “ 0u. Using Jensen’s inequality and Claim 2.7, we get for all s P Srt0u
and t ě 0

ErΨpt` 1q ´Ψptq | Ψptq “ ss “ E
„

log
ˆ

∆Φpt` 1q
n

˙

´ log
ˆ

∆Φptq
n

˙
ˇ

ˇ

ˇ

ˇ

Ψptq “ s



“ E
„

log
ˆ

Φpt` 1q
Φptq

˙
ˇ

ˇ

ˇ

ˇ

Ψptq “ s



ď logE
„

Φpt` 1q
Φptq

ˇ

ˇ

ˇ

ˇ

Ψptq “ s



ď log
ˆ

1´ 1
1000n

˙

ď ´
1

1000n.

The last inequality follows as log x ď x´ 1 for all x ą 0. Now that we have determined the
drift, we need to bound the step size. |Mt| and |It| can change by at most ∆ at each step
and epV pIt, Ptq by at most ∆2. Thus, the step size of Φ is bounded by 2∆. As the logarithm
is concave, the largest effect of such a change in Φ on the value of Ψ is when Φ is as small as
possible. In particular, this is the case if Φ goes from 2∆` n{∆ to n{∆. Thus we have

|Ψpt` 1q ´Ψptq| ď
ˇ

ˇ

ˇ

ˇ

log
ˆ2∆` n

∆
n
∆

˙
ˇ

ˇ

ˇ

ˇ

“ log
ˆ

1` 2∆2

n

˙

ă
2∆2

n
.

Therefore, 2∆2{n is a bound on the step size of Ψ. As Φp0q ď n∆ we have Ψp0q ď 2 log ∆.
Hence we can use Theorem 3.3 with r “ 4000np1` log ∆q. We get

PrrT1 ě rs ď exp
˜

´
4000np1` log ∆q ¨

` 1
1000n

˘2

8
` 2∆2

n

˘2

¸

“ exp
ˆ

´
p1` log ∆qn

8000∆4

˙

“ op1q.

We turn our attention to Phase 2. Here, we already have additive drift for |Mt|, so we can
use Theorem 3.3 immediately. Claim 2.2 gives us

E
“

|Mt| ´ |Mt´1|
ˇ

ˇ |Mt´1| “ s
‰

ď ´
1

∆` 1 ď ´
1

2∆ ,
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for all s, t ą 0. We also have
ˇ

ˇ|Mt| ´ |Mt´1|
ˇ

ˇ ď ∆ for all t ą 0. By Claim 2.6 we get
|Mt| ď 2n{∆ at the start of Phase 2. Hence we can apply Theorem 3.3 with r “ p4` log ∆qn.
We get

PrrT2 ě rs ď exp
˜

´
p4` log ∆qn ¨

` 1
2∆

˘2

8∆2

¸

“ exp
ˆ

´
p4` log ∆qn

32∆4

˙

“ op1q.

Using a union bound gives us that the algorithm terminates in Opn log ∆q round with high
probability. J

Proposition 3.2 and 3.4 cover all possible values of ∆. Therefore, the algorithm has runtime
Opn log ∆q with high probability for any ∆.

4 A simultaneous-recoloring variant of the algorithm

A natural question is whether the original algorithm can be parallelized. So what if instead of
choosing one conflicted vertex at a time in Step 2 all conflicted vertices would simultaneously
want to change their color? It turns out that this process does not even have polynomial
runtime on the complete graph Kn.

I Proposition 4.1. The Decentralized Graph Colouring algorithm in which all conflicted
vertices choose a new color uniformly at random needs eΩpnq rounds in expectation to terminate
on a complete graph on n vertices Kn.

Proof. Fix a sufficiently small constant ε ą 0, e.g. ε “ 0.1. For a round t, let Xt be the
number of conflicted vertices, i.e., the number of vertices whose color is not unique. Due to
symmetry, Xt is a Markov process. Let Tε be the first round in which Xt ď εn. We show
that Tε has exponentially large expectation. Consider any round t with Xt “ x ą εn. Then
we show that

PrrXt`1 ď εn | Xt “ xs “ e´Ωpnq, (7)

where the hidden constant is independent of x. We remark that the same argument also
shows that with high probability X1 ą εn, since the initial round is formally equivalent to
the hypothetical case X0 “ n. So the proposition follows if we can show (7).

To show (7), we uncover the new colors in two batches. In the first batch, we uncover the
colors of all but εn vertices. If there are more than εn vertices in conflicts from the first batch,
then there is nothing to show. So in the following we may assume (and implicitly condition) on
the opposite event that uncovering the first batch creates at most εn conflicted vertices. This
implies that the set C1 of colors appearing among the p1´ εqn uncovered vertices, has size at
least |C1| ě p1´ 2εqn. Let C2 Ď C1 be the set of colors in C1 that also appear in the second
batch, i.e., for which a conflict is created by the second batch. The probability that a fixed
color in C1 does not occur in C2 is p1´ 1{nqεn “ e´ε`Op1{nq ď 1´ 7ε{8 for sufficiently large
n, where we use that e´ε ă 1´ 7ε{8 for ε ă 0.2. Hence, Er|C2|s ě 7ε{8 ¨ p1´ 2εqn ě 5ε{8 ¨ n
for ε ď 1{7.

The size of C2 is given by the number of non-empty bins in a Balls-and-Bins problem, and
this number is known to be concentrated around its expectation since the number of empty
bins is negatively associated, and thus the Chernoff bounds are applicable. Since this is a well-
known argument, we refrain from spelling out the details and refer the reader to the standard
exposition [5, Proposition 29 and Section 3.3]. The result is that Prr|C2| ď ε{2 ¨ ns “ e´Ωpnq.
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It remains to observe that Xt`1 ą 2|C2|, since every color in C2 causes at least two
conflicted vertices (one from the second batch and one from the rest). Hence, PrrXt`1 ď

εns ď Prr|C2| ď ε{2 ¨ ns “ e´Ωpnq, as required. J
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