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—— Abstract

Contraction hierarchies (CH) is a prominent preprocessing-based technique that accelerates the
computation of shortest paths in road networks by reducing the search space size of a bidirectional
Dijkstra run. To explain the practical success of CH, several theoretical upper bounds for the
maximum search space size were derived in previous work. For example, it was shown that in
minor-closed graph families search space sizes in O(y/n) can be achieved (with n denoting the
number of nodes in the graph), and search space sizes in O(hlog D) in graphs of highway dimension
h and diameter D. In this paper, we primarily focus on lower bounds. We prove that the average
search space size in a so called weak CH is in Q(bs) for a > 2/3 where b, is the size of a smallest
a-balanced node separator. This discovery allows us to describe the first approximation algorithm
for the average search space size. Our new lower bound also shows that the O(y/n) bound for
minor-closed graph families is tight. Furthermore, we deeper investigate the relationship of CH
and the highway dimension and skeleton dimension of the graph, and prove new lower bound and
incomparability results. Finally, we discuss how lower bounds for strong CH can be obtained from
solving a HittingSet problem defined on a set of carefully chosen subgraphs of the input network.
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1 Introduction

The concept of contraction hierarchies (CH) was introduced by Geisberger et al. [15] to
accelerate shortest path planning in road networks. The basic idea is to precompute an
overlay graph in which the search space size of a bidirectional Dijkstra run can be drastically
reduced. For example, on the road network of Western Europe with 18 million nodes, a
bidirectional Dijkstra run in the original graph scans almost 5 million nodes on average,
while in the CH overlay graph only 280 nodes are scanned. This decreases the query time
from over two seconds to about one millisecond [5].

There exist two CH variants, referred to as strong and weak contraction hierarchies. In
a strong CH, the overlay graph construction takes the edge weights directly into account.
In a weak CH, the preprocessing phase is split into a metric-independent overlay graph
construction phase, and a subsequent customization phase in which the edges are augmented
with weights. Weak CH is used in practice to deal with dynamically changing edge weights,
as changes in the metric only require to repeat the customization phase but not the overlay
graph construction [12]. In [7], the first theoretical upper bounds for search space sizes in
weak CH were described, which are valid for strong CH as well. Other lines of research focus
on strong CH directly. Graph parameters such as the highway dimension [1] or the skeleton
dimension [17] were explictly introduced with the purpose of analyzing search space sizes
? Johannes Blum anfi Sabine Storan.dt;
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of preprocessing-based route planning techniques. However, most existing work focuses on
upper bounding the maximum search space. In this paper, we are particularily interested
in constructing tight bounds for the average search space size, as those are more expressive
for judging whether the CH technique is useful for a given graph (family). We provide a
multitude of novel results, including several lower bounding techniques as well as the first
approximation algorithm for the average search space size in a weak CH.

1.1 Related Work

In [2, 1], the highway dimension h was introduced as a novel graph parameter to capture
the shortest path structure of road networks. It was proven that in a strong CH maximum
search space sizes in O(hlog D) can be achieved where D denotes the diameter of the graph.
At the same time, the size of the overlay graph is bounded by O(n - hlog D) where n is
the number of nodes in the graph. In [7], the first upper bounds for weak CH were proven.
There, nested dissection was used to guide the overlay graph construction; a technique that
relies on recursive decomposition of the graph into smaller subgraphs by removing balanced
node separators. It was shown that in graphs of treewidth tw an upper bound of O(twlogn)
for the maximum search space size Sy,q, can be achieved with an overlay graph size of
O(n - twlogn). For minor-closed graph families that exhibit O(y/n) balanced separators,
Smaz € O(y/n) and an overlay graph size in O(nlogn) was proven. In [14, 8], the bounded
growth model was proposed as a theoretical framework for studying road networks. There,
CH search space sizes in O(y/nlogn) and overlay graph sizes in O(nlog D) were shown for
graphs with unit edge costs that adhere to the model.

Concerning lower bounds, White [22] proved that for any h, D and n, there exists a
graph with at least n nodes that has a highway dimension h, a diameter of ©(D), and in
which the average search space size in a strong CH is in Q(hlog D). Therefore, the upper
bound by Abraham et al. [1] for strong CH search space sizes parametrized by h is tight.
An analogue result was proven for the related route planning technique hub labeling. In [20],
it was shown on the example of a carefully weighted grid graph that there exists graphs
for which the average search space is in Q(y/n) for any strong CH (and for hub labeling as
well). In addition, a greedy algorithm was proposed to compute lower bounds for the average
search space size of any strong CH in a given weighted graph. In [7], it was observed that
the maximum search space size in a weak CH coincides with the so called elimination tree
height. As proven by Bodlaender et al. [9], the minimum elimination tree height of a graph
equals the treedepth td, and the following relations to other graph parameters hold

b—1<tw<pw<td

where b is the balanced separator number of the graph, tw is the treewidth, and pw the
pathwidth. Accordingly, the balanced separator number, the treewidth, the pathwidth, and
the treedepth are all valid lower bounds for S,,4,. In [6], it was proven by reduction from
VertexCover that it is NP-hard to find a contraction order for a strong CH that minimizes the
average search space size while adding at most K shortcuts to the graph. Furthermore it was
observed that in a complete graph Sg,4 € €(n) holds, and in path graphs S,., € Q(logn).
For the special case of trees, a linear-time optimal preprocessing algorithm is known that
minimizes Sy [21]. Complementarily, it was shown in [7] that a CH-graph constructed
with a nested dissection contraction order provides a 2-approximation for Sg,4 in trees.
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1.2 Contribution

We significantly extend the set of known results on (average) search space sizes in weak and

strong contraction hierarchies. Our main findings are listed in the following.
Although the balanced separator number, the treewidth, the pathwidth and the treedepth
are all lower bounds for the maximum search space size S;,q. in a weak CH, we prove
that in general none of them is a valid lower bound for S,.4,. However, we prove that the
average search space size Squy in a weak CH is in Q(by) for o > 2/3 where b, is the size
of a smallest a-balanced node separator in G.
We establish the first approximation result for S,,4 in weak CHs which applies to general
graphs. In particular, we prove that a nested dissection CH construction scheme leads
to an average search space size within a factor of 1 + 1.5log; 5 n of the optimum. This
answers an open question from [7]. We also discuss how to turn the nested dissection
approach into an efficient CH construction algorithm on general graphs.
We furthermore show that for every unweighted graph, one can choose metric edge
weights such that the highway dimension & of the graph equals 1, and hence constitutes a
trivial lower bound for the average search space size in a strong CH. On such graphs, the
algorithms described in [2, 1] with an upper bound on the search space size of O(hlog D)
are close-to-optimal. However, we also show that in case the metric is given, there can be
a gap of size 2(n) between the highway dimension and the maximum search space size.
For a given weighted graph, we prove that lower bounds on the average search space
size in the respective strong CH can be obtained by solving a (hierarchical) HittingSet
problem defined on a set of specific subgraphs of G.

2 Preliminaries

In this section, we describe the concepts of strong and weak CH more formally and provide the

definitions of some separator-related graph parameters that will be relevant in our analysis.

2.1 Strong and Weak Contraction Hierarchies

Given an undirected!, connected graph G(V, E) with edge costs ¢ : E — R*, the preprocessing
phase for strong CH works as follows: First a node permutation is fixed which constitutes the
so called contraction order of the nodes. Note that any contraction order is feasible but that
the overlay graph size as well as the search space sizes crucially depend on that order. Let

r:V — {1,...,n} with n = |V| be the respective ranks of the nodes in the contraction order.

Then an overlay graph is constructed with the following property: A shortcut edge {v,w}
is introduced between v and w if and only if there exists a shortest path m between them
that except for v and w only contains nodes u with r(u) < min{r(v),r(w)}. The cost of that
shortcut edge is set to ¢(m). When constructing a weak CH instead, shortcuts are introduced
between nodes v and w iff there exists any path between them that except for v and w only
contains nodes v with r(u) < min{r(v),r(w)}. In either case, the set of shortcuts E* is then
added to the original graph G to obtain the CH-graph G*(V, E U ET). For strong CH, this
completes the preprocessing phase. For weak CH, a so called customization phase follows in
which edge weights are first assigned to the original edges, and are then propagated to the
shortcuts. For further details, we refer to [12].

! With slight modifications, CH also works on directed graphs. To simplify the presentation, we only
consider undirected graphs throughout the paper.
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In practical implementations, the node contraction order is not always fixed a priori but
might be determined in a process which interleaves the overlay graph construction and the
node rank assignments. The insertion of shortcut edges is then based on the so called node
contraction operation: Here, a node v and its incident edges are removed from the graph
and new edges are inserted between certain pairs of its former neighbors. In a strong CH, a
shortcut between the neighbors u, w of v is only inserted if the path u, v, w is a shortest path.
In a weak CH, shortcuts are inserted between all pairs of neighbors (as without knowledge
about the metric, any of those paths could become a shortest path later). The preprocessing
then consists of contracting all nodes in the graph one after the other, using e.g. the current
degree of the nodes as guidance which of them to contract next (or more complicated criteria,
see [15]). But independently of the chosen implementation, the formal characterization of
the resulting overlay CH-graph given above always applies.

To compute a shortest path between nodes s,t € V in the CH-graph G, a bidirectional
Dijkstra run is started from s and ¢ in G* with the restriction that from any node v incident
edges {v,w} are only relaxed if r(w) > r(v). The set of nodes that can be reached from
a node v € V via paths which go strictly upwards with respect to the contraction order
is called the search space SS(v). By construction of GT one can show that there always
exists a node p € SS(s) N .SS(t) which lies on a shortest path between s and ¢ in G, and
the shortest path distance from s to p as well as the shortest path distance from p to ¢ are
correctly computed in GT. Accordingly, the computed shortest path distance in G equals
the shortest path distance in G.

Note that in general there is a difference between the search space size and the query
time. The search space size |SS(v)| of a node v is the number of nodes settled in the
Dijkstra run from v in the CH-graph while the query time also accounts for edge relaxation
and priority queue operations. However, an upper bound U on the search space size also
yields an upper bound of U? on the query time as there can be at most a quadratic
number of edges between U nodes. The other way around, a lower bound on the search
space size is automatically also a lower bound for the query time. Therefore, we stick
to the notion of search space sizes throughout the paper. We distinguish between the
maximum CH search space size Sy, = maxyey |SS(v)| and the average CH search space
size Savg = 3 Pvev [9S(0)] < Smaa-

2.2 Balanced Separators

Existing upper bounds for search space sizes in weak CH were obtained by using nested
dissection based overlay graph construction, which involves the recursive computation of
balanced node separators. We will investigate which separator-related graph parameters can
be used to lower bound the average search space size. The balanced separator number is
defined as the smallest integer b such that for every V' C V, the induced subgraph G[V’]
admits a balanced separator of size at most b, i.e. after the removal of at most b nodes every
remaining connected component of G[V’] contains at most [(|V’| — b)/2] nodes. While b — 1
is known to lower bound the maximum CH search space size in any given graph, we will show
that the same is not true for Sy,,. However, we will prove a lower bound of « - b, for a > 2/3
which later will be used to get an approximation guarantee for S,,, when constructing the
CH with a variant of nested dissection. The parameter b,, for an « € [0, 1], is the size of a
minimum «-balanced node separator of G(V, E), i.e., the smallest number of nodes that have
to be removed from the input graph G(V, E) such that all remaining connected components
have size at most « - |V|. Note that the value of b, is solely determined by considering the
input graph as a whole, while for b all induced subgraphs are relevant as well. By definition,
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the following hierarchy holds: b2/, < b1/, < 0.

3 Bounds and Algorithms for Search Space Sizes in Weak CH

In this section, we discuss at the beginning how Sy,g, Smaz, and the balanced separator
number relate to each other in a weak CH. Subsequently, we describe new lower bounding
techniques and present the first approximation algorithm for Sgyg.

3.1 Maximum versus Average Search Space Size

As discussed above, the smallest possible maximum search space size of a weak CH is equal
to the treedepth of the input graph. However, there can be a large gap between treedepth
and average search space size. In fact, not even the balanced separator number b yields a
lower bound for S,y as the following lemma shows.

» Lemma 1. There exist graphs G(V, E) with Squq € 0(b).

Proof. Take a star graph with k leaves and replace one leaf with a clique C' of size vk. Every
balanced separator of the subgraph induced by C contains Q(\/E) vertices, which implies

that b € Q(vk). Consider a contraction order where the central node obtains rank n = [V].

Then the search space size of the central node is 1, the search space size of every leaf is 2 and
the search space size of a node in the clique is at most vk + 1. It follows that the average
search space size is

1+(k—-1)-2 k-(VE+1 3k k—1 3k k—1

+ k=124 VE-(VE+1) _3k+VEk-1 _3k+Vk < 3eco(Vh)
n n k+ vk

With b — 1 < tw < pw < td, the lemma implies that none of those parameters is a valid

lower bound for S,.4; and that there can be an exponential gap between the average and the
maximum search space size.

Savg <

<

3.2 Balanced Separators and Average Search Space Size

In a weak CH, a node w € V of rank R is in the search space SS(v) of another node v € V
with rank r» < R if there exists a path from v to w which — except for w — exclusively contains
nodes of rank < R. This fact leads to the following central observation.

» Observation 2. Let G(V, E) be a connected graph. In a weak CH on G, for a node w € V
of rank R to not be in the search space SS(v) of a node v € V' of rank r < R, there needs to
be a set of nodes of rank higher than R that separates w from v.

We will now present our first main theorem, which exploits this observation to show a general
relationship between the average serach space size S,y in a weak CH and balanced node
separators in G.

2

5, at least an nodes in G have a search space

» Theorem 3. For any weak CH and any o >
of size at least b,,.

Proof. Consider some contraction order of the nodes. We identify the smallest integer k£ such
that the k£ nodes with highest rank in the given order form an a-balanced node separator
S in G. Hence, if we remove the k£ — 1 nodes of highest rank, there is still a connected
component C of size > an. If we now remove the node vy with kth highest rank, we can
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split C' into two subgraphs of size at most an each, which are not connected to each other.
We observe that the larger of the two subgraphs C* (which is not necessarily connected)
has to contain at least §n nodes. Therefore, there are at most n — §n nodes that are not
contained in C*, which for any a > % is at most an. It follows that the separator nodes
S* C S that are adjacent to C* form an a-balanced separator already. By definition of b,
we have |S*| > b,. It remains to be shown that between any node v in C'\ vy (which has
rank r(v) < n —k) and any separator node s € S* (which has rank r(s) > n — k) there exists
a path in G on which all nodes have rank at most 7(s). For s = v, this is true, because C' is
connected and vi has maximum rank among all nodes of C. If we have s # v, the node s
has a neighbor w contained in C. As C' is connected, there is a path from v to w in C' and
hence, the maximum rank on this path is at most n — k < r(s). It follows that G contains a
path from v to s of maximum rank r(s). This means that there are an nodes (recall that C
has size > an), which have a search space size of at least |S*| > b,. <

It follows that for any o > % the sum of the search space sizes of all nodes in G is at least
an - b, and hence the average search space size is lower bounded by « - b,,.

» Corollary 4. In any weak CH graph, Sqvg > o - by for a € [%, 1).

The theorem implies that weak CH performs poorly on graph families with no small balanced
separators. For the class of planar graphs, and a = %, there exist graphs with a smallest
a-balanced separator of size at least 1.55y/n [13]. Hence, according to Corollary 4, their
induced average CH search spaces are in 21.55\/n = 1.03y/n € Q(y/n). This matches the
known upper bounds for S,,4, in minor-closed graph families with O(y/n) sized balanced
separators, proving them to be tight.

We prove next that Saug € Q(bis,) holds as well which will later be important for
establishing our approximation guarantee. Note that if we just consider balanced separators
in G directly, there could be an arbitrary large gap between b/, and bz/,. Hence, we will
consider separators in G and in a selected subgraph of G simultaneously to get a meaningful
bound. We first show a helping lemma which might also be of independent interest.

» Lemma 5. Let G’ be a connected subgraph of G with n' nodes and let b!, be the size of a
smallest a-balanced separator in G' for an o > %, then it follows that Sqvg > %ab’a.

Proof. The proof is the same as the proof of Theorem 3 with the only modification that
we consider the k& nodes with highest rank in G’ that form an a-balanced separator in G’
instead of considering G as a whole. |

The lemma improves the lower bound on Sg,4 shown in Theorem 6 in case a subgraph of G
has a larger balanced separator than G as a whole and this subgraph G’ is not too small
compared to the total size of G. And it also allows us to prove a general relationship between
Savg and b1/, as manifested in the following theorem.

» Theorem 6. The average search space size in a weak CH is lower bounded by %bl/z.

Proof. Let b1/, and b2/, be minimum balanced separator sizes in G for the respective a-values.
Obviously, b2/, < b1/, holds. Let G* be the larger of the two parts that results from removing
the b2/, nodes in the respective separator from G. The smaller part has to contain less then
%n nodes; but G* may contain between %n and %n nodes. Now let b}, be the minimum size
of a 2/3-balanced separator in G*. The largest part of G* after the removal of such a separator
. %n = %n < %n Accordingly, the union of the nodes in the 2/3-balanced
separator in G and the 2/3-balanced separator in G* form a 1/2-balanced separator in G. It

has size at most %
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follows that b1/, < b2y + bQ/S < 2max(byys, b’Q/S). Using Lemma 5 together with the relation
between the separators in G and G* leads to the following set of inequalities that lower bound

the average search space size: S > max(%bz/g, % . %b%) > %max(bz/g7 b’2/3) > %b1/2 <

3.3 An Approximation Algorithm for the Average Search Space Size

The crucial part of CH construction is fixing the contraction order of the nodes. When
using nested dissection, as proposed in [7], the input graph G is partitioned recursively into
smaller subgraphs via a balanced separator decomposition, and for each obtained subgraph
the nodes in the separator are contracted before the other nodes. It was proven that this
contraction order allows to upper bound the resulting maximum search space size SNP
More precisely, an («, f,)-balanced separator decomposition of G(V, E) for a € (0,1) is a

rooted tree T" whose nodes are disjoint subsets of V' and that is recursively defined as follows.

If n = 1, then T consists of a single node X = V. If n > 1, then the root of T is a set
X CV of size at most f,(n) whose removal separates G into d > 2 subgraphs G1,...,Gq
with at most an vertices, each. Moreover, the children of X are the roots of (o, f)-balanced
separator decompositions of G1,...,G4. A nested dissection order can then be obtained via
a post-order traversal of such a (a, f,)-balanced decomposition (nodes within one separator
X can be contracted in an arbitrary order). It follows that SN < (14 log, ,,n) - B where
B is an upper bound on the separator sizes f, in all subgraphs. As every graph has a
(1/2,b)-balanced separator decomposition where b is the balanced separator number of G, it
follows that SND € O(blogn). Combined with SND > §* —~—td > b, where S}, is the
smallest possible value of Sy, this proves an O(logn) approximation guarantee for the
maximum search space size?.

For trees, a (1/2, 1)-balanced separator decomposition exists. Accordingly, SN2 € O(logn)
holds for trees. Furthermore, it was proven in [7] that the nested dissection contraction
order for trees also is an approximation algorithm for S,.4. In particular, Sfl\ffg’ <2-50,4
was shown where S7,,, is the optimal average search space size. It was posed as one of the
main open questions whether there are ways to approximate the average search space size
in general graphs. Note that the approximation guarantee proof given for trees explicitly
leverages the fact that trees are cycle free, and that balanced separators in trees always
consist of a single node. Hence new proof concepts are required for generalizing the result.

Exploiting our novel lower bound shown in Corollary 4, we will now prove that for general
graphs, the contraction order induced by a (a, b )-balanced decomposition indeed comes
with an approximation guarantee for S,,4. Our proof consists of the following three steps:
1. Upper bounding SJ2(G). We show that SN2 (G) < + 2?21 n; - SNE(Gy) + be where b,

is the size of an a-balanced separator B in (G, whose removal splits G into the connected

subgraphs G, ...,Gq of sizes ny,...,ng (cf. Lemma 7).

2. Lower bounding S;,,(G). We prove that for the optimal average search space size S

holds that S,,(G) > L S0 n; - S%,,(Gi) (cf. Lemma 8).

avg

. .
avg it

3. Combining upper and lower bounds. Combining the outcomes of steps 1 and 2 as well
as Corollary 4, we show that with every level of the separator decomposition, the ratio
between Sﬁ,g and S, increases at most by é This results in an overall approximation

factor of 1+ X log, , for € [3,1) (cf. Theorem 9).

2 This result does not hold in directed graphs as shown in [11].

max*
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» Lemma 7. Given a graph G, it yields SJD(G) < %2?21 ni - SO(Gi) 4 ba where by, is
the size of a given a-balanced separator B in G, and G1,...,Gq are the connected subgraphs

of G that remain after removing B, with ny,...,ng being their respective node set sizes.

Proof. The average search space size Sq.4 is defined as the sum of the individual search
space sizes divided by n. For each node in the separator B, the search space size can be
at most |B| = b, as the nodes in B all have higher rank in the contraction order than
the nodes in V '\ B. For i = 1,...,d, the n; nodes of G; have a total search space sizes
of n; - S%?(Gi) if we do not count the nodes from B. The search space size of each

individual node increases by at most b, when adding B to the graph. Hence in total we get
n-SND < E _, 1 - SNP(G;) + n - bs. Dividing both sides by n concludes the proof. <

avg avg

» Lemma 8. Given a gmph G, the optimal average search space size in a weak CH is lower
bounded by S, ,(G) >1 ZZ 1 M+ Spug(Gi) where G are disjoint subgraphs of G.

Proof. Let r* be the optimal contraction order for G, leading to an average search space
size of S;,,(G) = Ly ev 195*(v)]. By 7} we denote the restriction of r* to subgraph
G, that is, the nodes in G; are sorted by their r* values and r} : V(G;) — {1,...,n;}
then assigns each node v € V(G;) the rank of v in the obtained order. Let v € V(G;)
and denote by SS5’(v) the search space of v in G; when using contraction order rf. We
show that |SS*(v) NV(G;)| > |SS’(v)], implying that the part of a search space of a node
v that intersects a certain subgraph is as least as large as the search space of v in that
subgraph when using the globally optimal contraction order restricted to that subgraph. For
proving this property, consider a node w € SS’(v). As w is contained in this search space,
there exists a path from v to w in G; with all nodes on the path having a rank of at most

*

r¥(w). This path then also exists in G and as for nodes x,y with r*(z) > r*(y), we have
r¥(xz) > r(y) by construction, it follows that w € SS*(v) N V(G;) holds as well. Therefore,
SS8*(v) NV(G;) 2 SS’(v) applies. Plugging the resulting size inequality into the definition

of the average search space results in the following lower bound:

d d
n-Sh,(G) =Y 185" @) =D Y ISS @) =D Y [SS* () NVI(G)

vev i=1 veV(G;) i=1veV(G;)
d
2> > 1SSW)
=1 veV(G,;)

As the application of any contraction order to G; results in summed search space sizes that

are at least as large as n; - S, (Gi) where S5, (G;) is the optimal average search space in

Gy, we get S5, (G) > L3057 o) 1SS ()] = 2300 i - S,y (Ga). <

» Theorem 9. Given a gmph G, nested dissection contraction results in search space sizes

Sé\f}? <1+ 31081 /o 1) - S5y for any a > 3, if optimal separators are used.

Proof. Consider the («,b,)-balanced separator decomposition which induces the nested
dissection order. For every leaf X in the decomposition we have SN2 (X) = S, (X) as X
contains only one vertex. Consider now some non-leaf node X from the decomposition. Let
H be the subgraph of G induced by X and its descendants in the separator decomposition
and denote the connected components of H \ X by Hy,..., Hy. Denote the size of H; by

n; and assume that for the average search spaces of Hy, ..., H; we have an approximation
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factor of v, i.e. SNP(H;) <~-8, . (H;). Lemma 7 implies

avg avg

d d
SND(H) < LY "n; - SND( DHXISV%Z St oo (H) + |X|

Moreover, X is an optimal a-balanced separator, so Corollary 4 implies that Sy, ,(H) > a-|X|,

which can be rearranged to |X| < 257 (H). In combination with Lemma 8 we obtain

:\»—-

d
Z Savg(Hi) + | X| <7+ 85,4 (H) + 5+ S5,4(H) < (v+ 3) - S, (H)

As for every leaf X we have SNP(X) =S¥, (X) and the height of the separator decomposition

avg avg

is logy /, m, it follows by induction that SHP(G) < (1+ élogl/a n) - Spug(G). <

» Corollary 10. The average search space size in a weak CH using nested dissection based
on recursive decomposition with by/3 is at most 1 + 1.5log; 5n times the optimal size.

However, as computing optimal balanced separators is NP-hard in general, nested dissection
does not directly yield a polynomial time approximation algorithm. But we can exploit the
existence of a pseudo-approximation for balanced separators. In [18] it was proven that
one can find a 3/4-balanced separator that has size at most O(logn) - by/3 in polynomial
3

time®. In general, if we have a y-approximation for by/3, Lemma 7 can be modified to

show that SND < Z?Zl n; - SND(G,) + b3 which plugged into Theorem 9 results in an

avg avg
average search space size of Sé\fng < (1+1.5vlog; 5 )S;vg Using the pseudo-approximation

result, we have v = O(logn), and additionally the depth of the recursion increases from
logg /o n to log, 3 n. We call the nested dissection based contraction algorithm which leverages

the pseudo-approximation algorithm to compute the node separators the pND-algorithm.

Combining the aforementioned observations, we get the following theorem.

» Theorem 11. Given a graph G(V, E), then a weak CH obtained from the pND-algorithm
in polynomial time leads to an average search space size of Sg%D(G) with Sg%D (G) <

O(log? n)Sy,,(G), where S5, (G) denotes the minimum average search space size.

Note that for some graph classes better approximation algorithms for balanced node separators
exist, which then can be plugged into our analysis to achieve tighter overall results. For
example, for any graph class for which optimal balanced separators can be approximated
by some constant factor ¢ > 0 in polynomial time (as it is the case e.g., for planar graphs
[4]), we achieve an overall approximation ratio of O(logn) for Sg,g. For the special case of
V/n x y/n rectangular grids, the results from [7] imply that nested dissection leads to search
space sizes of at most 3y/n. This matches our lower bound of « - b, (translating for grids to
g\/ﬁ) up to a factor of 4.5. As the respective separators can be found efficiently in grids,
this implies that nested dissection yields a constant factor approximation algorithm for this
graph class.

Regarding space consumption, it was argued in [7] that a weak CH-graph constructed
by nested dissection contains at most n - S4,4 shortcut edges. However, this bound is
rather loose on some graphs. For example, it is known for planar graphs that contraction
orders exist such that the CH-graph size is in O(nlogn) while e.g., for grids we know by

3 This is called a pseudo-approximation or bicriteria approximation as the approximation factor compares
the output for a relaxed problem version to the optimum of the unrelaxed version.
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Corollary 4 that n - Sq,g amounts to Q(ny/n). In [3], it was proven that nested dissection
indeed approximates the number of shortcut edges within a factor of (’)(\/glog4 n) where
d is the maximum degree of the input graph. To achieve polynomial running time, the
nested dissection variant described there relies on a pseudo-approximation for 1/2-balanced
separators. As proven in Theorem 6, the average search space size is also lower bounded
by 2/9 - bij,. This can be plugged in our approximation algorithm analysis to also get an
O(log® n) overall approximation factor for Su,,. For road networks, where the maximum
node degree is a small constant, it therefore yields that a polynomial time variant of nested
dissection approximates the three important aspects of a CH-graph — space consumption
(number of inserted shortcuts), maximum search space size, and average search space size —
all by polylogarithmic factors.

4 Relation to Road Network Dimensions

So far, we considered search space sizes in weak CHs. Now we shift our focus to strong CH.
In particular, we now study the relationship between the average search space size in a strong
CH and the highway dimension h as well as the skeleton dimension & of the graph. Those
two parameters were both previously used to show upper bounds on the search space size of
preprocessing-based route planning techniques.

4.1 Highway Dimension Lower Bound

The highway dimension of a weighted graph G(V, E) is defined as follows [1]: For v € V
and r > 0, the ball B,.(u) consists of all nodes at distance at most r from u. Consider now
the set P of all shortest paths longer than r that are contained within the ball By, (u) and
let HY C V be a minimum hitting set for P. The highway dimension of G is defined as
h = max,, , |[H}|. For a graph with highway dimension h, Spqz € O(hlog D) was proven for
strong CH [1]. Furthermore, it was shown in [7] that there exist graphs and edge weights
such that h € Q(pw/logn) holds. We now establish a complementary result where the aim
is to find edge weights such that the value of h is as small as possible.

» Lemma 12. For any unweighted graph G there are metric edge weights such that the
highway dimension of G is 1.

Proof. Let V = {1,...,n} and choose the weight of an edge {u,v} as 9™*{**} To bound
the highway dimension consider some ball By, (v) and choose the largest j such that 99 < 4r.
If v > j, any edge incident to v has length at least 9° > 9/*! > 47, This means that
By, (v) = {v} and the ball contains no shortest path that needs to be hit. Let now v < j.
Consider some shortest path 7 that passes only through vertices i < j. The path 7 is simple
and hence by the choice of the edge weights it contains no three edges of same length. This
means that we can bound the length of 7 by Zg;jl/z 2.9 < 2. Zf;é 9= (99 —1)/4 <.
Moreover, any u > j has distance 9% > 9/*1 > 4r from v and hence no shortest path passing
through w is contained in By, (v). This means that every relevant shortest path contains j
and can be hit by the set {j}. <

The lemma shows that the known upper bound on the maximum search space size of
O(hlog D) is almost tight when the metric is chosen appropriately. White [22] showed for a
special family of graphs called Gy x4 graphs (introduced in [19]) that the average search space
size is in Q(hlog D), which matches the upper bound asymptotically. His proof strongly relies
on the characteristics of that graph family, though, and especially on the graph topology.
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Our lower bound, however, is independent of the graph structure but just considers the
metric. Our result also generalizes to the hub labeling technique where a matching upper
bound on the maximum number of hubs per node was proven in [1].

4.2 General Incomparability

While we showed above that we can always choose edge weights such that the highway
dimension lower bounds the average search space size, this is not necessarily true if the edge
weights are given. In fact, we will prove that in general, it is not possible to lower bound
the maximum (or average) CH search space size in terms of the highway dimension or the
skeleton dimension. For the skeleton dimension k, no upper bounds for CH are known so far,
but for the related technique of hub labeling [17], upper bounds of O(klogn) were shown.

Intuitively, the skeleton dimension measures how many “important” branches every
shortest path tree contains. For a concise definition we refer to [17]. Our incomparability
result just exploits the fact that the maximum degree is a lower bound for the skeleton
dimension.

» Lemma 13. There are graphs with skeleton dimension k and highway dimension h such
that Smax € 0(k) and Smax € o(h).

Proof. Take a star graph, subdivide every edge by inserting one vertex and assume unit
edge weights. The maximum degree A of the graph is linear in the number of nodes n and
as A is a lower bound for the skeleton dimension k, it follows that k& € (n). Moreover half
of the edges are incident to a leaf node. All these edges are pairwise disjoint and every such
edge forms a shortest path of length 1 =: 2r > r, which intersects the ball of radius 4r = 2
around the central vertex of the graph. This means that the highway dimension is in Q(n).

Consider a contraction order where the highest rank is assigned to the central vertex of
the graph and the lowest ranks are assigned to the leaves. Then the maximum search space
size is 3 € o(n), which is assumed in the leaves. <

Accordingly, search space sizes might be significantly smaller than the discussed road
network dimensions. Therefore, the upper bounds derived in dependency of those parameters
might be very loose on some graphs. This motivates further research into finding other graph
parameters where the possible gap between the average/maximum search space size and the
parameter value is in o(n); and to investigate these gaps on real-world networks.

5 Lower Bounds for Strong CH

In this section, we present algorithms to obtain lower bounds for the average search space
size of a strong CH in a given weighted graph, e.g., to judge how large the gaps to the
road network dimensions are, or to investigate whether a contraction order used in practice
produces search space sizes close to the optimum.

5.1 HittingSet Lower Bound

In a strong CH, a node w of rank R is in the search space of a node v with rank r < R, if on
the shortest path between v and w there is no node with a rank higher than R. (Note that
this is a sufficient but not necessary condition.) Accordingly, if we consider the node with
maximum rank in the contraction order, we know that it has to be contained in the search
space of each node in G. This leads us to the definition of the inverse search space of a node
vas [SS(v) :={w € V]v € SS(w)} which can be used as an alternative mean to determine
the average search space Saqug = 23 1, [SS(v)| = 13 1 [I5S(v)|. For the node vyae

n
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with the highest rank, we know that [I.5S(vpmaz)| = n. Now the goal is to show large inverse
search spaces also for other nodes of sufficiently high rank. Note however, that the inverse
search space sizes are not necessarily proportional to the rank, as nodes of even higher rank
might block many shortest paths. Therefore, we have to take the topology of the graph as
well as the shortest path structure into account.

» Observation 14. Let G’ be the subgraph of G induced by a node set V' C V and let
vl € V' be the node with the highest rank in the contraction order among all nodes in

max
! being completely

V'. Then the number of nodes in V' with their shortest path towards v, ,,

contained in G' is a lower bound for |ISS(v),..)|-

To get a lower bound which adheres to all possible contraction orders we need to deal with
the fact that we do not know which node in V' will become v},
general, we can iterate through all nodes v € V' and compute the number of nodes in V'
with the shortest path towards v being completely contained in G, keeping track of the

minimum. We call this value the minimum shortest path tree size in G’ or misp(G’).

To make the bound more

» Theorem 15. For any 8 € (0,1], let G be a collection of subgraphs of G with misp(G') > Bn
for all G" € G. Furthermore, let H be a minimum HittingSet for the set system (V,G). Then
it yields Sqvg > BIH|.

Proof. We want to count the inverse search space sizes induced by the nodes of highest
rank within each subgraph. To that end, we interpret H as the set of nodes contracted
last. We know by definition of G and minimality of H that for every node h € H, we have
|ISS(h)| > Bn. Furthermore, by H being a minimum HittingSet, we conclude that there can’t
be fewer than |H| nodes with that property. Accordingly, we get Squg = = > 1, [1SS(v)| >
LS wem 1ISS(h)| = LBn|H| = B|H| which completes the proof. <

» Example 16. To illustrate the usefulness of the HittingSet lower bound, we consider a
complete graph G with n nodes and metric edge weights, and we choose 8 = % We observe
that any induced subgraph G’ of G of size > % has misp(G') > § as well. It follows that we
need a HittingSet H of size § + 1 to hit all these subgraphs. According to Theorem 15, we
hence get 4y > %4 which matches the upper bound on Syq. of n — 1 asymptotically.

For practical exploitation in real networks, we remark that for every shortest path m of
length fn in G, we automatically have misp(m) = fn and that for any selected subgraph
the misp-value can be computed in polytime.

5.2 Hierarchical Lower Bound

In general graphs, the question arises how to choose (8 in practice to get the best bound. For
large B the size of H is expected to be small, while gains in the HittingSet size for small
values 8 might be diminished by the multiplication with 3 itself. To get a useful lower bound
nevertheless, we propose a hierarchical scheme based on the following observation.

» Observation 17. Let 81,082 € (0,1] be two parameters with 81 > (2 and Gi, Hi as
well as Go, Hy the respective subgraph collections and minimum HittingSets. Then we have

Savg > ﬁl‘H1| + 62(|H2| - ‘H1|)
This observation can be generalized to an arbitrarily fine-grained succession of g-values.

» Corollary 18. Given a weighted graph G(V, E), as well as fy > o > -+- > B with p; €
(0,1], let H; be the respective HittingSet sizes for all subgraphs G’ of G with misp(G') > Bin.
Then the average search space size Savg is lower bounded by By|Hy| + S2F_, Bi(|Hi| — |H;_1|).
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» Example 19. To illustrate that the hierarchical scheme can be beneficial, we consider a
path graph with n = 2% nodes. For any choice of 8, we know that a trivial HittingSet of size
% exists. Therefore the bound we get from Theorem 15 only amounts to Squg = 8- % =1.If

we now use Corollary 18 with 8; = 27 for i = 0,...,logy n, we get

q
Savg =1+ 2720 =27 =14+ 1 =1Llog,n
i=1 =1

which matches the known upper bound up to constant factors.

6 Conclusions and Future Work

We described several novel lower bounding techniques for average and maximum search space
sizes in contraction hierarchies. Lower bounds are an important mean to judge the quality
of existing construction schemes and theoretical upper bounds. While for hub labeling (a
preprocessing-based route planning technique closely related to contraction hierarchies),
approximation algorithms for the average number of nodes that have to be scanned in a
query were known for some time [10], we proved the first general approximation result for
the average search space size in weak contraction hierarchies. As the construction of weak
contraction hierarchies is closely related to graph triangulation and to solving systems of
linear equations [3], there might be cross-implications to explore.

Future work could also consider weak contraction hierarchies on directed graphs. As the
graph parameters used in our analysis are classically defined on undirected graphs only, the
established relationships to CH search space sizes do not automatically transfer to directed
graphs. One possibility would be to consider parameter variants, as the directed treewidth
[16], which are explicitly defined on directed graphs and to check whether approximation
results can be obtained in dependency of those parameters.

Another interesting open question is whether there are efficient approximation algorithms
for the average or maximum search space size in strong CHs. While upper bounds for search
space sizes in weak CHs are valid for strong CHs as well, it is the other way around for
lower bounds. Therefore, strong CHs are not covered by our approximation results for weak
CHs. Our lower bounds for average search space sizes in strong CHs rely on HittingSet
computation, though, as do some strong CH construction schemes which come with provable
upper bounds [1]. Tt hence might be possible to link those results.

Finally, it might be interesting to experimentally investigate the strength of our lower
bounds and the efficiency of the proposed algorithms on real-world (road) networks.
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