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Abstract
A k-colouring c of a graph G is a mapping V (G)→ {1, 2, . . . k} such that c(u) 6= c(v) whenever u

and v are adjacent. The corresponding decision problem is Colouring. A colouring is acyclic, star,
or injective if any two colour classes induce a forest, star forest or disjoint union of vertices and
edges, respectively. Hence, every injective colouring is a star colouring and every star colouring is an
acyclic colouring. The corresponding decision problems are Acyclic Colouring, Star Colouring
and Injective Colouring (the last problem is also known as L(1, 1)-Labelling).

A classical complexity result on Colouring is a well-known dichotomy for H-free graphs, which
was established twenty years ago (in this context, a graph is H-free if and only if it does not contain
H as an induced subgraph). Moreover, this result has led to a large collection of results, which
helped us to better understand the complexity of Colouring. In contrast, there is no systematic
study into the computational complexity of Acyclic Colouring, Star Colouring and Injective
Colouring despite numerous algorithmic and structural results that have appeared over the years.

We initiate such a systematic complexity study, and similar to the study of Colouring we use
the class of H-free graphs as a testbed. We prove the following results:
1. We give almost complete classifications for the computational complexity of Acyclic Colouring,

Star Colouring and Injective Colouring for H-free graphs.
2. If the number of colours k is fixed, that is, not part of the input, we give full complexity

classifications for each of the three problems for H-free graphs.
From our study we conclude that for fixed k the three problems behave in the same way, but this is
no longer true if k is part of the input. To obtain several of our results we prove stronger complexity
results that in particular involve the girth of a graph and the class of line graphs.
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1 Introduction

We study the complexity of three classical colouring problems. We do this by focusing on
hereditary graph classes, i.e., classes closed under vertex deletion, or equivalently, classes
characterized by a (possibly infinite) set F of forbidden induced subgraphs. As evidenced by
numerous complexity studies in the literature, even the case where |F| = 1 captures a rich
family of graph classes suitably interesting to develop general methodology. Hence, we usually
first set F = {H} and consider the class of H-free graphs, i.e., graphs that do not contain H
as an induced subgraph. We then investigate how the complexity of a problem restricted to
H-free graphs depends on the choice of H and try to obtain a complexity dichotomy.

To give a well-known and relevant example, the Colouring problem is to decide, given
a graph G and integer k ≥ 1, if G has a k-colouring, i.e., a mapping c : V (G)→ {1, . . . , k}
such that c(u) 6= c(v) for every two adjacent vertices u and v. Král’ et al. [37] proved
that Colouring on H-free graphs is polynomial-time solvable if H is an induced subgraph
of P4 or P1 + P3 and NP-complete otherwise. Here, Pn denotes the n-vertex path and
G1 +G2 = (V (G1)∪ V (G2), E(G1)∪E(G2)) the disjoint union of two vertex-disjoint graphs
G1 and G2. If k is fixed (not part of the input), then we obtain the k-Colouring problem.
No complexity dichotomy is known for k-Colouring if k ≥ 3. In particular, the complexities
of 3-Colouring for Pt-free graphs for t ≥ 8 and k-Colouring for sP4-free graphs for s ≥ 2
and k ≥ 3 are still open. Here, we write sG for the disjoint union of s copies of G. We refer
to the survey of Golovach et al. [27] for further details and to [13, 36] for updated summaries.

For a colouring c of a graph G, a colour class consists of all vertices of G that are mapped
by c to a specific colour i. We consider the following special graph colourings. A colouring of
a graph G is acyclic if the union of any two colour classes induces a forest. The (r+ 1)-vertex
star K1,r is the graph with vertices u, v1, . . . , vr and edges uvi for every i ∈ {1, . . . , r}. An
acyclic colouring is a star colouring if the union of any two colour classes induces a star
forest, that is, a forest in which each connected component is a star. A star colouring is
injective (or an L(1, 1)-labelling) if the union of any two colour classes induces an sP1 + tP2
for some integers s ≥ 0 and t ≥ 0. An alternative definition is to say that all the neighbours
of every vertex of G are uniquely coloured. These definitions lead to the following three
decision problems:

Acyclic Colouring
Instance: A graph G and an integer k ≥ 1
Question: Does G have an acyclic k-colouring?

Star Colouring
Instance: A graph G and an integer k ≥ 1
Question: Does G have a star k-colouring?

Injective Colouring
Instance: A graph G and an integer k ≥ 1
Question: Does G have an injective k-colouring?

If k is fixed, we write Acyclic k-Colouring, Star k-Colouring and Injective k-
Colouring, respectively.

All three problems have been extensively studied. We note that in the literature on
the Injective Colouring problem it is often assumed that two adjacent vertices may be
coloured alike by an injective colouring (see, for example, [29, 30, 33]). However, in our
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paper, we do not allow this; as reflected in their definitions we only consider colourings that
are proper. This enables us to compare the results for the three different kinds of colourings
with each other.

So far, systematic studies mainly focused on structural characterizations, exact values,
lower and upper bounds on the minimum number of colours in an acyclic colouring or
star colouring (i.e., the acyclic and star chromatic number); see, e.g., [2, 9, 19, 20, 21, 34,
35, 50, 51, 53], to name just a few papers, whereas injective colourings (and the injective
chromatic number) were mainly considered in the context of the distance constrained labelling
framework (see the survey [11] and Section 6 therein). The problems have also been studied
from a complexity perspective, but apart from a study on Acyclic Colouring for graphs
of bounded maximum degree [45], known results are scattered and relatively sparse. We
perform a systematic and comparative complexity study by focusing on the following research
question both for k part of the input and for fixed k:
What are the computational complexities of Acyclic Colouring, Star Colouring and
Injective Colouring for H-free graphs?
Before discussing our new results and techniques, we first briefly discuss some known results.

Coleman and Cai [14] proved that for every k ≥ 3, Acyclic k-Colouring is NP-complete
for bipartite graphs. Afterwards, a number of hardness results appeared for other hereditary
graph classes. Alon and Zaks [3] showed that Acyclic 3-Colouring is NP-complete for line
graphs of maximum degree 4. Angelini and Frati [4] showed that Acyclic 3-Colouring
is NP-complete for planar graphs of maximum degree 4. Mondal et al. [45] proved that
Acyclic 4-Colouring is NP-complete for graphs of maximum degree 5 and for planar
graphs of maximum degree 7. Albertson et al. [1] and recently, Lei et al. [38] proved that
Star 3-Colouring is NP-complete for planar bipartite graphs and line graphs, respectively.
Bodlaender et al. [7], Sen and Huson [48] and Lloyd and Ramanathan [41] proved that
Injective Colouring is NP-complete for split graphs, unit disk graphs and planar graphs,
respectively. Mahdian [44] proved that for every k ≥ 4, Injective k-Colouring is NP-
complete for line graphs, whereas Injective 4-Colouring is known to be NP-complete for
cubic graphs (see [11]); observe that Injective 3-Colouring is trivial for general graphs.

On the positive side, Lyons [43] showed that every acyclic colouring of a P4-free graph
is, in fact, a star colouring. Lyons [43] also proved that Acyclic Colouring and Star
Colouring are polynomial-time solvable for P4-free graphs; we note that Injective
Colouring is trivial for P4-free graphs, as every injective colouring must assign each vertex
of a connected P4-free graph a unique colour. The results of Lyons have been extended to
P4-tidy graphs and (q, q− 4)-graphs [40]. Cheng et al. [12] complemented the aforementioned
result of Alon and Zaks [3] by proving that Acyclic Colouring is polynomial-time solvable
for claw-free graphs of maximum degree at most 3. Calamoneri [11] observed that Injective
Colouring is polynomial-time solvable for comparability and co-comparability graphs. Zhou
et al. [52] proved that Injective Colouring is polynomial-time solvable for graphs of
bounded treewidth (which is best possible due to the W[1]-hardness result of Fiala et al. [22]).

Our Complexity Results and Methodology

The girth of a graph G is the length of a shortest cycle of G (if G is a forest, then its girth
is ∞). To answer our research question we focus on two important graph classes, namely
the classes of graphs of high girth and line graphs, which are interesting classes on their
own. If a problem is NP-complete for both classes, then it is NP-complete for H-free graphs
whenever H has a cycle or a claw. It then remains to analyze the case when H is a linear
forest, i.e., a disjoint union of paths; see [8, 10, 25, 37] for examples of this approach, which
we discuss in detail below.

ESA 2020
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The construction of graph families of high girth and large chromatic number is well
studied in graph theory (see, e.g. [18]). To prove their complexity dichotomy for Colouring
on H-free graphs, Král’ et al. [37] first showed that for every integer g ≥ 3, 3-Colouring is
NP-complete for the class of graphs of girth at least g. This approach can be readily extended
to any integer k ≥ 3 [17, 42]. The basic idea is to replace edges in a graph by graphs of high
girth and large chromatic number, such that the resulting graph has sufficiently high girth
and is k-colourable if and only if the original graph is so (see also [28, 32]).

By a more intricate use of the above technique we are able to prove that for every g ≥ 3,
Acyclic 3-Colouring is NP-complete for the class of graphs of girth at least g. This
implies that Acyclic 3-Colouring is NP-complete for H-free graphs whenever H has a
cycle. We prove the same result for every k ≥ 4 by combining known results, just as we
use known results to prove that Star k-Colouring (k ≥ 3) and Injective k-Colouring
(k ≥ 4) are NP-complete for H-free graphs if H has a cycle.

A classical result of Holyer [31] is that 3-Colouring is NP-complete for line graphs
(and Leven and Galil [39] proved the same for k ≥ 4). As line graphs are claw-free, Král’ et
al. [37] used Holyer’s result to show that 3-Colouring is NP-complete for H-free graphs
whenever H has an induced claw. For Acyclic 3-Colouring, this follows from Alon and
Zaks’ result [3], which we extend to work for k ≥ 4. For Injective k-Colouring (k ≥ 4)
we can use the aforementioned result on line graphs of Mahdian [44].

The above hardness results leave us to consider the case where H is a linear forest. In
Section 2 we will use a result of Atminas et al. [5] to prove a general result from which it
follows that for fixed k, all three problems are polynomial-time solvable for H-free graphs if
H is a linear forest. Hence, we have full complexity dichotomies for the three problems when
k is fixed. However, these positive results do not extend to the case where k is part of the
input: we prove NP-completeness for graphs that are Pr-free for some small value of r or
have a small independence number, i.e., that are sP1-free for some small integer s.

Our complexity results for H-free graphs are summarized in the following three theorems,
proven in Sections 3–5, respectively; see Table 1 for a comparison. For two graphs F and G,
we write F ⊆i G or G ⊇i F to denote that F is an induced subgraph of G.

I Theorem 1. Let H be a graph. For the class of H-free graphs it holds that:
(i) Acyclic Colouring is polynomial-time solvable if H ⊆i P4 and NP-complete if H is

not a forest or H ⊇i 19P1, 3P3 or 2P5;
(ii) For every k ≥ 3, Acyclic k-Colouring is polynomial-time solvable if H is a linear

forest and NP-complete otherwise.

I Theorem 2. Let H be a graph. For the class of H-free graphs it holds that:
(i) Star Colouring is polynomial-time solvable if H ⊆i P4 and NP-complete for any

H 6= 2P2.
(ii) For every k ≥ 3, Star k-Colouring is polynomial-time solvable if H is a linear forest

and NP-complete otherwise.

I Theorem 3. Let H be a graph. For the class of H-free graphs it holds that:
(i) Injective Colouring is polynomial-time solvable if H ⊆i P4 or H ⊆i P1 + P3 and

NP-complete if H is not a forest or 2P2 ⊆i H or 6P1 ⊆i H.
(ii) For every k ≥ 4, Injective k-Colouring is polynomial-time solvable if H is a linear

forest and NP-complete otherwise.
In Section 6 we give a number of open problems that resulted from our systematic study; in
particular we will discuss the distance constrained labelling framework in more detail.
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Table 1 The state-of-the-art for the three problems in this paper and the original Colouring
problem; both when k is fixed and when k is part of the input.

polynomial time NP-complete
Colouring [37] H ⊆i P4 or P1 + P3 else
Acyclic Colouring H ⊆i P4 else except for at most 1991 open cases
Star Colouring H ⊆i P4 else except for 1 open case
Injective Colouring H ⊆i P4 or P1 + P3 else except for 10 open cases
k-Colouring (see [13, 27, 36]) depends on k infinitely many open cases for all k ≥ 3
Acyclic k-Colouring (k ≥ 3) H is a linear forest else
Star k-Colouring (k ≥ 3) H is a linear forest else
Injective k-Colouring (k ≥ 4) H is a linear forest else

2 A General Polynomial Result

A biclique or complete bipartite graph is a bipartite graph on vertex set S ∪ T , such that
S and T are independent sets and there is an edge between every vertex of S and every
vertex of T ; if |S| = s and |T | = t, we denote this graph by Ks,t , and if s = t, the biclique is
balanced and of order s. We say that a colouring c of a graph G satisfies the balance biclique
condition (BB-condition) if c uses at least k + 1 colours to colour G, where k is the order of
a largest biclique that is contained in G as a (not necessarily induced) subgraph.

Let π be some colouring property; e.g., π could mean being acyclic, star or injective.
Then π can be expressed in MSO2 (monadic second-order logic with edge sets) if for every
k ≥ 1, the graph property of having a k-colouring with property π can be expressed in MSO2.
The general problem Colouring(π) is to decide, on a graph G and integer k ≥ 1, if G has a
k-colouring with property π. If k is fixed, we write k-Colouring(π). We now prove the
following result.

I Theorem 4. Let H be a linear forest, and let π be a colouring property that can be expressed
in MSO2, such that every colouring with property π satisfies the BB-condition. Then, for
every integer k ≥ 1, k-Colouring(π) is linear-time solvable for H-free graphs.

Proof. Atminas, Lozin and Razgon [5] proved that that for every pair of integers ` and k,
there exists a constant b(`, k) such that every graph of treewidth at least b(`, k) contains an
induced P` or a (not necessarily induced) biclique Kk,k. Let G be an H-free graph, and let `
be the smallest integer such that H ⊆i P`; observe that ` is a constant. Hence, we can use
Bodlaender’s algorithm [6] to test in linear time if G has treewidth at most b(`, k)− 1.

First suppose that the treewidth of G is at most b(`, k)− 1. As π can be expressed in
MSO2, the result of Courcelle [15] allows us to test in linear time whether G has a k-colouring
with property π. Now suppose that the treewidth of G is at least b(`, k). As G is H-free, G is
P`-free. Then, by the result of Atminas, Lozin and Razgon [5], we find that G contains Kk,k

as a subgraph. As π satisfies the BB-condition, G has no k-colouring with property π. J

We now apply Theorem 4 to obtain the polynomial cases for fixed k in Theorem 1–3.

I Corollary 5. Let H be a linear forest. For every k ≥ 1, Acyclic k-Colouring, Star
k-Colouring and Injective k-Colouring are polynomial-time solvable for H-free graphs.

Proof. All three kinds of colourings use at least s colours to colour Ks,s (as the vertices
from one bipartition class of Ks,s must receive unique colours). Hence, every acyclic, star
and injective colouring of every graph satisfies the BB-condition. Moreover, it is readily seen
that the colouring properties of being acyclic, star or injective can all be expressed in MSO2.
Hence, we may apply Theorem 4. J

ESA 2020
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3 Acyclic Colouring

In this section, we prove Theorem 1. For a graph G and a colouring c, the pair (G, c) has a
bichromatic cycle C if C is a cycle of G with |c(V (C)| = 2, i.e., the vertices of C are coloured
by two alternating colours (so C is even). A path P in G is an i-j-path if the vertices of P
have alternating colours i and j. We now prove the following result.

I Lemma 6. For every g ≥ 3, Acyclic 3-Colouring is NP-complete for graphs of girth at
least g.

Proof. We reduce from Acyclic 3-Colouring, which is known to be NP-complete [14].
We start by taking a graph F that has a 4-colouring but no 3-colouring and that is of girth
at least g. By a seminal result of Erdős [18], such a graph F exists (and its size is constant,
as it only depends on g which is a fixed integer). We now repeatedly remove edges from F

until we obtain a graph F ′ that is acyclically 3-colourable. Let xy be the last edge that we
removed. As F has no 3-colouring, the edge xy exists. Moreover, by our construction, the
graph F ′ + xy is not acyclically 3-colourable. As edge deletions do not decrease the girth,
F ′ + xy and F ′ have girth at least g.

The basic idea (Case 1) is as follows. Let G be an instance of Acyclic 3-Colouring.
We pick an edge uv ∈ E(G). In G− uv we “glue” F ′ by identifying u with x and y with v;
see also Figure 1. We then prove that G has an acyclic 3-colouring if and only if G′ has an
acyclic 3-colouring. Then, by performing the same operation for each other edge of G as well,
we obtain a graph G′′, such that G has an acyclic 3-colouring if and only if G′′ has so. As
the size of G′′ is polynomial in the size of G and the girth of G′′ is at least g, we have proven
the theorem. The challenge in this technique is that we do not know how the graph F ′ looks.
We can only prove its existence and therefore have to consider several possibilities for the
properties of the acyclic 3-colourings of F ′. Hence, we distinguish between Cases 1–3, 4a,
and 4b.

u = x

v = y

G− uv F ′

Figure 1 The graph G′ from Case 1.

Case 1: Every acyclic 3-colouring of F ′ assigns different colours to x and y.
We construct the graph G′ as described above and in Figure 1. We claim that G is a
yes-instance of Acyclic 3-Colouring if and only if G′ is a yes-instance of Acyclic
3-Colouring.

First suppose that G has an acyclic 3-colouring c. Let c∗ be an acyclic 3-colouring of F ′.
We may assume without loss of generality that c(u) = c∗(x) and c(v) = c∗(y). Hence, we
can define a vertex colouring c′ of G′ with c′(w) = c(w) if w ∈ V (G) and c′(w) = c∗(w) if
w ∈ V (F ′). As c and c∗ are 3-colourings of G and F ′, respectively, c′ is a 3-colouring of G′.
We claim that c′ is acyclic. For contradiction, assume that (G′, c′) has a bichromatic cycle C.
If all edges of C are in G or all edges of C are in F ′, then (G, c) or (F ′, c∗) has a bichromatic
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cycle, which is not possible as c and c∗ are acyclic. Hence, at least one edge of C belongs to
G and at least one edge of C belongs to F ′. This means that C contains both u = x and
v = y. Recall that G contains the edge uv. Consequently, (G, c) has a bichromatic cycle,
namely the cycle induced by V (C) ∩ V (G), a contradiction.

Now suppose that G′ has an acyclic 3-colouring c′. Let c and c∗ be the restrictions of
c′ to V (G) and V (F ′), respectively. Then c and c∗ are acyclic 3-colourings of G− uv and
F ′, respectively. By our assumption and because c∗ is an acyclic 3-colouring of F ′, we find
that c∗(x) 6= c∗(y), or equivalently, c(u) 6= c(v). This means that c is also a 3-colouring of G
and c∗ is also a 3-colouring of F ′ + xy. We claim that c is acyclic on G. For contradiction,
assume that (G, c) has a bichromatic cycle C. As c is an acyclic 3-colouring of G− uv, we
deduce that C must contain the edge uv = xy. As F ′ + xy has no acyclic 3-colouring by
construction and c∗ is a 3-colouring of F ′ + xy, we find that (F ′ + xy, c∗) has a bichromatic
cycle D. As c∗ is an acyclic 3-colouring of F ′, this means that D contains the edge xy = uv.
However, then (G′, c′) has a bichromatic cycle, namely the cycle induced by V (C) ∪ V (D), a
contradiction.

Let F ∗ be the graph obtained from F ′ by adding a new vertex x′ and edges xx′ and x′y. As
F ′ + xy has girth at least g, we find that F ∗ and F ∗ − x′y have girth at least g. As x′ has
degree 1 in F ∗ − x′y and F ′ has an acyclic 3-colouring, F ∗ − x′y has an acyclic 3-colouring.

u = x′

v = y

G− uv F ′

x

Figure 2 The graph G′ from Case 2.

Case 2: All acyclic 3-colourings of F ′ assign the same colour to x and y and F ∗ has no
acyclic 3-colouring.

In this case we let G′ be the graph obtained from G − uv and F ∗ − x′y by identifying u
with x′ and v with y; see also Figure 2. We claim that G is a yes-instance of Acyclic
3-Colouring if and only if G′ is a yes-instance of Acyclic 3-Colouring.

First suppose that G has an acyclic 3-colouring c. Let c∗ be an acyclic 3-colouring
of F ∗ − x′y. Then the restriction of c∗ to F ′ is an acyclic 3-colouring of F ′. By our
assumption, it holds therefore that c∗(x) = c∗(y) and thus c∗(x′) 6= c∗(y). We may assume
without loss of generality that c(u) = c∗(x′) and c(v) = c∗(y). Hence, we can define a vertex
labelling c′ of G′ with c′(w) = c(w) if w ∈ V (G) and c′(w) = c∗(w) if w ∈ V (F ∗). As c and
c∗ are 3-colourings of G and F ∗ − x′y, respectively, c′ is a 3-colouring of G′. We claim that
c′ is acyclic. For contradiction, assume that (G′, c′) has a bichromatic cycle C. If the edges
of C are all in G or all in F ∗ − x′y, then (G, c) or (F ∗ − x′y, c∗) has a bichromatic cycle,
which is not possible as c and c∗ are acyclic. Hence, at least one edge of C belongs to G and
at least one edge of C belongs to F ′. This means that C contains both u = x′ and v = y.
Recall that G contains the edge uv. Consequently, (G, c) has a bichromatic cycle, namely
the cycle induced by V (C) ∩ V (G), a contradiction.

ESA 2020
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Now suppose that G′ has an acyclic 3-colouring c′. Let c and c∗ be the restrictions of
c′ to V (G − uv) and V (F ∗ − x′y), respectively. Then c and c∗ are acyclic 3-colourings of
G − uv and F ∗ − x′y, respectively. Moreover, the restriction of c′ to V (F ′) is an acyclic
3-colouring of F ′. By our assumption, this means that c′(x) = c′(y) and thus c∗(x′) 6= c∗(y),
or equivalently, c(u) 6= c(v). Consequently, c is also a 3-colouring of G and c∗ is also a
3-colouring of F ∗. We claim that c is acyclic. For contradiction, assume that (G, c) has a
bichromatic cycle C. As c is an acyclic 3-colouring of G−uv, we deduce that C must contain
the edge uv = x′y. As F ∗ does not have an acyclic 3-colouring by our assumption and c∗
is a 3-colouring of F ∗, we find that (F ∗, c∗) has a bichromatic cycle D. As c∗ is an acyclic
3-colouring of F ∗ − x′y, this means that D must contain the edge x′y = uv. However, then
(G′, c′) has a bichromatic cycle, namely the cycle induced by V (C)∪ V (D), a contradiction.

G− uv

u = x1

y1

v = y2

x2

F ′
2

F ′
1

Figure 3 The graph G′ with the graph F + from Case 3 (before we recursively repeat g times the
operation of placing the graph F + on the y1x2-edge).

Case 3: All acyclic 3-colourings of F ′ assign the same colour to x and y and F ∗ has an
acyclic 3-colouring.

We first construct a new graph F+ as follows. We take the disjoint union of two copies F ′1
and F ′2 of F ′, where we denote the vertices x and y as x1 and y1 in F ′1 and as x2 and y2 in
F ′2. We add edges x1x2, x2y1, and y1y2 to F ′1 + F ′2; see also Figure 3.

We claim that F+ has an acyclic 3-colouring. First, observe that F+ is the union of
two copies of F ∗ sharing exactly one edge, namely y1x2. That is, F ′1 + x1x2, y1x2 and
F ′2 + y1y2, y1x2 are both isomorphic to F ∗. By our assumption on F ∗, graphs F ′1 +x1x2, x2y1
and F ′2 + y1y2, y1x2 have acyclic 3-colourings c1 and c2, respectively. By our assumption on
F ′, the restriction of c1 to F ′1 gives x1, y1 the same colour and the restriction of c2 to F ′2 gives
x2 and y2 the same colour. We may assume without loss of generality that c1 assigns colour 1
to x1 and y1 and colour 2 to x2, and that c2 assigns colour 2 to x2 and y2 and colour 1
to y1. This yields a 3-colouring c+ of F+. We claim that c+ is acyclic. For contradiction,
suppose (F+, c+) has a bichromatic cycle C. As the restrictions of c+ to F ′1 + x1x2, y1x2
and F ′2 + y1y2, y1x2 (the 3-colourings c1 and c2) are acyclic, C must contain the edges x1x2
and y1y2, so C has the chord y1x2. Hence, (F ′1 + x1x2, y1x2, c1) has a bichromatic cycle on
vertex set (V (C) \ V (F2)) ∪ {x2}, a contradiction.

We now essentially reduce to Case 1. Set x = x1, y = y2 and take the graph F+. We
proved above that F+ has an acyclic 3-colouring. As every acyclic 3-colouring c of F+ colours
x1 and y1 alike, c colours x = x1 and y = y2 differently (as y1x2 is an edge). Finally, the
graph F+ +xy = F+ +x1y2 has no acyclic 3-colouring, as for every 3-colouring c of F+ +x1y2,
the 4-vertex cycle x1x2y1y2x1 is bichromatic for (F+ + x1y2, c). The only difference with
Case 1 is that the graph F+ + x1y2 has girth 4 due to the cycle x1x2y1y2x1 whereas we need
the girth to be at least g just as the graph F ′ + xy in Case 1 has girth g. Hence, before
reducing to Case 1, we first recursively repeat g times the operation of placing the graph F+

on the y1x2-edge; note that the size of the resulting graph G′ is still polynomial in the size
of G.
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Case 4: There exist acyclic 3-colourings c1 and c2 of F ′ with c1(x) = c1(y) and c2(x) 6= c2(y).
We first construct a new graph J . We take two disjoint copies F ′1 and F ′2 of F ′ and identify
the two x-vertices with each other and also the two y-vertices with each other. We write
x = x1 = x2 and y = y1 = y2; see also Figure 4 (left).

x

y

F ′
1 F ′

2

J J ′ x = x1

y

F ′
1 F ′

2

x2

Figure 4 The graph J from Case 4 (left) and the graph J ′ from Case 4b (right).

We distinguish between two sub-cases.

Case 4a: J has an acyclic 3-colouring.
Our goal is to reduce either to Case 2 or 3 by using J instead of F ′. We first observe that
J and J + xy have girth at least g. We also note that J + xy has no acyclic 3-colouring,
as otherwise F ′ + xy, being an induced subgraph of J + xy, has an acyclic 3-colouring.
Hence, in order to reduce to Case 2 or 3 it remains to show that every acyclic 3-colouring
of J assigns the same colour to x and y. For contradiction, suppose that J has an acyclic
3-colouring c such that c(x) 6= c(y), say c(x) = 1 and c(y) = 2. Then in at least one of the
two subgraphs F ′1 and F ′2 of J , say F ′1, there exists no 1-2 path from x to y; otherwise (J, c)
has a bichromatic cycle formed by the union of the two 1-2-paths, which is not possible as c
is acyclic. Let c′ be the restriction of c to V (F ′1). Then, as c(x) = 1 and c(y) = 2, we find
that c′ is a 3-colouring of F ′1 + xy. As there is no 1-2 path from x to y in F ′1, we find that c′
is even an acyclic 3-colouring of F ′1 + xy, a contradiction (recall that F ′ + xy has no acyclic
3-colouring by construction).

Case 4b: J has no acyclic 3-colouring.
By assumption, F ′ has an acyclic 3-colouring that gives x and y different colours. We first
prove a claim.1

B Claim 1. For every triple (h, i, j) with {h, i, j} = {1, 2, 3}, every acyclic 3-colouring c of
F ′ with c(x) = c(y) = h yields an h-i path and h-j path from x to y.

We prove Claim 1 as follows. For contradiction, suppose that F ′ has an acyclic 3-colouring c
that colours x and y alike, say c(x) = c(y) = 1, such that F ′ contains no 1-2-path or no
1-3-path, say F ′ contains no 1-2-path from x to y. Then by swapping colours 2 and 3, we
obtain another acyclic 3-colouring c′ of F ′ such that F ′ contains no 1-3-path from x to y. In
J we now colour the vertices of F ′1 by c and the vertices of F ′2 by c′. As c(x) = c(x′) = 1 and
c(y) = c(y′) = 1, this yields a 3-colouring cJ . By assumption, cJ is not acyclic. Hence, (J, cJ )
contains a bichromatic cycle C with colours 1 and i for some i ∈ {2, 3}. As the restrictions
of cJ to F ′1 and F ′2 are acyclic, C must contain at least one vertex of V (F ′1) \ {x, y} and
at least one vertex of V (F ′2) \ {x, y}. Thus C consists of 1-i-paths from x to y in both F ′1
and F ′2. As at least one of these paths is missing in F ′1 or F ′2, this yields a contradiction.

1 Claim 1 only holds for k = 3 and is the reason we cannot generalize Lemma 6 to k ≥ 3.
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We now construct a new graph J ′ as follows. We take two disjoint copies F ′1 and F ′2 of F ′
and still identify y1 and y2 as y, but instead of identifying x1 and x2 we add an edge between
x1 and x2; see also Figure 4 (right).
We now prove some more claims that will enable us to reduce to Case 1.

(i) The graphs J ′ and J ′ + x1y have girth at least g.
This follows directly from the fact that respectively, F ′ and F ′ + xy have girth at least g.

(ii) The graph J ′ + x1y has no acyclic 3-colouring.
This follows directly from the fact that F ′ + xy is an induced subgraph of J ′ + x1y and has
no acyclic 3-colouring by construction.

(iii) The graph J ′ has an acyclic 3-colouring.
This can be seen as follows. By assumption, F ′ has an acyclic 3-colouring c that gives x and
y different colours, say c(x) = 1 and c(y) = 3. By swapping colours 1 and 2 we obtain an
acyclic 3-colouring c′ of F ′ with c′(x) = 2 and c′(y) = 3. As c(y) = c′(y) = 3, this yields a
3-colouring cJ′ of J ′. As the restrictions of cJ′ to F ′1 and F ′2 are acyclic, any bichromatic
cycle of (J ′, cJ′) must pass through x1, x2 and y. However, x1, x2 and y have colours 1, 2, 3,
respectively. Hence, this is not possible.

(iv) Every acyclic 3-colouring of J ′ gives x1 and y different colours.
For contradiction, assume J ′ has an acyclic 3-colouring c that colours x1 and y alike, say
c(x1) = c(y) = 1 and c(x2) = 2. The restriction of c to V (F ′1) is an acyclic 3-colouring of F ′1
that gives x1 and y colour 1. Hence, by Claim 1, F ′1 contains a 1-2 path from x1 to y. The
restriction of c′ to V (F ′2) is an acyclic 3-colouring of F ′2 that gives x2 colour 2 and y colour 1.
Then F ′2 must contain a 1-2 path from x2 to y; otherwise we found an acyclic 3-colouring of
F ′2 + x2y, which is not possible by construction. The two 1-2 paths now form, with the edge
x1x2, a bichromatic cycle of (J ′, c). As c is acyclic, this is not possible.

By (i)-(iv) we may take J ′ with x1 and y instead of F ′ with x and y and reduce to Case 1. J

The line graph of a graph G has vertex set E(G) and an edge between two vertices e and f if
and only if e and f share an end-vertex of G. In Lemma 7 we modify the construction of [3]
for line graphs from k = 3 to k ≥ 3. In Lemma 8 we give a new construction for proving
hardness when k is part of the input.

I Lemma 7. For every k ≥ 3, Acyclic k-Colouring is NP-complete for line graphs.

Proof. For an integer k ≥ 1, a k-edge colouring of a graph G = (V,E) is a mapping
c : E → {1, . . . , k} such that c(e) 6= c(f) whenever the edges e and f share an end-vertex.
A colour class consists of all edges of G that are mapped by c to a specific colour i. The
pair (G, c) has a bichromatic cycle C if C is a cycle of G with its edges coloured by two
alternating colours. The notion of a bichromatic path is defined in a similar manner. We say
that c is acyclic if (G, c) has no bichromatic cycle. For a fixed integer k ≥ 1, the Acyclic
k-Edge Colouring problem is to decide if a given graph has an acyclic k-edge colouring.
Alon and Zaks proved that Acyclic 3-Edge Colouring is NP-complete for multigraphs.
We note that a graph has an acyclic k-edge colouring if and only if its line graph has an
acyclic k-colouring. Hence, it remains to generalize the construction of Alon and Zaks [3]
from k = 3 to k ≥ 3. Our main tool is the gadget graph Fk, depicted in Figure 5, about
which we prove the following two claims.
(i) The edges of Fk can be coloured acyclically using k colours, with no bichromatic path

between v1 and v14.
(ii) Every acyclic k-edge colouring of Fk using k colours assigns e1 and e2 the same colour.
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v1 v2

v3 v5

v4 v6

v7 v8

v9

v10

v11

v12

v13 v14
e1 e2

(k − 2)

(k − 2)

(k − 2)
(k − 2)

(k − 2)

Figure 5 The gadget multigraph Fk. The labels on edges are multiplicities.

We first prove (ii). We assume, without loss of generality, that v1v2 is coloured by 1, v2v4
by 2 and the edges between v2 and v3 by colours 3, . . . , k. The edge v3v5 has to be coloured
by 1, otherwise we have a bichromatic cycle on v2v3v5v4. This necessarily implies that

the edges between v4 and v5 are coloured by 3, . . . , k,
the edge v5v7 is coloured by 2,
the edge v4v6 is coloured by 1,
the edges between v6 and v7 are coloured by 3, . . . , k, and
the edge v7v8 is coloured by 1.

Now assume that the edge v8v9 is coloured by a ∈ {2, . . . , k} and the edges between v8 and
v10 by colours from the set A, where A = {2, . . . , k} \ a. The edge v10v11 is either coloured a
or 1. However, if it is coloured 1, v9v11 is assigned a colour b ∈ A and necessarily we have
either a bichromatic cycle on v8v9v11v13v12v10, coloured by b and a, or a bichromatic cycle
on v10v11v13v12, coloured by a and 1. Thus v10v11 is coloured by a. To prevent a bichromatic
cycle on v8v9v11v10, the edge v9v11 is assigned colour 1. The rest of the colouring is now
determined as v10v12 has to be coloured by 1, the edges between v11 and v13 by A, v12v13 by
a, and v13v14 by 1. We then have a k-colouring with no bichromatic cycles of size at least
3 in Fk for every possible choice of a. This proves that v1v2 and v13v14 are coloured alike
under every acyclic k-edge colouring.

We prove (i) by choosing a different from 2. Then there is no bichromatic path between
v1 and v14.

We now reduce from k-Edge-Colouring to Acyclic k-Edge Colouring as follows.
Given an instance G of k-edge Colouring we construct an instance G′ of Acyclic
k-Edge Colouring by replacing each edge uv in G by a copy of Fk where u is identified
with v1 and v is identified with v14.

If G′ has an acyclic k-edge colouring c′ then we obtain a k-edge colouring c of G by
setting c(uv) = c′(e1) where e1 belongs to the gadget Fk corresponding to the edge uv. If
G has a k-edge colouring c then we obtain an acyclic k-edge colouring c′ of G′ by setting
c′(e1) = c(uv) where e1 belongs to the gadget corresponding to the edge uv. The remainder
of each gadget Fk can then be coloured as described above. J

In our next result, k is part of the input.

I Lemma 8. Acyclic Colouring is NP-complete for (19P1, 3P3, 2P5)-free graphs.

Proof. We reduce from 3-Colouring with maximum degree 4 which is known to be NP-
complete [26]. Let G be an instance of 3-Colouring with |V (G)| = n vertices and maximum
degree 4. We will construct an instance G′ of Acyclic Colouring where k = 4n. Our
vertex gadget is built from two k-cliques, J0 and J1, with a matching between them. We
number the vertices of each of the cliques 0 to k − 1. The matching we insert into the graph
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1 2 3 0

0 1 2 3

1 3 0 2

0 1 2 3

2 3 0 1

0 1 2 3

2 0 3 1

0 1 2 3

3 0 1 2

0 1 2 3

3 2 0 1

0 1 2 3

2 3 0 1

0 1 2 3

3 2 1 0

0 1 2 3

1 0 3 2

0 1 2 3

Figure 6 Acyclic colourings in the proof of Lemma 8 for a vertex representing one of the three
colours (left and middle). Sample failures for an acyclic colouring from other permutations of
(0, 1, 2, 3) together with a failure cycle (right). Note that each row of quadruples is joined in a clique.

is (0, 0), . . . , (k− 1, k− 1). In addition, we place an edge from i in J0 to j in J1 if and only if
bi/4c < bj/4c. Suppose that some assignment of colours is given to J0. By recolouring, we
assume it is the identity colouring of i to i on J0. Then the possible acyclic k-colourings of
vertices (bi/4c+ 0, bi/4c+ 1, bi/4c+ 2, bi/4c+ 3) in J1 are

(bi/4c+ 1, bi/4c+ 2, bi/4c+ 3, bi/4c+ 0),
(bi/4c+ 1, bi/4c+ 3, bi/4c+ 0, bi/4c+ 2),
(bi/4c+ 2, bi/4c+ 3, bi/4c+ 1, bi/4c+ 0),
(bi/4c+ 2, bi/4c+ 0, bi/4c+ 3, bi/4c+ 1),
(bi/4c+ 3, bi/4c+ 0, bi/4c+ 1, bi/4c+ 2),
(bi/4c+ 3, bi/4c+ 2, bi/4c+ 0, bi/4c+ 1).

They are built from the permutations of (0, 1, 2, 3) that do not contain a transposition. We
draw all of them, to demonstrate it is not an acyclic colouring, in Figure 6 (keep in mind
that vertices in a row are joined in a clique).

In our reduction, the first two acyclic k-colourings will represent colour 1, the second
two colour 2 and the third two colour 3 of the sought 3-colouring of G. To force similarly
coloured copies of J0 we add a new k-clique J2 with edges from i in J0 to j in J2 if and only
if i < j. To prevent the existence of bichromatic cycles in our later construction, we add
a k-clique J3 with edges from i in J2 to j in J3 if and only if i < j. This enforces that in
any acyclic k-colouring of G′, the i-th vertices (where i ∈ {0, . . . , k − 1}) in cliques J0, J2, J3
would have the same colour. Therefore, by the way we placed the edges between different
cliques from {J0, J2, J3}, there is no bichromatic path with vertices from more than one
clique in {J0, J2, J3}.

We now construct edge gadgets. We take another two k-cliques to join J2, say J4 and
J5. We will want them coloured exactly like J0, so for i in J2 and j in J4 or J5, where
i < j, we will add an edge ij. Suppose we have an edge in G between p and q for some
p, q ∈ {0, . . . , n− 1}. Then we place an edge from the vertex 4p in J1 to 4q + 1 in J3 and
from 4q in J1 to 4p+ 1 in J3 (recall that p, q ∈ {0, . . . , n− 1} and cliques J1 and J3 are of
size 4n, so these edges are well defined). See Figure 7. Now we place an edge from 4p in J1
to 4q + 2 in J4 and of 4q in J1 to 4p+ 2 in J4. Finally, we place an edge from 4p in J1 to
4q + 3 in J5 and from 4q in J1 to 4p+ 3 in J5. This concludes the construction for the edge
pq in E(G).
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J5 7 3

J4 6 2

J3 5 1

J1 • • • • • • • •

J0 0 1 2 3 4 5 6 7

Figure 7 Edge construction in the proof of Lemma 8 between vertices 0 and 1 of G. Everything
in a row is joined in a clique. Edges are omitted between J0 and J3, J4, J5, though they enforce the
colouring.

Suppose we have an edge rs ∈ E(G) so that {p, q} ∩ {r, s} = ∅. Then we build a gadget
for rs using the same additional three cliques that we used for the edge pq. However, if we
have edges with a common endpoint, e.g. pq, ps ∈ E(G), then by adding the edges from 4p
in J1 to 4q + 1 in J3, from 4q in J1 to 4p+ 1 in J3, from 4p in J1 to 4s+ 1 in J3, and from
4s in J1 to 4p+ 1 in J3 we introduce new 4-cycles, one of them induced by the vertices 4q
and 4p in J1 and 4p+ 1 and 4s+ 1 in J3. To avoid this, we add three additional k-cliques to
build the gadget for ps. By Vizing’s Theorem [49], we obtain in polynomial time a 5-edge
colouring of G (as G has maximum degree 4). Using this 5-edge colouring, we build gadgets
for all the edges with at most 5× 3 = 15 additional k-cliques (we use 3 additional cliques for
each colour class).

The clique structure of G′ is drawn in Figure 8. As G′ consists of at most 18 cliques,
G′ is 19P1-free. Furthermore, any induced linear forest where each connected component
has size at least 3 contains vertices in at most five cliques. Hence G′ is (3P3, 2P5)-free. It
remains to prove that G has a 3-colouring if and only if G′ has an acyclic k-colouring.

First, suppose that G′ has an acyclic k-colouring c′. Then each k-clique of G′ has to use
each colour exactly once. We can permute colours so that vertex i in J0 (where 0 ≤ i ≤ 4n−1)
has colour i. It follows from the connections between cliques that the i-th vertices in cliques
J2, . . . , J17 also have colour i and the vertices 4j, 4j + 1, 4j + 2, 4j + 3, (0 ≤ j ≤ n− 1) in J1
have colours from the set {4j, 4j+ 1, 4j+ 2, 4j+ 3}. For each vertex i in G, set c(i) = 1 if the
colours of (4i, 4i+ 1, 4i+ 2, 4i+ 3) in J1 under c′ correspond to one of the first two possible
colourings (listed above); set c(i) = 2 if it corresponds to one of the second two possible
colourings; set c(i) = 3 if it corresponds to one of the last two colourings. We claim that c is
a 3-colouring of G. Suppose that pq is an edge in G with edge gadget using cliques J3, J4, J5.
Since c′ is acyclic and c′ is identity on J3, we have c′(4p) 6= 4p+ 1 in J1 or c′(4q) 6= 4q + 1 in
J1. Both 4p and 4q are the first vertices of the respective quadruples, so p and q are not
both coloured 1. Similarly, the edges going between cliques J1 and J4 ensure that they are
not both coloured 2 and the edges going between cliques J1 and J5 ensure that they are not
both coloured 3. Hence, c(p) 6= c(q) and c is a 3-colouring of G.
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Now suppose G has a 3-colouring c. We construct a labelling c′ of G′ where we colour
each quadruple in J1 corresponding to a vertex of G by the first of each pair of colourings
listed in the table for each of the three colours, respectively. The labelling c′ in other cliques
of G′ is the identity. By the construction of G′ and particularly by the properties of edge
gadgets in G′, we find that c′ is a k-colouring of G′.

Finally, we need to verify that c′ is acyclic. We will begin with bichromatic cycles between
two cliques. No bichromatic cycle can appear in J0 and J1 forming the vertex gadget. This
is due to the edges from the former to the latter always pointing to a higher number (or
the same but here we chose a 3-colouring to avoid such situation). A similar explanation
works for all the clique pairs (0, 2), (2, 3), . . . , (2, 17) in Figure 8. The last possibility is a
bichromatic cycle formed through J1 from one of the cliques J3 to J17. However, such a cycle
would have to pass through an actual edge gadget (where it is forbidden by the 3-colouring)
or through vertices in different edge gadgets, where it must form a cycle with four colours.
Now we need to consider bichromatic cycles passing through three or more cliques, but they
would have to involve a bichromatic path through J0, J2, J3 which is not possible. This
completes the proof. J

J3

J2 J4

J0 J1
...

J17

Figure 8 Connections between cliques in the construction from the proof of Lemma 8.

We combine the above results with results of Coleman and Cai [14] and Lyons [43] to prove
Theorem 1.

I Theorem 1 (restated). Let H be a graph. For the class of H-free graphs it holds that:
(i) Acyclic Colouring is polynomial-time solvable if H ⊆i P4 and NP-complete if H is

not a forest or H ⊇i 19P1, 3P3, 2P5 or P11;
(ii) For every k ≥ 3, Acyclic k-Colouring is polynomial-time solvable if H is a linear

forest and NP-complete otherwise.

Proof. We first prove (ii). First suppose that H contains an induced cycle Cp. If p = 3,
then we use the result of Coleman and Cai [14], who proved that for every k ≥ 3, Acyclic
k-Colouring is NP-complete for bipartite graphs. Suppose that p ≥ 3. If k = 3, then we
let g = p+ 1 and use Lemma 6. If k ≥ 4, we reduce from Acyclic 3-Colouring for graphs
of girth p+ 1 by adding a dominating clique of size k − 3. Now assume H has no cycle so H
is a forest. If H has a vertex of degree at least 3, then H has an induced K1,3. As every
line graph is K1,3-free, we can use Lemma 7. Otherwise H is a linear forest and we use
Corollary 5.

We now prove (i). Due to (ii), we may assume that H is a linear forest. If H ⊆i P4, then
we use the result of Lyons [43] that states that Acyclic Colouring is polynomial-time
solvable for P4-free graphs. If H ⊇i 19P1, 3P3, 2P5 or P11, then we use Lemma 8. J
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31
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Figure 9 The gadget replacing edges uv (on the left) and its natural star 3-colouring (on the
right) in the proof of Lemma 9.

4 Star Colouring

In this section we prove Theorem 2. We first prove the following lemma.

I Lemma 9. Let H be a graph with an even cycle. Then, for every k ≥ 3, Star k-Colouring
is NP-complete for H-free graphs.

Proof. We reduce from 3-Colouring for graphs of girth at least p+ 1. Given an instance G
of this problem, we construct an instance G′ of Star 3-Colouring as follows. Take three
vertex disjoint copies of P3 and form a triangle using one endpoint of each; see Figure 9.
Replace each edge uv in G by this gadget with u and v identified with the non-adjacent
endpoints of two paths. Then G′ is Cp-free since, aside from triangles, the construction
cannot introduce any cycle shorter than those present in G.

We first show that any star 3-colouring of G′ colours u and v differently. Assume not,
their neighbours must be coloured differently since otherwise any 3-colouring of the remainder
of the gadget will result in a bichromatic P4. Without loss of generality, assume that u and v
are coloured 1, the neighbour u′ of u is coloured 2 and the neighbour v′ of v is coloured 3. Let
x be the neighbour of u′ in the triangle and y the neighbour of v′ in the triangle. Neither x
or y can be coloured 1 since this will result in a bichromatic P4. Therefore x is coloured 3, y
is coloured 2 and the third vertex z of the triangle is coloured 1. This is a contradiction since
we have a bichromatic P4 on the vertices u′, x, y, v′. Therefore, we obtain a 3-colouring c of
G by setting c(v) = c′(v) for some star 3-colouring c′ of G′.

We extend a given 3-colouring of G to a star 3-colouring of G′, by locally star 3-colouring
as in the right hand side of Figure 9 (or automorphically). Hence, G is 3-colourable if and
only if G′ is star 3-colourable.

We obtain NP-completeness for k ≥ 4 by a reduction from Star 3-Colouring for Cp-free
graphs by adding a dominating clique of size k − 3. J

In Lemma 10 we extend the recent result of Lei et al. [38] from k = 3 to k ≥ 3. In Lemma 11
we show a result where k is part of the input. A graph is co-bipartite if it is the complement
of a bipartite graph.

v1 v2 v3 v4 v5 v6 v7 v8

v9 v10

. . .

1

k − 2

1

k − 2

. . .

e1 e2

Figure 10 The gadget Fk in the proof of Lemma 10.
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I Lemma 10. For every k ≥ 3, Star k-Colouring is NP-complete for line graphs.

Proof. Recall that for an integer k ≥ 1, a k-edge colouring of a graph G = (V,E) is a
mapping c : E → {1, . . . , k} such that c(e) 6= c(f) whenever the edges e and f share an
end-vertex. Recall also that the notions of a colour class and bichromatic subgraph for
colourings has its natural analogue for edge colourings. An edge k-colouring c is a star
k-edge colouring if the union of any two colour classes induces a star forest. For a fixed
integer k ≥ 1, the Star k-Edge Colouring problem is to decide if a given graph has an
star k-edge colouring. Lei et al. [38] proved that Star 3-Edge Colouring is NP-complete.
Dvořák et al. [16] observed that a graph has a star k-edge colouring if and only if its line
graph has a star k-colouring. Hence, it suffices to follow the proof of Lei et al.[38] in order to
generalize the case k = 3 to k ≥ 3. As such, we give a reduction from k-Edge Colouring
to Star k-Edge Colouring which makes use of the gadget Fk in Figure 10. First we
consider separately the case where the edges e1 = v4v9 and e2 = v5v10 are coloured alike and
the case where they are coloured differently to show that in any star k-edge colouring of the
gadget Fk shown in Figure 10, v1v2 and v7v8 are assigned the same colour.

Assume c(e1) = c(e2) = 1. We may then assume that the edge v4v5 is assigned colour 2
and the remaining k − 2 colours are used for the multiple edges v3v4 and v5v6. The edge
v2v3, and similarly v6v7, must then be assigned colour 1 to avoid a bichromatic P5 on the
vertices {v2, v3, v4, v5, v6} using any two of the multiple edges in a single colour. The edge
v1v2, and similarly v7v8 must then be assigned colour 2 to avoid a bichromatic P5 on the
vertices {v1, v2, v3, v4, v9}.

Next assume e1 and e2 are coloured differently. Without loss of generality, let c(e1) = 1,
c(e2) = 2 and c(v4v5) = 3. The multiple edges v3v4 must then be assigned colours 2
and 4 . . . k and v5v6 colour 1 and colours 4 . . . k. To avoid a bichromatic P5 on the vertices
{v2, v3, v4, v5, v6}, v2v3 must be coloured 1. Similarly, v6v7 must be assigned colour 2. Finally,
to avoid a bichromatic P5 on the vertices {v1, v2, v3, v4, v9}, v1v2 must be coloured 3. By a
similar argument, v7v8 must also be coloured 3, hence v1v2 and v7v8 must be coloured alike.

We can then replace every edge e in some instance G of k-Edge-Colouring by a
copy of Fk, identifying its endpoints with v1 and v8, to obtain an instance G′ of Star
k-Edge-Colouring. If G is k-edge-colourable we can star k-edge-colour G′ by setting
c′(v1v2) = c′(v7v8) = c(e). If G′ is star k-edge-colourable, we obtain a k-edge-colouring of G
by setting c(e) = c′(v1v2). J

We now let k be part of the input. The complement of a graph G is the graph G with vertex
set V (G) and an edge between two vertices u and v if and only if uv /∈ E(G). A k-colouring
of G can be seen as a partition of V (G) into k independent sets. Hence, a k-colouring of G
corresponds to a clique-covering of G, which is a partition of V (G) = V (G) into k cliques. A
graph is co-bipartite if it is the complement of a bipartite graph.

I Lemma 11. Star Colouring is NP-complete for co-bipartite graphs.

Proof. We show that finding an optimal star colouring of a co-bipartite graph G is equivalent
to finding a maximum balanced biclique in its complement G. An optimal star colouring of
G corresponds to an optimal clique-covering of G such that the graph induced by the vertices
of any two cliques in the covering partition is P4 = P4-free and C4 = 2P2-free. Since G is
triangle-free, the clique-covering number of G is n−M where n is the number of vertices of G
and M is the number of edges in a maximum matching such that no two edges induce either
2P2 or P4. Since G is bipartite, a maximum matching of this form is a maximum balanced
biclique. It is NP-complete to find the maximum size of a balanced biclique in a bipartite
graph [26]. Therefore Star Colouring is NP-complete for co-bipartite graphs. J
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We combine the above results with results of Albertson et al. [1] and Lyons [43] to prove
Theorem 2.

I Theorem 2 (restated). Let H be a graph. For the class of H-free graphs it holds that:
(i) Star Colouring is polynomial-time solvable if H ⊆i P4 and NP-complete for any

H 6= 2P2.
(ii) For every k ≥ 3, Star k-Colouring is polynomial-time solvable if H is a linear forest

and NP-complete otherwise.

Proof. We first prove (ii). First suppose that H contains an induced odd cycle. Then the
class of bipartite graphs is contained in the class of H-free graphs. Lemma 7.1 in Albertson
et al. [1] implies, together with the fact that for every k ≥ 3, k-Colouring is NP-complete,
that for every k ≥ 3, Star k-Colouring is NP-complete for bipartite graphs. If H contains
an induced even cycle, then we use Lemma 9. Now assume H has no cycle, so H is a forest.
If H contains a vertex of degree at least 3, then H contains an induced K1,3. As every line
graph is K1,3-free, we can use Lemma 10. Otherwise H is a linear forest, in which case we
use Corollary 5.

We now prove (i). Due to (ii), we may assume that H is a linear forest. If H ⊆i P4, then
we use the result of Lyons [43] that states that Star Colouring is polynomial-time solvable
for P4-free graphs. If 3P1 ⊆i H, then we use Lemma 11 after observing that co-bipartite
graphs are 3P1-free. Otherwise H = 2P2, but this case was excluded from the statement of
the theorem. J

5 Injective Colouring

In this section we prove Theorem 3. We first show three lemmas.

I Lemma 12. For every k ≥ 4, Injective k-Colouring is NP-complete for C3-free graphs.

Proof. We reduce from Injective k-Colouring. Given an instance G of Injective
k-Colouring, construct an instance G′ of Injective k-Colouring for triangle-free graphs
as follows. For each edge uv of G, remove the edge uv and add two vertices u′v adjacent to
u and v′u adjacent to v. Next, place an independent set of k − 2 vertices adjacent to both
u′v and v′u. Then G′ is triangle-free since the edge gadget described is triangle-free, any two
vertices of G are now at distance at least 4 and no vertex not belonging to an edge gadget
has two adjacent neighbours belonging to edge gadgets. We claim that G′ has an injective
k-colouring if and only if G has an injective k-colouring.

First assume that G has an injective k-colouring c. Colour the vertices of G′ corresponding
to vertices of G as they are coloured by c. We can extend this to an injective k-colouring
c′ of G′ by considering the gadget corresponding to each edge uv of G. Set c′(u′v) = c′(v)
and c′(v′u) = c′(u). We can now assign the remaining k − 2 colours to the vertices of the
independent sets. Clearly c′ creates no bichromatic P3 involving vertices in at most one
edge gadget. Assume there exists a bichromatic P3 involving vertices in more than one edge
gadget, then this path must consist of a vertex u of G together with two gadget vertices u′v
and u′w which are coloured alike. This is a contradiction since it implies the existence of a
bichromatic path v, u, w in G.

Now assume that G′ has an injective k-colouring c′. Let c be the restriction of c′ to those
vertices of G′ which correspond to vertices of G. To see that c is an injective colouring of
G, note that we must have c′(u′v) = c′(v) and c′(v′u) = c′(u) for any edge uv. Therefore,
if c induces a bichromatic P3 on u, v, w, then c′ induces a bichromatic P3 on v′u, v, v′w. We
conclude that c is injective. J

ESA 2020



22:18 Acyclic Colouring, Star Colouring and Injective Colouring for H-Free Graphs

In our next two results, k is part of the input.

I Lemma 13. Injective Colouring is polynomial-time solvable for P4-free graphs and
(P1 + P3)-free graphs.

Proof. Since connected P4-free graphs have diameter at most 2, no two vertices can be
coloured alike in an injective colouring. Hence the injective chromatic number of a P4-free
graph is equal to the number of its vertices.

We now consider (P1 + P3)-free graphs. First, note that an injective colouring of G is
equivalent to a clique-covering of its complement G such that the graph induced by the
vertices of the union of any two clique classes is (P1 + P2)-free (as P3 = P1 + P2). Since G is
(P1 + P3)-free, G is P1 + P3-free. By a result of Olariu [46], each connected component of
G is either triangle-free or complete multi-partite. Let D1, . . . , Dp be the vertex sets of the
connected components of G for some p ≥ 1. Then in G, every Di is complete to every Dj .
Hence, the injective chromatic number of G is the sum of the injective chromatic numbers
of the subgraphs Gi induced by Di (i ∈ {1, . . . , p}). As such, it remains to determine the
injective chromatic number of each Gi, which we do below.

Let 1 ≤ i ≤ p. If Gi is complete multi-partite, then Gi is a disjoint union of cliques and
its injective chromatic number is equal to the size of its largest connected component. In
the other case, Gi is triangle-free. Then each clique class in a clique-covering has size at
most 2, and any clique class of size 2 must dominate the remaining vertices of Gi to avoid a
bichromatic P1 + P2. Thus, the clique-covering is a matching, each edge of which dominates
Gi, together with the remaining vertices which each form clique classes of size 1. Therefore,
we find an optimal (P1 + P2)-free clique-covering of G by finding a maximum matching in
the graph consisting of dominating edges of Gi. The injective chromatic number of Gi is
then the number of vertices of Gi minus the number of edges in such a matching. J

I Lemma 14. Injective Colouring is NP-complete for 6P1-free graphs.

Proof. We first show that Colouring remains NP-complete given a partition of the instance
G into four cliques. The Clique Covering problem is NP-complete for planar graphs [37].
A 4-colouring of a planar graph G can be found in quadratic time [47] and gives a partition
of G into four cliques. Hence, given a planar instance G of clique-covering, we construct an
instance (G, c) of Colouring where c is a 4-colouring of G such that the chromatic number
of G is equal to the clique-covering number of G.

We now give a reduction from this problem to Injective Colouring for 6P1-free graphs.
Given a graph G and a partition c into four cliques C1 . . . C4, let G′ be the graph obtained
from G by deleting those vertices with no neighbours outside of their own clique Ci. Then
G can be coloured with k colours if and only if G′ can be coloured with k colours and the
maximum size of a clique in the partition c of G is at most k. To see this, note that the
vertices of G \G′ then have degree at most k− 1, hence we can greedily colour these vertices
given a k-colouring of G′.

This instance (G′, c) of Colouring given a partition of G′ into four cliques can then
be transformed in polynomial time to an instance G′′ of Injective Colouring as follows.
Add a fifth clique C0 with one vertex ve for each edge e = xy in G′ which has endpoints in
two different cliques of c. For each such edge, replace e by two edges xve and yve. G′ has
a colouring with k colours if and only if G′′ has an injective colouring with k +m colours
where m is the number of edges in G with endpoints in different cliques. To see this, note
that in any injective colouring of G′′, the set of colours used in C0 is disjoint from the set of
those used in the cliques C1 . . . C4. Therefore if G′′ can be injective coloured with m + k

colours then G′ can be coloured with k colours. On the other hand, colour the vertices of
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C1 . . . C4 as they are coloured in some k colouring of G′ and C0 with m further colours. This
is an injective colouring of G′′ since any induced P3 contains either two vertices of C1 or one
vertex of C0 and two vertices adjacent in G′. In either case the path must be coloured with
three distinct colours. This implies that G′′ has an injective colouring with k +m colours if
and only if G′ has a colouring with k colours. J

We combine the above results with results of Bodlaender et al. [7] and Mahdian [44] to prove
Theorem 3.

I Theorem 3 (restated). Let H be a graph. For the class of H-free graphs it holds that:
(i) Injective Colouring is polynomial-time solvable if H ⊆i P4 or H ⊆i P1 + P3 and

NP-complete if H is not a forest or 2P2 ⊆i H or 6P1 ⊆i H.
(ii) For every k ≥ 4, Injective k-Colouring is polynomial-time solvable if H is a linear

forest and NP-complete otherwise.

Proof. We first prove (ii). If C3 ⊆i H, then we use Lemma 12. Now suppose Cp ⊆i H for
some p ≥ 4. Mahdian [44] proved that for every g ≥ 4 and k ≥ 4, Injective k-Colouring
is NP-complete for line graphs of bipartite graphs of girth at least g. These graphs may not
be C3-free but for g ≥ p+ 1 they are Cp-free. Now assume H has no cycle, so H is a forest.
If H contains a vertex of degree at least 3, then H contains an induced K1,3. As every line
graph is K1,3-free, we can use the aforementioned result of Mahdian [44] again. Otherwise
H is a linear forest, in which case we use Corollary 5.

We now prove (i). Due to (ii), we may assume that H is a linear forest. If H ⊆i P4 or
H ⊆i P1 + P3, then we use Lemma 13. Now suppose that 2P2 ⊆i H. Then the class of
(2P2, C4, C5)-free graphs (split graphs) are contained in the class of H-free graphs. Recall
that Bodlaender et al. [7] proved that Injective Colouring is NP-complete for split graphs.
If 6P1 ⊆i H, then we use Lemma 14. J

6 Conclusions

Our complexity study led to three complete and three almost complete complexity classi-
fications (Theorems 1–3). Due to our systematic approach we were able to identify some
interesting open questions for future research, which we collect below.

I Open Problem 1. For k ≥ 4 and g ≥ 4, determine the complexity of Acyclic k-
Colouring for graphs of girth at least g.

For solving Open Problem 1 it would be helpful to have a better understanding of the
structure of the critical graphs used in the proof of Lemma 6. We also aim to prove analogous
results for the other two problems.

I Open Problem 2. For every g ≥ 4, determine the complexities of Star Colouring and
Injective Colouring for graphs of girth at least g.

Naturally we also aim to settle the remaining open cases for our three problems in Table 1.
In particular, there is one case left for Star Colouring.

I Open Problem 3. Determine the complexity of Star Colouring for 2P2-free graphs.

Recall that the other two problems and also Colouring are all NP-complete for 2P2-free
graphs. However, none of the hardness constructions carry over to Star Colouring. In this
context, the next open problem for split graphs ((2P2, C4, C5)-free graphs) is also interesting.
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I Open Problem 4. Determine the complexity of Star Colouring for split graphs.

We proved that Injective Colouring is NP-complete for triangle-free graphs, but the following
problem is still open.

I Open Problem 5. Determine the complexity of Injective Colouring for bipartite
graphs.

Jin et al. [33] proved that the variant of Injective Colouring where adjacent vertices may
be coloured alike is NP-complete for bipartite graphs. However, their hardness construction
does not carry over to Injective Colouring.

Finally, we recall that Injective Colouring is also known as L(1, 1)-labelling. The general
distance constrained labelling problem L(a1, . . . , ap)-Labelling is to decide if a graph G has
a labelling c : V (G)→ {1, . . . , k} for some integer k ≥ 1 such that for every i ∈ {1, . . . , p},
|c(u)− c(v)| ≥ ai whenever u and v are two vertices of distance i in G. If k is fixed, we write
L(a1, . . . , ap)-k-Labelling instead. By applying Theorem 4 we obtain the following result.

I Theorem 15. For all k ≥ 1, a1 ≥ 1, . . . , ak ≥ 1, the L(a1, . . . , ap)-k-Labelling problem
is polynomial-time solvable for H-free graphs if H is a linear forest.

We leave a more detailed and systematic complexity study of problems in this framework
for future work (see, for example, [11, 23, 24] for some complexity results for both general
graphs and special graph classes).
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