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Abstract
We study the Max Partial H-Coloring problem: given a graph G, find the largest induced
subgraph of G that admits a homomorphism into H, where H is a fixed pattern graph without loops.
Note that when H is a complete graph on k vertices, the problem reduces to finding the largest
induced k-colorable subgraph, which for k = 2 is equivalent (by complementation) to Odd Cycle
Transversal.

We prove that for every fixed pattern graph H without loops, Max Partial H-Coloring can
be solved:

in {P5, F }-free graphs in polynomial time, whenever F is a threshold graph;
in {P5,bull}-free graphs in polynomial time;
in P5-free graphs in time nO(ω(G));
in {P6, 1-subdivided claw}-free graphs in time nO(ω(G)3).

Here, n is the number of vertices of the input graph G and ω(G) is the maximum size of a clique in G.
Furthermore, by combining the mentioned algorithms for P5-free and for {P6, 1-subdivided claw}-free
graphs with a simple branching procedure, we obtain subexponential-time algorithms for Max
Partial H-Coloring in these classes of graphs.

Finally, we show that even a restricted variant of Max Partial H-Coloring is NP-hard in the
considered subclasses of P5-free graphs, if we allow loops on H.
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1 Introduction

Many computational graph problems that are (NP-)hard in general become tractable in
restricted classes of input graphs. In this work we are interested in hereditary graph classes,
or equivalently classes defined by forbidding induced subgraphs. For a set of graphs F , we
say that a graph G is F-free if G does not contain any induced subgraph isomorphic to a
graph from F . By forbidding different sets F we obtain graph classes with various structural
properties, which can be used in the algorithmic context. This highlights an interesting
interplay between structural graph theory and algorithm design.

Perhaps the best known example of this paradigm is the case of the Maximum In-
dependent Set problem: given a graph G, find the largest set of pairwise non-adjacent
vertices in G. It is known that the problem is NP-hard on F -free graphs unless F is a forest
whose every component is a path or a subdivided claw [2]; here, a claw is a star with 3
leaves. However, the remaining cases, when F is a subdivided claw forest, remain largely
unexplored despite significant effort. Polynomial-time algorithms have been given for P5-free
graphs [24], P6-free graphs [20], claw-free graphs [26, 29], and fork-free graphs [3, 25]. While
the complexity status in all the other cases remains open, it has been observed that relaxing
the goal of polynomial-time solvability leads to positive results in a larger generality. For
instance, for every t ∈ N, Maximum Independent Set can be solved in time 2O(

√
tn logn)

in Pt-free graphs [4]. The existence of such a subexponential-time algorithm for F -free graphs
is excluded under the Exponential Time Hypothesis whenever F is not a subdivided claw
forest (see e.g. the discussion in [27]), which shows a qualitative difference between the
negative and the potentially positive cases. Also, Chudnovsky et al. [10] recently gave a
quasi-polynomial-time approximation scheme (QPTAS) for Maximum Independent Set
in F -free graphs, for every fixed subdivided claw forest F .

The abovementioned positive results use a variety of structural techniques related to
the considered graph classes, for instance: the concept of Gyárfás path that gives useful
separators in Pt-free graphs [4, 6, 10], the dynamic programming approach based on potential
maximal cliques [24, 20], or structural properties of claw-free and fork-free graphs that relate
them to line graphs [25, 26, 29]. Some of these techniques can be used to give algorithms for
related problems, which can be expressed as looking for the largest (in terms of the number
of vertices) induced subgraph satisfying a fixed property. For Maximum Independent Set
this property is being edgeless, but for instance the property of being acyclic corresponds
to the Maximum Induced Forest problem, which by complementation is equivalent to
Feedback Vertex Set. Work in this direction so far focused on properties that imply
bounded treewidth [1, 17] or, more generally, that imply sparsity [27].

A different class of problems that admits an interesting complexity landscape on hereditary
graphs classes are coloring problems. For fixed k ∈ N, the k-Coloring problem asks whether
the input graph admits a proper coloring with k colors. For every k > 3, the problem is NP-
hard on F -free graphs unless F is a forest of paths (a linear forest) [18]. The classification of
the remaining cases is more advanced than in the case of Maximum Independent Set, but
not yet complete. On one hand, Hoàng et al. [22] showed that for every fixed k, k-Coloring
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is polynomial-time solvable on P5-free graphs. On the other hand, the problem becomes
NP-hard already on P6-free graphs for all k > 5 [23]. The cases k = 3 and k = 4 turn out
to be very interesting. 4-Coloring is polynomial-time solvable on P6-free graphs [14] and
NP-hard in P7-free graphs [23]. While there is a polynomial-time algorithm for 3-Coloring
in P7-free graphs [5], the complexity status in Pt-free graphs for t > 8 remains open. However,
relaxing the goal again leads to positive results in a wider generality: for every t ∈ N, there is
a subexponential-time algorithm with running time 2O(

√
tn logn) for 3-Coloring in Pt-free

graphs [19], and there is also a polynomial-time algorithm that given a 3-colorable Pt-free
graph outputs its proper coloring with O(t) colors [12].

We are interested in using the toolbox developed for coloring problems in Pt-free graphs
to the setting of finding maximum induced subgraphs with certain properties. Specifically,
consider the following Maximum Induced k-Colorable Subgraph problem: given a
graph G, find the largest induced subgraph of G that admits a proper coloring with k

colors. While this problem clearly generalizes k-Coloring, for k = 1 it boils down to
Maximum Independent Set. For k = 2 it can be expressed as Maximum Induced
Bipartite Subgraph, which by complementation is equivalent to the well-studied Odd
Cycle Transversal problem: find the smallest subset of vertices that intersects all odd
cycles in a given graph. While polynomial-time solvability of Odd Cycle Transversal
on P4-free graphs (also known as cographs) follows from the fact that these graphs have
bounded cliquewidth (see [15]), it is known that the problem is NP-hard in P6-free graphs [16].
The complexity status of Odd Cycle Transversal in P5-free graphs remains open [9,
Problem 4.4]: resolving this question was the original motivation of our work.

Our contribution. Following the work of Groenland et al. [19], we work with a very general
form of coloring problems, defined through homomorphisms. For graphs G and H, a
homomorphism from G to H, or an H-coloring of G, is a function φ : V (G)→ V (H) such
that for every edge uv in G, we have φ(u)φ(v) ∈ E(H). We study the Max Partial
H-Coloring problem defined as follows: given a graph G, find the largest induced subgraph
of G that admits an H-coloring. Note that if H is the complete graph on k vertices, then
an H-coloring is simply a proper coloring with k colors, hence this formulation generalizes
the Maximum Induced k-Colorable Subgraph problem. Unless stated explicitly, we
will always assume that the pattern graph H does not have loops, hence an H-coloring is a
proper coloring with |V (H)| colors.

Figure 1 A bull, a 1-subdivided claw, and an example threshold graph.

Fix a pattern graph H without loops. We prove that Max Partial H-Coloring can
be solved:
(R1) in {P5, F}-free graphs in polynomial time, whenever F is a threshold graph;
(R2) in {P5,bull}-free graphs in polynomial time;
(R3) in P5-free graphs in time nO(ω(G)); and
(R4) in {P6, 1-subdivided claw}-free graphs in time nO(ω(G)3).

ESA 2020
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Here, n is the number of vertices of the input graph G and ω(G) is the size of the maximum
clique in G. Also, recall that a graph G is a threshold graph if V (G) can be partitioned into an
independent set A and a clique B such that for each a, a′ ∈ A, we have either N(a) ⊇ N(a′)
or N(a) ⊆ N(a′). There is also a characterization via forbidden induced subgraphs: threshold
graphs are exactly {2P2, C4, P4}-free graphs, where 2P2 is an induced matching of size 2.
Figure 1 depicts a bull, a 1-subdivided claw, and an example threshold graph.

Further, we observe that by employing a simple branching strategy, an nO(ω(G)α)-time
algorithm for Max Partial H-Coloring in F-free graphs can be used to give also
a subexponential-time algorithm in this setting, with running time nO(nα/(α+1)). Thus,
results (R3) and (R4) imply that for every fixed irreflexive H, the Max Partial H-
Coloring problem can be solved in time nO(

√
n) in P5-free graphs and in time nO(n3/4)

in {P6, 1-subdivided claw}-free graphs. This in particular applies to the Odd Cycle
Transversal problem. We note here that Dabrowski et al. [16] proved that Odd Cycle
Transversal in {P6,K4}-free graphs is NP-hard and does not admit a subexponential-time
algorithm under the Exponential Time Hypothesis. Thus, it is unlikely that any of our
algorithmic results – the nO(ω(G))-time algorithm and the nO(

√
n)-time algorithm – can be

extended from P5-free graphs to P6-free graphs.
All our algorithms work in a weighted setting, where instead of just maximizing the

size of the domain of an H-coloring, we maximize its total revenue, where for each pair
(u, v) ∈ V (G)× V (H) we have a prescribed revenue yielded by sending u to v. This setting
allows encoding a broader range of coloring problems. For instance, list variants can be
expressed by giving negative revenues for forbidden assignments (see e.g. [21, 28]). Also, our
algorithms work in a slightly larger generality than stated above, see Section 5 for precise
statements.

Finally, we investigate the possibility of extending our algorithmic results to pattern
graphs with possible loops. We show an example of a graph H with loops, for which Max
Partial H-Coloring is NP-hard and admits no subexponential-time algorithm under the
ETH even in very restricted subclasses of P5-free graphs, including {P5,bull}-free graphs.
This shows that whether the pattern graph is allowed to have loops has a major impact on
the complexity of the problem.

Full version. In this extended abstract we focus on proving results (R3) and (R4). Results
(R1) and (R2), as well as of the abovementioned lower bound, are proved in the full version
of the paper, which is available on arXiv [8]. Also, the main branching step is given here in a
simplified form that is sufficient for results (R3) and (R4), but not for results (R1) and (R2).

Our techniques. The key element of our approach is a branching procedure that, given
an instance (G, rev) of Max Partial H-Coloring, where rev is the revenue function,
produces a relatively small set of instances Π such that solving (G, rev) reduces to solving
all the instances in Π. Moreover, every instance (G′, rev′) ∈ Π is simpler in the following
sense: either it is an instance of Max Partial H ′-Coloring for H ′ being a proper induced
subgraph of H (hence it can be solved by induction on |V (H)|), or for any connected graph F
on at least two vertices, G′ is F -free provided we assume that G is F •−◦-free. Here, F •−◦ is the
graph obtained from F by adding a universal vertex y and a degree-1 vertex x adjacent only
to y. In particular we have ω(G′) < ω(G), so applying the branching procedure exhaustively
in a recursion scheme yields a recursion tree of depth bounded by ω(G). Now, for results (R3)
and (R4) we respectively have |Π| 6 nO(1) and |Π| 6 nO(ω(G)2), giving bounds of nO(ω(G))

and nO(ω(G)3) on the total size of the recursion tree and on the overall time complexity.
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For result (R1) we apply the branching procedure not exhaustively, but a constant number
of times: if the original graph G is {P5, F}-free for some threshold graph F , it suffices to apply
the branching procedure O(|V (F )|) times to reduce the original instances to a set of edgeless
instances, which can be solved trivially. As O(|V (F )|) = O(1), this gives recursion tree of
polynomial size, and hence a polynomial-time complexity due to always having |Π| 6 nO(1)

in this setting. For result (R2), we show that two applications of the branching procedure
reduce the input instance to a polynomial number of instances that are P4-free, which can be
solved in polynomial time due to P4-free graphs (also known as cographs) having cliquewidth
at most 2. However, these applications are interleaved with a reduction to the case of prime
graphs – graphs with no non-trivial modules – which we achieve using dynamic programming
on the modular decomposition of the input graph. This is in order to apply some results on
the structure of prime bull-free graphs [11, 13], so that P4-freeness is achieved at the end.

Let us briefly discuss the key branching procedure. The first step is finding a useful
dominating structure that we call a monitor : a subset of vertices M of a connected graph G
is a monitor if for every connected component C of G−M , there is a vertex in M that is
complete to C. We prove that in a connected P6-free graph there is always a monitor that
is the closed neighborhood of a set of at most three vertices. After finding such a monitor
N [X] for |X| 6 3, we perform a structural analysis of the graph centered around the set
X. This analysis shows that there exists a subset of O(|V (H)|) vertices such that after
guessing this subset and the H-coloring on it, the instance can be partitioned into several
separate subinstances, each of which has a strictly smaller clique number. This structural
analysis, and in particular the way the separation of subinstances is achieved, is inspired by
the polynomial-time algorithm of Hoàng et al. [22] for k-Coloring in P5-free graphs.

Other related work. We remark that very recently and independently of us, Brettell et
al. [7] proved that for every fixed s, t ∈ N, the class of {Kt, sK1 + P5}-free graphs has
bounded mim-width. Here, mim-width is a graph parameter that is less restrictive than
cliquewidth, but the important aspect is that a wide range of vertex-partitioning problems,
including the Max Partial H-Coloring problem considered in this work, can be solved
in polynomial time on every class of graphs where the mim-width is universally bounded
and a corresponding decomposition can be computed efficiently. The result of Brettell et
al. thus shows that in P5-free graphs, the mim-width is bounded by a function of the clique
number. This gives an nf(ω(G))-time algorithm for Max Partial H-Coloring in P5-free
graphs (for fixed H), for some function f . However, the proof presented in [7] gives only an
exponential upper bound on the function f , which in particular does not imply the existence
of a subexponential-time algorithm. To compare, our reasoning leads to an nO(ω(G))-time
algorithm and a subexponential-time algorithm with complexity nO(

√
n).

We remark that the techniques used by Brettell et al. [7] also rely on revisiting the
approach of Hoàng et al. [22], and they similarly observe that this approach can be used to
apply induction based on the clique number of the graph.

2 Preliminaries

Graphs. For a graph G, the vertex and edge sets of G are denoted by V (G) and E(G),
respectively. The open neighborhood of a vertex u is the set NG(u) := {v : uv ∈ E(G)},
while the closed neighborhood is NG[u] := NG(u) ∪ {u}. This notation is extended to sets
of vertices: for X ⊆ V (G), we set NG[X] :=

⋃
u∈X NG[u] and NG(X) := NG[X] −X. We

may omit the subscript if the graph G is clear from the context. By Ct, Pt, and Kt we
respectively denote the cycle, the path, and the complete graph on t vertices.

ESA 2020
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The clique number ω(G) is the size of the largest clique in a graph G. A clique K in G is
maximal if no proper superset of K is a clique.

For s, t ∈ N, the Ramsey number of s and t is the smallest integer k such that every
graph on k vertices contains either a clique of size s or an independent set of size t. It is
well-known that the Ramsey number of s and t is bounded from above by

(
s+t−2
s−1

)
, hence we

will denote Ramsey(s, t) :=
(
s+t−2
s−1

)
.

For a graph G and A ⊆ V (G), by G[A] we denote the subgraph of G induced by A. We
write G−A := G[V (G)−A]. We say that F is an induced subgraph of G if there is A ⊆ V (G)
such that G[A] is isomorphic to F ; this containment is proper if in addition A 6= V (G). For
a family of graphs F , a graph G is F-free if G does not contain any induced subgraph from
F . If F = {H}, then we may speak about H-free graphs as well.

If G is a graph and A ⊆ V (G) is a subset of vertices, then a vertex u /∈ A is complete to
A if u is adjacent to all the vertices of A, and u is anti-complete to A if u has no neighbors
in A. We will use the following simple claim several times.

I Lemma 1. Suppose G is a graph, A is a subset of its vertices such that G[A] is connected,
and u /∈ A is a vertex that is neither complete nor anti-complete to A in G. Then there are
vertices a, b ∈ A such that u− a− b is an induced P3 in G.

Proof. Since u is neither complete nor anticomplete to A, both the sets A ∩ N(u) and
A −N(u) are non-empty. As A is connected, there exist a ∈ A ∩N(u) and b ∈ A −N(u)
such that a and b are adjacent. Now u− a− b is the desired induced P3. J

For a graph F , by F • we denote the graph obtained from F by adding a universal vertex :
a vertex adjacent to all the other vertices. Similarly, by F •−◦ we denote the graph obtained
from F by adding first an isolated vertex, say x, and then a universal vertex, say y. Note
that thus y is adjacent to all the other vertices of F •−◦, while x is adjacent only to y.

H-colorings. For graphs H and G, a function φ : V (G)→ V (H) is a homomorphism from
G to H if for every uv ∈ E(G), we also have φ(u)φ(v) ∈ E(H). Note that a homomorphism
from G to the complete graph Kt is nothing else than a proper coloring of G with t colors.
Therefore, a homomorphism from G to H will be also called an H-coloring of G, and we will
refer to vertices of H as colors. Note that we will always assume that H is a simple graph
without loops, so no two adjacent vertices of G can be mapped by a homomorphism to the
same vertex of H. To stress this, we will call such H an irreflexive pattern graph.

A partial homomorphism from G to H, or a partial H-coloring of G, is a partial function
φ : V (G) ⇀ V (H) that is a homomorphism from G[domφ] to H, where domφ denotes the
domain of φ.

Suppose that with graphsG andH we associate a revenue function rev : V (G)×V (H)→ R.
Then the revenue of a partial H-coloring φ is defined as

rev(φ) :=
∑

u∈domφ

rev(u, φ(u)).

In other words, for u ∈ V (G) and v ∈ V (H), rev(u, v) denotes the revenue yielded by
assigning φ(u) := v.

We now define the main problem studied in this work. In the following, we consider the
graph H fixed.

Max Partial H-Coloring
Input: Graph G and a revenue function rev : V (G)× V (H)→ R
Output: A partial H-coloring φ of G that maximizes rev(φ)
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An instance of the Max Partial H-Coloring problem is a pair (G, rev) as above. A
solution to an instance (G, rev) is a partial H-coloring of G, and it is optimum if it maximizes
rev(φ) among solutions. By OPT(G, rev) we denote the maximum possible revenue of a
solution to the instance (G, rev).

Let us note one aspect that will be used later on. Observe that in revenue functions we
allow negative revenues for some assignments. However, if we are interested in maximizing the
total revenue, there is no point in using such assignments: if u ∈ domφ and rev(u, φ(u)) < 0,
then just removing u from the domain of φ increases the revenue. Thus, optimal solutions
never use assignments with negative revenues. Note that this feature can be used to model
list versions of partial coloring problems, where each vertex v ∈ V (G) is assigned a list of
colors L(v) ⊆ V (H) and can only be mapped to a vertex from L(v).

3 Monitors in P6-free graphs

In this section we prove an auxiliary result about finding useful separators in P6-free graphs.
The desired property is expressed in the following definition.

I Definition 2. Let G be a connected graph. A subset of vertices M ⊆ V (G) is a monitor
in G if for every connected component C of G −M , there exists a vertex w ∈ M that is
complete to C.

Let us note the following property of monitors.

I Lemma 3. If M is a monitor in a connected graph G, then every maximal clique in G

intersects M . In particular, ω(G−M) < ω(G).

Proof. If K is a clique in G−M , then K has to be entirely contained in some connected
component C of G−M . Since M is a monitor, there exists w ∈M that is complete to C.
Then K ∪ {w} is also a clique in G, hence K cannot be a maximal clique in G. J

We now prove that in P6-free graphs we can always find easily describable monitors.

I Lemma 4. Let G be a connected P6-free graph. Then for every u ∈ V (G) there exists a
subset of vertices X such that u ∈ X, |X| 6 3, G[X] is a path whose one endpoint is u, and
NG[X] is a monitor in G.

Lemma 4 follows immediately from the following statement applied for t = 6.

I Lemma 5. Let t ∈ {4, 5, 6}, G be a connected P6-free graph, and u ∈ V (G) be a vertex
such that in G there is no induced Pt with u being one of the endpoints. Then there exists a
subset X of vertices such that u ∈ X, |X| 6 t− 3, G[X] is a path whose one endpoint is u,
and NG[X] is a monitor in G.

Proof. We proceed by induction on t. The base case for t = 4 will be proved directly within
the analysis.

In the following, by slabs we mean connected components of the graph G−NG[u]. We shall
say that a vertex w ∈ NG(u) is mixed on a slab C if w is neither complete nor anti-complete
to C. A slab C is simple if there exists a vertex w ∈ NG(u) that is complete to C, and
difficult otherwise.

Note that since G is connected, for every difficult slab D there exists some vertex
w ∈ NG(u) that is mixed on D. Then, by Lemma 1, we can find vertices a, b ∈ D such that
u − w − a − b is an induced P4 in G. If t = 4 then no such induced P4 can exists, so we
infer that in this case there are no difficult slabs. Then NG[u] is a monitor, so we may set
X := {u}. This proves the claim for t = 4; from now on we assume that t > 5.

ESA 2020
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Let us choose a vertex v ∈ NG(u) that maximizes the number of difficult slabs on which v
is mixed. Suppose there is a difficult slab D′ such that v is anti-complete to D′. As we argued,
there exists a vertex v′ ∈ NG(u) such that v′ is mixed on D′; clearly v′ 6= v. By the choice
of v, there exists a difficult slab D such that v is mixed on D and v′ is anti-complete to D.
By applying Lemma 1 twice, we find vertices a, b ∈ D and a′, b′ ∈ D′ such that v− a− b and
v′− a′− b′ are induced P3s in G. Now, if v and v′ were adjacent, then b− a− v− v′− a′− b′
would be an induced P6 in G, a contradiction. Otherwise b− a− v − u− v′ − a′ − b′ is an
induced P7 in G, again a contradiction (see Figure 2).

u

NG(u)

D D′

v v′

ab b′a′

Figure 2 The graph G in the proof of Lemma 5 when v anti-complete to some difficult slab D′.
Dotted lines show non-edges. The edge vv′ might be present.

We conclude that v is mixed on every difficult slab. Let

A := {v} ∪
⋃

D : difficult slab
V (D).

Then G[A] is connected and P6-free. Moreover, in G[A] there is no Pt−1 with one endpoint
being v, because otherwise we would be able to extend such an induced Pt−1 using u, and
thus obtain an induced Pt in G with one endpoint being u. Consequently, by induction we
find a subset Y ⊆ A such that |Y | 6 (t − 1) − 3 = t − 4, G[Y ] is a path with one of the
endpoints being v, and NG[A][Y ] is a monitor in G[A]. Let X := Y ∪ {u}. Then |X| 6 t− 3
and G[X] is a path with u being one of the endpoints.

We verify that NG[X] is a monitor in G. Consider any connected component C of
G − NG[X]. As NG[X] ⊇ NG[u], C is contained in some slab D. If D is simple, then
by definition there exists a vertex w ∈ NG[u] ⊆ NG[X] that is complete to D, hence also
complete to C. Otherwise D is difficult, hence C is a connected component of G[A]−NG[A][Y ].
Since NG[A][Y ] is a monitor in G[A], there exists a vertex w ∈ NG[A][Y ] ⊆ NG[X] that is
complete to C. This completes the proof. J

We remark that no statement analogous to Lemma 4 can hold for P7-free graphs, even if
from X we only require that NG[X] intersects all the maximum-size cliques in G (which is
implied by the property of being a monitor, see Lemma 3). Consider the following example.
Let G be a graph obtained from the union of n + 1 complete graphs K(0), . . . ,K(n), each
on n vertices, by making one vertex from each of the graphs K(1), . . . ,K(n) adjacent to a
different vertex of K(0). Then G is P7-free, but the minimum size of a set X ⊆ V (G) such
that NG[X] intersects all maximum-size cliques in G is n.
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4 Branching

We now present the core branching step that is used by all our algorithms. This part is
inspired by the approach of Hoàng et al. [22]. We will rely on the following two graph families;
see Figure 3. For t ∈ N, the graph St is obtained from the star K1,t by subdividing every
edge once. Then L1 := P3 and for t > 2 the graph Lt is obtained from St by making all the
leaves of St pairwise adjacent.

Figure 3 Graphs S4 and L4.

I Lemma 6. Let H be a fixed irreflexive pattern graph. Suppose we are given integers
s, t and an instance (G, rev) of Max Partial H-Coloring such that G is connected and
{P6, Ls, St}-free. Denoting n := |V (G)|, one can in time nO(Ramsey(s,t)) construct a subgraph
G′ of G with V (G′) = V (G) and a set Π consisting of at most nO(Ramsey(s,t)) revenue functions
with domain V (G)× V (H) such that the following conditions hold:
(C1) The graph G′ is {P6, Ls, St}-free. Moreover, if G is F •-free for some connected graph

F on at least two vertices, then G′ is F -free.
(C2) We have OPT(G, rev) = maxrev′∈Π OPT(G′, rev′). Moreover, for any rev′ ∈ Π for which

the maximum is reached, every optimum solution φ to (G′, rev′) is also an optimum
solution to (G, rev) with rev(φ) = rev′(φ).

We remark that the statement above is a simplified variant of the lemma, and it is
sufficient for proving results (R3) and (R4), but not for results (R1) and (R2). In the full
variant, presented in the full version of the paper, solving the instance (G, rev) is reduced
to solving a list Π of pairs of instances. Each pair ((G1, rev1), (G2, rev2)) ∈ Π satisfies the
following: (G1, rev1) is an instance of Max Partial H ′-Coloring for some proper induced
subgraph H ′ of G; and if G2 contains some induced connected graph F on at least two
vertices, then G contains not only an induced F •, but even an induced F •−◦. This gives a
stronger reduction of structure upon application of Lemma 6, which is vitally used in the
proofs of results (R1) and (R2).

The remainder of this section is devoted to the proof of Lemma 6. We fix the irreflexive
pattern graph H and consider an input instance (G, rev). We find it more didactic to first
perform an analysis of (G, rev), and only provide the algorithm at the end. Thus, the
correctness will be clear from the previous observations.

Since G is connected, by Lemma 4 there exists X ⊆ V (G) such that |X| 6 3 and N [X]
is a monitor in G. Note that such a set X can be found in polynomial time by checking
all subsets of V (G) of size at most 3. In case |X| < 3, we may add arbitrary vertices to X
so that |X| = 3, note that the property of being a monitor still holds. Let us arbitrarily
enumerate the vertices of X as {x1, x2, x3}.

We partition V (G)−X into A1, A2, A3, A4 as follows (see Figure 4):

A1 := N(x1)−X, A2 := N(x2)−(X∪A1), A3 := N(x3)−(X∪A1∪A2), A4 := V (G)−N [X].
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Note that {A1, A2, A3} is a partition of N(X). For i ∈ {1, 2, 3}, denote A>i :=
⋃4
j=i+1Aj

and observe that xi is complete to Ai and anti-complete to A>i. Moreover, we have the
following.

B Claim 7. For every connected graph F and i ∈ {1, 2, 3, 4}, if G[Ai] contains an induced
F , then G contains an induced F •.

Proof. Suppose B ⊆ Ai induces F in G. If i ∈ {1, 2, 3} then B ∪{xi} induces F • in G, hence
assume that i = 4. Since F is connected, B is entirely contained in one connected component
C of G[A4]. As N [X] is a monitor in G, there exists a vertex w ∈ N [X] that is complete to
C. Now B ∪ {w} induces F • in G. C

x1 x2 x3

A1 A2 A3

A4

NG(X)

X

V (G) \NG[X]

Figure 4 The partition on V (G) in the proof of Lemma 6. Solid and dotted lines respectively
indicate that a vertex is complete or anti-complete to a set. Dashed edges might, but do not have to
exist.

The next claim contains the core combinatorial observation of the proof.

B Claim 8. Let φ be a solution to the instance (G, rev). Then for every i ∈ {1, 2, 3} and
v ∈ V (H), there exists a set S ⊆ Ai such that:
|S| < Ramsey(s, t) and S ⊆ Ai ∩ φ−1(v); and
every vertex u ∈ A>i that has a neighbor in Ai ∩ φ−1(v), also has a neighbor in S.

Proof. Let S be the smallest set contained in Ai∩φ−1(v) and satisfying the second condition,
it exists, as this condition is satisfied by Ai ∩ φ−1(v) . Note that since H is irreflexive, it
follows that φ−1(v) is an independent set in G, hence S is independent as well.

Suppose for contradiction that |S| > Ramsey(s, t). By minimality, for every u ∈ S there
exists u′ ∈ A>i such that u is the only neighbor of u′ in S. Let S′ := {u′ : u ∈ S}. Since
|S′| = |S| > Ramsey(s, t), in G[S′] we can either find a clique K ′ of size s or an independent
set I ′ of size t; denote K := {u : u′ ∈ K ′} and I := {u : u′ ∈ I ′}. In the former case, we find
that {xi} ∪K ∪K ′ induces the graph Ls in G, a contradiction. Similarly, in the latter case
we have that {xi} ∪ I ∪ I ′ induces St in G, again a contradiction. This completes the proof
of the claim. C

Claim 8 suggests the following notion. A guess is a function R : V (H)→ 2N [X] satisfying
that:

for each v ∈ V (H), R(v) is a subset of N [X] such that |R(v) ∩Ai| < Ramsey(s, t) for all
i ∈ {1, 2, 3}; and
sets R(v) are pairwise disjoint for different v ∈ V (H).
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Let R be the family of all possible guesses; then we easily have the following.

B Claim 9. We have that |R| 6 nO(Ramsey(s,t)) and R can be enumerated in time
nO(Ramsey(s,t)).

Proof. For each v ∈ V (H), the number of choices for R(v) in a guess R is bounded by
23 · n3·Ramsey(s,t): the first factor corresponds to the choice of R(v) ∩X, while the second
factor bounds the number of choices of R(v) ∩ Ai for i ∈ {1, 2, 3}. Since the guess R is
determined by choosing R(v) for each v ∈ V (H) and |V (H)| is considered a constant, the
number of different guesses is bounded by

(
23 · n3·Ramsey(s,t))|V (H)| = nO(Ramsey(s,t)). Clearly,

they can be also enumerated in time nO(Ramsey(s,t)). C

Now, we say that a guess R is compatible with a solution φ to (G, rev) if the following
conditions hold for every v ∈ V (H):
(C1) R(v) ⊆ φ−1(v);
(C2) R(v) ∩X = φ−1(v) ∩X; and
(C3) for all i ∈ {1, 2, 3} and u ∈ A>i, if u has a neighbor in φ−1(v) ∩Ai, then u also has a

neighbor in R(v) ∩Ai.
The following statement follows immediately from Claim 8.

B Claim 10. For every solution φ to the instance (G, rev), there exists a guess R ∈ R that is
compatible with φ.

Consider a guess R ∈ R. We define a set BR ⊆ V (G)× V (H) of disallowed pairs for R
as follows. We include a pair (u, v) ∈ V (G)× V (H) in BR if any of the following conditions
holds:
(D1) u ∈ X and u /∈ R(v);
(D2) u ∈ R(v′) for some v′ ∈ V (H) that is different from v;
(D3) u has a neighbor in G that belongs to R(v′) for some v′ ∈ V (H) such that vv′ /∈ E(H);

or
(D4) u ∈ Ai − R(v) for some i ∈ {1, 2, 3} and there exists u′ ∈ A>i such that uu′ ∈ E(G)

and NG(u′) ∩Ai ∩R(v) = ∅.
Intuitively, BR contains assignments that contradict the supposition that R is compatible
with a considered solution.

Based on BR, we define a new revenue function revR : V (G)× V (H)→ R as follows:

revR(u, v) =
{
−1 if (u, v) ∈ BR;
rev(u, v) otherwise.

The intuition is that disallowing a pair (u, v) is modelled by assigning a negative revenue to
the corresponding assignment. This forbids optimum solutions from using this assignment.

We define a subgraph G′ of G as follows: V (G′) := V (G) and E(G′) comprises all edges
of G whose both endpoints belong to the same set Ai, for some i ∈ {1, 2, 3, 4}. Thus, in G′
the vertices of X are isolated, and there are no edges between any Ai and Aj for i 6= j, nor
between any Ai and X. For every guess R ∈ R, we may consider a new instance (G′, revR)
of Max Partial H-Coloring. In the following two claims we establish the relationship
between solutions to the instance (G, rev) and solutions to instances (G′, revR) for R ∈ R.
The proofs essentially boil down to a verification that all the previous definitions work as
expected. In particular, the key point is that the modification of revenues applied when
constructing revR implies automatic satisfaction of all the constraints associated with edges
that were present in G, but got removed in G′.
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B Claim 11. For every guess R ∈ R, every optimum solution φ to the instance (G′, revR) is
also a solution to the instance (G, rev), and moreover revR(φ) = rev(φ).

Proof. Recall that φ is a solution to (G, rev) if and only if φ is a partialH-coloring of G. Hence,
we need to prove that for every uu′ ∈ E(G) with u, u′ ∈ domφ, we have φ(u)φ(u′) ∈ E(H).
Denote v := φ(u) and v′ := φ(u′) and suppose for contradiction that vv′ /∈ E(H). Since φ is
an optimum solution to (G′, revR), we have revR(u, v) > 0, which implies that (u, v) /∈ BR.
Similarly (u′, v′) /∈ BR. We now consider cases depending on the alignment of u and u′ in G.

If u, u′ ∈ Ai for some i ∈ {1, 2, 3, 4} then uu′ ∈ E(G′), so the supposition vv′ /∈ E(H)
would contradict the assumption that φ is a solution to (G′, revR).

Suppose u ∈ Ai and u′ ∈ Aj for i, j ∈ {1, 2, 3, 4}, i 6= j; by symmetry, assume i < j. As
vv′ /∈ E(H), we infer that u′ does not have any neighbors in R(v) in G, for otherwise we
would have (u′, v′) ∈ BR by (D3). As uu′ ∈ E(G), u ∈ Ai, and u′ ∈ A>i, this implies that
(u, v) ∈ BR by (D4), a contradiction.

Finally, suppose that {u, u′}∩X 6= ∅, say u ∈ X. Since (u, v) /∈ BR, by (D1) we infer that
u ∈ R(v). Then, by (D3), vv′ /∈ E(H) and uu′ ∈ E(G) together imply that (u′, v′) ∈ BR, a
contradiction.

This completes the proof that φ is a solution to (G, rev). To see that revR(φ) = rev(φ)
note that φ, being an optimum solution to (G′, revR), does not use any assignments with
negative revenues in revR, while rev(u, v) = revR(u, v) for all (u, v) satisfying revR(u, v) > 0.

C

B Claim 12. If φ is a solution to (G, rev) that is compatible with a guess R ∈ R, then φ is
also a solution to (G′, revR) and revR(φ) = rev(φ).

Proof. As φ is a solution to (G, rev), it is a partial H-coloring of G. Since G′ is a subgraph
of G with V (G′) = V (G), φ is also a partial H-coloring of G′. Hence φ is a solution to
(G′, revR).

To prove that revR(φ) = rev(φ) it suffices to show that (u, φ(u)) /∈ BR for every u ∈ domφ,
since functions revR and rev differ only on the pairs from BR. Suppose otherwise, and consider
cases depending on the reason for including (u, φ(u)) in BR. Denote v := φ(u).

First, suppose u ∈ X and u /∈ R(v). By (C2) we have u /∈ R(v) ∩X = φ−1(v) ∩X 3 u, a
contradiction.

Second, suppose u ∈ R(v′) for some v′ 6= v. By (C1) we have v = φ(u) = v′, again a
contradiction.

Third, suppose that u has a neighbor u′ in G such that u′ ∈ R(v′) for some v′ ∈ V (H)
satisfying vv′ /∈ E(H). By (C1), we have u′ ∈ domφ and φ(u′) = v′. But then φ(u)φ(u′) =
vv′ /∈ E(H) even though uu′ ∈ E(G), a contradiction with the assumption that φ is a partial
H-coloring of G.

Fourth, suppose that u ∈ Ai −R(v) for some i ∈ {1, 2, 3} and there exists u′ ∈ A>i such
that uu′ ∈ E(G) and NG(u′) ∩ R(v) ∩ Ai = ∅. Observe that since u ∈ Ai ∩ φ−1(v) and
uu′ ∈ E(G), by (C3) u′ has a neighbor in R(v) ∩ Ai in the graph G. This contradicts the
supposition that NG(u′) ∩R(v) ∩Ai = ∅.

As in all the cases we have obtained a contradiction, this concludes the proof of the claim.
C

Let now Π := {revR : R ∈ R}. Then, condition (C2) can be easily derived from Claim 11
and Claim 12, while condition (C1) is implied by Claim 7. Note here that G′ is {P6, Ls, St}-
free, because it is a disjoint union of induced subgraphs of G. Finally, from Claim 9 we infer
that |Π| = |R| 6 nO(Ramsey(s,t)) and Π can be constructed in time nO(Ramsey(s,t)), because
given R ∈ R it is straightforward to construct revR in polynomial time. Hence Π satisfies all
the requested properties, and this completes the proof of Lemma 6.
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5 Corollaries for subclasses of P6-free graphs

In this section we prove results (R3) and (R4) promised in Section 1. The idea is to apply
Lemma 6 exhaustively, until the considered instance becomes trivial. The main point is that
with each application the clique number of the graph drops, hence we naturally obtain an
upper bound of the form nf(ω(G)) for the total size of the recursion tree, hence also on the
running time.

The following statement captures the idea of exhaustive applying Lemma 6 in a recursive
scheme. For convenience, we formulate the statement so that s and t are given on input.

I Theorem 13. Let H be a fixed irreflexive pattern graph. There exists an algorithm
that given s, t ∈ N and an instance (G, rev) of Max Partial H-Coloring where G is
{P6, Ls, St}-free, solves this instance in time nO(Ramsey(s,t)·ω(G)).

Proof. If G is not connected, then for every connected component C of G we apply the
algorithm recursively to (C, rev|V (C)). If φC is the obtained optimum solution to this instance,
we may output φ :=

⋃
C φC . It is clear that φ constructed in this way is an optimum solution

to (G, rev).
Assume then that G is connected. If G consists of only one vertex, say u, then we may

simply output φ := {(u, v)} where v maximizes rev(u, v), or φ := ∅ if rev(·) has no positive
value in its range. Hence, assume that G has at least two vertices, in particular ω(G) > 2.
We now apply Lemma 6 to G. Thus, in time nO(Ramsey(s,t)) we obtain a subgraph G′ of G
with V (G) = V (G′) and a suitable set of revenue functions Π satisfying |Π| 6 nO(Ramsey(s,t)).
Recall here that G′ is {P6, Ls, St}-free. Moreover, if we set F = Kω(G) then G is F •-free, so
Lemma 6 implies that G′ is F -free. This means that ω(G′) < ω(G).

Next, for every rev′ ∈ Π we recursively solve the instance (G′, rev′). Lemma 6 implies
that if among the obtained optimum solutions to instances (G′, rev′) we pick the one with
the largest revenue, then this solution is also an optimum solution to (G, rev).

We are left with analyzing the running time. Recall that every time we recurse into
subproblems constructed using Lemma 6, the clique number of the currently considered
graph drops by at least one. Since recursing on a disconnected graph yields connected graphs
in subproblems, we conclude that the total depth of the recursion tree is bounded by 2 ·ω(G).
In every recursion step we branch into nO(Ramsey(s,t)) subproblems, hence the total number of
nodes in the recursion tree is bounded by

(
nO(Ramsey(s,t)))2·ω(G) = nO(Ramsey(s,t)·ω(G)). The

internal computation in each subproblem take time nO(Ramsey(s,t)), hence the total running
time is indeed nO(Ramsey(s,t)·ω(G)). J

Note that since both L3 and S2 contain P5 as an induced subgraph, every P5-free graph
is {P6, L3, S2}-free. Hence, from Theorem 13 we may immediately conclude the following
statement, where the setting of P5-free graphs is covered by the case s = 3 and t = 2.

I Corollary 14. For any fixed s, t ∈ N and irreflexive pattern graph H, Max Partial
H-Coloring can be solved in {P6, Ls, St}-free graphs in time nO(ω(G)). This in particular
applies to P5-free graphs.

Next, we observe that the statement of Theorem 13 can be also used for non-constant s
to obtain an algorithm for the case when the graph Ls is not excluded.

I Corollary 15. For any fixed t ∈ N and irreflexive pattern graph H, Max Partial H-
Coloring can be solved in {P6, St}-free graphs in time nO(ω(G)t).
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Proof. Observe that since the graph Ls contains a clique of size s, every graph G is actually
Lω(G)+1-free. Therefore, we may apply the algorithm of Theorem 13 for s := ω(G) + 1. Note
here that ω(G) can be computed in time nω(G)+O(1) by verifying whether G has cliques of
size 1, 2, 3, . . . up to the point when the check yields a negative answer. Since for s = ω(G)+1
and fixed t we have

Ramsey(s, t) =
(
s+ t− 2
t− 1

)
6 O(ω(G)t−1),

the obtained running time is nO(Ramsey(s,t)·ω(G)) 6 nO(ω(G)t). J

Let us note that an algorithm with running time nO(ω(G)α), for some constant α, can be
used within a simple branching strategy to obtain a subexponential-time algorithm.

I Lemma 16. Let H be a fixed irreflexive graph and suppose Max Partial H-Coloring
can be solved in time nO(ω(G)α) on F-free graphs, for some family of graphs F and some
constant α > 1. Then Max Partial H-Coloring can be solved in time nO(nα/(α+1)) on
F-free graphs.

Proof. Let (G, rev) be the input instance, where G has n vertices. We define threshold
τ :=

⌊
n

1
α+1

⌋
.

The algorithm first checks whether G contains a clique on τ vertices. This can be done
in time nτ+O(1) 6 nO(n1/(α+1)) by verifying all subsets of τ vertices in G. If there is no such
clique then ω(G) < τ , so we can solve the problem using the assumed algorithm in time
nO(ω(G)α) 6 nO(τα) 6 nO(nα/(α+1)). Hence, suppose that we have found a clique K on τ

vertices.
Observe that since H is irreflexive, in any partial H-coloring φ of G only at most |V (H)|

vertices of K can be colored, that is, belong to domφ. We recurse into
(

τ
6|V (H)|

)
6 n|V (H)|

subproblems: in each subproblem we fix a different subset A ⊆ K with |A| 6 |V (H)|
and recurse on the graph GA := G − (K − A) with revenue function revA := rev|V (GA).
Note here that GA is F-free. From the above discussion it is clear that OPT(G, rev) =
maxA⊆K,|A|6|V (H)|OPT(GA, revA). Therefore, the algorithm may return the solution with
the highest revenue among those obtained in recursive calls.

As for the running time, observe that in every recursive call, the algorithm either solves
the problem in time nO(nα/(α+1)), or recurses into n|V (H)| = nO(1) subcalls, where in each
subcall the vertex count is decremented by at least

⌊
n

1
α+1

⌋
. It follows that the depth of the

recursion is bounded by O(nα/(α+1)), hence the total number of nodes in the recursion tree
is at most nO(nα/(α+1)). Since the time used for each node is bounded by nO(nα/(α+1)), the
total running time of nO(nα/(α+1)) follows. J

By combining Corollary 14 and Corollary 15 with Lemma 16 we conclude the following.

I Corollary 17. For any fixed s, t ∈ N and irreflexive pattern graph H, Max Partial
H-Coloring can be solved in
1. {P6, Ls, St}-free graphs in time nO(

√
n) (this in particular applies to P5-free graphs),

2. {P6, St}-free graphs in time nO(nt/(t+1)).
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6 Open problems

The following question, which originally motivated our work, still remains unresolved.

I Question 1. Is Odd Cycle Transversal polynomial-time solvable in P5-free graphs?

Note that our work stops short of giving a positive answer to this question: we give an
algorithm with running time nO(ω(G)), a subexponential-time algorithm, and polynomial time
algorithms for the cases when either a threshold graphs or a bull is additionally forbidden.
Therefore, we are hopeful that the answer to the question is indeed positive.

One aspect of our work that we find particularly interesting is the possibility of treating
the clique number ω(G) as a progress measure for an algorithm, which enables bounding
the recursion depth in terms of ω(G). This approach naturally leads to algorithms with
running time of the form nf(ω(G)) for some function f , that is, polynomial-time for every
fixed clique number. By Lemma 16, having a polynomial function f in the above gives
a subexponential-time algorithm, at least in the setting of Max Partial H-Coloring
for irreflexive H. However, looking for algorithms with time complexity nf(ω(G)) seems to
be another relaxation of the goal of polynomial-time solvability, somewhat orthogonal to
subexponential-time algorithms [4, 6, 19] or approximation schemes [10]. Note that our work
and the recent work of Brettell et al. [7] actually show two different methods of obtaining such
algorithms: using direct recursion, or via dynamic programming on branch decompositions
of bounded mim-width. It would be interesting to investigate this direction in the context of
Maximum Independent Set in Pt-free graphs. A concrete question would be:

I Question 2. Is there a polynomial-time algorithm for Maximum Independent Set in
{Pt,Kt}-free graphs, for every fixed t?

In all our algorithms, we state the time complexity assuming that the pattern graph H is
fixed. This means that the constants hidden in the O(·) notation in the exponent may – and
do – depend on the size of H. In the language of parameterized complexity, this means that
we give XP algorithms for the parameterization by the size of H. It is natural to ask whether
this state of art can be improved to the existence of FPT algorithms, that is, with running
time f(H) · nc for some computable function f and universal constant c, independent of H.
This is not known even for the case of k-Coloring P5-free graphs, so let us re-iterate the
old question of Hoàng et al. [22].

I Question 3. Is there an FPT algorithm for k-Coloring in P5-free graphs parameterized
by k?

While the above question seems hard, it is conceivable that FPT results could be derived
in some more restricted settings considered in this work, for instance for {P5,bull}-free
graphs.
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