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Abstract
Complex networks are everywhere. They appear for example in the form of biological networks, social
networks, or computer networks and have been studied extensively. Efficient algorithms to solve
problems on complex networks play a central role in today’s society. Algorithmic meta-theorems
show that many problems can be solved efficiently. Since logic is a powerful tool to model problems,
it has been used to obtain very general meta-theorems. In this work, we consider all problems
definable in first-order logic and analyze which properties of complex networks allow them to be
solved efficiently.

The mathematical tool to describe complex networks are random graph models. We define a
property of random graph models called α-power-law-boundedness. Roughly speaking, a random
graph is α-power-law-bounded if it does not admit strong clustering and its degree sequence is
bounded by a power-law distribution with exponent at least α (i.e. the fraction of vertices with
degree k is roughly O(k−α)).

We solve the first-order model-checking problem (parameterized by the length of the formula) in
almost linear FPT time on random graph models satisfying this property with α ≥ 3. This means in
particular that one can solve every problem expressible in first-order logic in almost linear expected
time on these random graph models. This includes for example preferential attachment graphs,
Chung–Lu graphs, configuration graphs, and sparse Erdős–Rényi graphs. Our results match known
hardness results and generalize previous tractability results on this topic.
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1 Introduction

Complex networks, as they occur in society, biology and technology, play a central role in
our everyday lives. Even though these networks occur in vastly different contexts, they are
structured and evolve according to a common set of underlying principles. Over the last two
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decades, with the emergence of the field of network science, there has been an explosion in
research to understand these fundamental laws. One well observed property is the small-world
phenomenon, which means that distances between vertices are very small. This has been
verified for the internet and many other networks [1, 56]. Furthermore, many real networks
tend to be clustered. They contain groups of vertices that are densely connected [67]. If two
vertices share a common neighbor, then there is a high chance that there is also an edge
between them. A network can be considered clustered if the ratio between the number of
triangles and the number of paths with three vertices is non-vanishing. This is formalized by
the clustering coefficient, which is high for many networks [72]. A third important property
is a heavy tailed degree distribution. While most vertices have a low number of connections,
there are a few hubs with a high degree. Experiments show that the degrees follow for
example a power-law or log-normal distribution. In a power-law distribution, the fraction
of vertices with degree k is proportional to k−α (usually with α between 2 and 3). This
behavior makes complex networks highly inhomogeneous [65, 58, 10, 15].

One important goal of theoretical computer science has always been to explore what kinds
of inputs allow or forbid us to construct efficient algorithms. In this context, algorithmic
meta-theorems [52] are of particular interest. They are usually theorems stating that problems
definable in a certain logic can be solved efficiently on graph classes that satisfy certain
properties. Logic is a powerful tool to model problems and therefore has been used to obtain
very general meta-theorems. A well-known example is Courcelle’s theorem [16], which states
that every problem expressible in counting monadic second-order logic can be solved in linear
time on graph classes with bounded treewidth. It has been further generalized to graph
classes with bounded cliquewidth [17]. To obtain results for larger graph classes one has to
consider weaker logics. The languages of relational database systems are based on first-order
logic. In this logic, one is allowed to quantify over vertices and to test equality and adjacency
of vertices. With k existential quantifiers, one may ask for the existence of a fixed graph with
k vertices (k-subgraph isomorphism), a problem relevant to motif-counting [57, 29]. On the
other hand, connectivity properties cannot be expressed in first-order logic. We define for
every graph class G the parameterized first-order model-checking problem p-MC(FO,G) [45].

p-MC(FO,G)
Input: A graph G ∈ G and a first-order sentence ϕ

Parameter: The number of symbols in ϕ, denoted by |ϕ|
Problem: Does ϕ hold on G (i.e. G |= ϕ)?

The aim is to show for a given graph class G that p-MC(FO,G) is fixed parameter tractable
(FPT), i.e., can be decided in time f(|ϕ|)nO(1) for some function f (see for example [18]
for an introduction to fixed parameter tractability). Since input graphs may be large, a
linear dependence on n is desirable. If one is successful, then every problem expressible in
first-order logic can be solved on G in linear time.

For the class of all graphs G, p-MC(FO,G) is AW[∗]-complete [25] and therefore most
likely not fpt. Over time, tractability of p-MC(FO,G) has been shown for more and more
sparse graph classes G: bounded vertex degree [69], forbidden minors [35], bounded local
treewidth [34], and further generalizations [19, 30, 68]. Grohe, Kreutzer and Siebertz prove
that p-MC(FO,G) can be solved in almost linear FPT time f(|ϕ|, ε)n1+ε for all ε > 0 if G is
a nowhere dense graph class [46]. On the other hand if G is a monotone somewhere dense
graph class, p-MC(FO,G) is AW[∗]-hard [46]. Nowhere dense graph classes were introduced
by Nešetřil and Ossona de Mendez as those graph classes where for every r ∈ N the size of
all r-shallow clique minors of all graphs in the graph class is bounded by a function of r
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(Section 4.3). A graph class is somewhere dense if it is not nowhere dense. The tractability
of the model-checking problem on monotone graph classes is completely characterized with a
dichotomy between nowhere dense and somewhere dense graph classes. These very general
results come at a cost: Frick and Grohe showed that the dependence of the run time on ϕ is
non-elementary [38]. We want to transfer this rich algorithmic theory to complex networks.
But what is the right abstraction to describe complex networks?

Network scientists observed that the chaotic and unordered structure of real networks
can by captured using randomness. There is a vast body of research using random processes
to create graphs that mimic the fundamental properties of complex networks. The most
prominent ones are the preferential attachment model [3, 64], Chung–Lu model [12, 13],
configuration model [60, 59], Kleinberg model [50, 51], hyperbolic graph model [53], and
random intersection graph model [47, 66]. All these are random models. It has been
thoroughly analyzed how well they predict various properties of complex networks [43].

When it comes to algorithmic meta-theorems on random graph models “even the most
basic questions are wide open,” as Grohe puts it [45]. By analyzing which models of complex
networks and which values of the model-parameters allow for efficient algorithms, we aim
to develop an understanding how the different properties of complex networks control their
algorithmic tractability.

In this work we show for a wide range of models, including the well known preferential
attachment model, that one can solve the parameterized first-order model-checking problem
in almost linear FPT time. This means in particular that one can solve every problem
expressible in first-order logic efficiently on these models. Our original goal was to obtain
efficient algorithms only for preferential attachment graphs, but we found an abstraction
that transfers these results to many other random graph models. Roughly speaking, the
following two criteria are sufficient for efficiently solving first-order definable problems on a
random graph model:

The model needs to be unclustered. In particular the expected number of triangles needs
to be subpolynomial.
For every k, the fraction of vertices with degree k is roughly O(k−3). In other words, the
degree sequence needs to be bounded by a power-law distribution with exponent 3 or
higher.

Models satisfying these properties include sparse Erdős–Rényi graphs, preferential attach-
ment graphs as well as certain Chung–Lu and configuration graphs. On the other hand, the
Kleinberg model, the hyperbolic random graph model, or the random intersection graph
model do not satisfy these properties. Our results generalize previous results [44, 22] and
match known hardness results: The model-checking problem has been proven to be hard
on power-law distributions with exponent smaller than 3 [28]. We therefore identify the
threshold for tractability to be a power-law coefficient of 3. It is also a big open question
whether the model-checking problem can also be solved on clustered random graph models,
especially since real networks tend to be clustered. Furthermore, significant engineering
challenges need to be overcome to make our algorithms applicable in practice.

1.1 Average Case Complexity
Average-case complexity analyzes the typical run time of algorithms on random instances
(see [6] for a survey), based on the idea that a worst-case analysis often is too pessimistic as
for many problems hard instances occur rarely in the real world. Since models of complex
networks are probability distributions over graphs, we analyze the run time of algorithms
under average-case complexity. However, there are multiple notions and one needs to be
careful which one to choose.

ESA 2020
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Assume a random graph model is asymptotically almost surely (a.a.s.) nowhere dense, i.e.,
a random graph from the model with n vertices belongs with probability 1−δ(n) to a nowhere
dense graph class, where limn→∞ δ(n) = 0 (Section 4.3). Then the first-order model-checking
problem can be efficiently solved with a probability converging to one [46]. However, with
probability δ(n) the run time can be arbitrarily high and the rate of convergence of δ(n) to
zero can be arbitrarily slow. These two missing bounds are undesirable from an algorithmic
standpoint and the field of average-case complexity has established a theory on how the run
time needs to be bounded with respect to the fraction of inputs that lead to this run time.

This is formalized by the well-established notion of average polynomial run time, intro-
duced by Levin [54]. An algorithm has average polynomial run time with respect to a random
graph model if there is an ε > 0 and a polynomial p such that for every n, t the probability
that the algorithm runs longer than t steps on an input of size n is at most p(n)/tε. This
means there is a polynomial trade-off between run time and fraction of inputs. This notion
has been widely studied [6, 2] and is considered from a complexity theoretic standpoint the
right notion of polynomial run time on random inputs. It is closed under invoking polynomial
subroutines.

In our work, however, we wish to explicitly distinguish linear time. While Levin’s
complexity class is a good analogy to the class P, it is not suited to capture algorithms with
average linear run time. For this reason, we turn to the expected value of the run time, a
stronger notion than average polynomial time. In fact, using Markov’s inequality we see that
if an algorithm has expected linear run time, all previous measures of average tractability
are also bounded. Their relationship is as follows.

expected linear ⇒ expected polynomial ⇒ average polynomial ⇒ a.a.s. polynomial

With this in mind we can present our notion of algorithmic tractability. A labeled graph
is a graph where every vertex can have (multiple) labels. First-order formulas can have
unary predicates for each type of label. These predicates test whether a vertex has a label
of a certain type. We define G to be the class of all graphs, and Glb to be the class of all
vertex-labeled graphs. A function L : G→ Glb is an l-labeling function for l ∈ N if for every
G ∈ G, L(G) is a labeling of G with up to l classes of labels (see Section 4 for details).
Furthermore, a random graph model is a sequence G = (Gn)n∈N, where Gn is a probability
distribution over unlabeled simple graphs with n vertices.

I Definition 1. We say p-MC(FO,Glb) can be decided on a random graph model (Gn)n∈N
in expected time f(|ϕ|, n) if there exists a deterministic algorithm A which decides p-
MC(FO,Glb) on input G, ϕ in time tA(G,ϕ) and if for all n ∈ N, all first-order sentences ϕ
and all |ϕ|-labeling functions L, EG∼Gn

[
tA(L(G), ϕ)

]
≤ f(|ϕ|, n). We say p-MC(FO,Glb) on

a random graph model can be decided in expected FPT time if it can be decided in expected
time g(|ϕ|)nO(1) for some function g.

In particular, this definition implies efficient average run time according to Levin’s notion
(which is closed under polynomial subroutines). We choose to include labels into our notion
of average-case hardness for two reasons: First, it makes our algorithmic results stronger, as
the expected run time is small, even in the presence of an adversary that labels the vertices
of the graph. Secondly, it matches known hardness results that require adversary labeling.

1.2 Previous Work
There have been efforts to transfer the results for classical graph classes to random graph
models by showing that a graph sampled from some random graph model belongs with
high probability to a certain algorithmically tractable graph class. For most random graph
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models the treewidth is polynomial in the size of the graph [41, 4]. Therefore, people have
considered more permissive graph measures than treewidth, such as low degree [44], or
bounded expansion [22, 33]. Demaine et al. showed that some Chung–Lu and configuration
graphs have bounded expansion and provided empirical evidence that some real-world
networks do, too [22]. However, this technique is still limited, as many random graph models
(such as the preferential attachment model [22, 27]) are not known to be contained in any of
the well-known tractable graph classes.

The previous tractability results presented in this section all use the following technique:
Assume we have a formula ϕ and sample a graph of size n from a random graph model. If
the sampled graph belongs to the tractable graph class, an efficient model-checking algorithm
for the graph class can solve the instance in FPT time. If the graph does not belong to the
graph class, the naive model-checking algorithm can still solve the instance in time O(n|ϕ|).
Assume we can show that the second case only happens with probability δ(n) converging to
zero faster than any polynomial. Then δ(n)O(n|ϕ|) converges to zero and the expected run
time remains bounded by an FPT function.

Let p(n) be a function with p(n) = O(nε/n) for all ε > 0. Grohe showed that one
can solve p-MC(FO,Glb) on Erdős–Rényi graphs G(n, p(n)) in expected time f(|ϕ|, ε)n1+ε

for every ε > 0 [44]. This result was obtained by showing that with high probability the
maximum degree of the random graph model is O(nε) for every ε > 0 and then using a
model-checking algorithm for low degree graphs. Later Demaine et al. and Farrell et al.
showed that certain Chung–Lu and configuration graphs whose degrees follow a power-law
distribution with exponent α > 3 [22] as well as certain random intersection graphs [33]
belong with high probability to a graph class with bounded expansion. While they do not
mention it explicitly, the previous argument implies that one can solve p-MC(FO,Glb) in
expected time f(|ϕ|)n on these random graph models.

There further exist some average-case hardness results for the model-checking problem.
It has been shown that one cannot decide p-MC(FO,Glb) on Erdős–Rényi graphs G(n, 1/2)
or G(n, p(n)) with p(n) = nε/n for some 0 < ε < 1, ε ∈ Q, in expected FPT time unless
AW[∗] ⊆ FPT/poly [28]. The same holds for Chung–Lu graphs with exponent 2.5 < α < 3,
α ∈ Q. These hardness results fundamentally require the adversary labeling of Definition 1.
It is a big open question whether they can be transferred to model-checking without labels.

Another thing to keep in mind when considering logic and random graphs [70] are zero-one
laws. They state that in many Erdős–Rényi graphs every first-order formula holds in the
limit either with probability zero or one [70, 42, 32]. Not all random graph models satisfy
a zero-one law for first-order logic (e.g. the limit probability of the existence of a K4 in a
Chung–Lu graph with weights wi =

√
n/i is neither zero nor one).

2 Our Results

We define a property called α-power-law-boundedness. This property depends on a para-
meter α and captures many unclustered random graph models for which the fraction of
vertices with expected degree d ∈ N is roughly O(d−α). Our main contribution is solving
the model-checking problem efficiently on all α-power-law-bounded random graph models
with α ≥ 3. This includes preferential attachment graphs, Chung–Lu graphs, Erdős–Rényi
graphs, and other random graph models. Note that graphs do not need to have a power-law
degree distribution to be α-power-law-bounded. Our results hold for arbitrary labelings of
the random graph and are based on a novel decomposition technique for local regions of
random graphs. While all previous algorithms work by placing the random graph model with
high probability in a sparse graph class, our technique also works for some a.a.s. somewhere
dense random graphs (e.g. preferential attachment graphs [27]).

ESA 2020
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2.1 Power-Law-Boundedness
We start by formalizing our property. Since it generalizes the Chung–Lu model, we define this
model first. A Chung–Lu graph with exponent α and vertices v1, . . . , vn is defined such that
two vertices vi and vj are adjacent with probability Θ(wiwj/n) where wi = (n/i)1/(α−1) [12].
Furthermore all edges are independent, which means that the probability that a set of edges
occurs equals the product over the probabilities of each individual edge. In our model the
probability of a set of edges can be a certain factor larger than the product of the individual
probabilities, which allows edges to be moderately dependent.

I Definition 2. Let α > 2. We say a random graph model (Gn)n∈N is α-power-law-bounded if
for every n ∈ N there exists an ordering v1, . . . , vn of V (Gn) such that for all E ⊆

({v1,...,vn}
2

)

Pr
[
E ⊆ E(Gn)

]
≤

∏
vivj∈E

(n/i)1/(α−1)(n/j)1/(α−1)

n
·


2O(|E|2) if α > 3
log(n)O(|E|2) if α = 3
O(nε)|E|2 for every ε > 0 if α < 3.

The probability that a set of edges E occurs may be up to a factor 2O(|E|2) or log(n)O(|E|2)

or O(nε)|E|2 (depending on α) larger than the probability in the corresponding Chung–Lu
graph. For conditional probabilities this means the following: The probability bound for
an edge under the condition that some set of l edges is already present may be up to a
factor 2O(l) or log(n)O(l) or O(nε)l larger than the unconditional probability. This lets
power-law-bounded random graphs capture moderate dependence between edges. The factor
undergoes a phase transition at α = 3. The smaller factor 2O(|E|2) for α > 3 was chosen to
guarantee linear FPT run time of our model-checking algorithm (Theorem 4) if α > 3. The
slightly larger factor of log(n)O(|E|2) for α = 3 was chosen to capture preferential attachment
graphs while still maintaining a quasilinear FPT run time of our algorithm.

The parameter α of an α-power-law-bounded random graph model controls the degree
distribution. Note that if a graph class is α-power-law-bounded it is also α′-power-law-
bounded for all 2 < α′ < α. It can be easily seen that a vertex vi has expected degree
at most O(nε)(n/i)1/(α−1) for every ε > 0. This means the expected degree sequence of
an α-power-law-bounded random graph model is not power-law distributed with exponent
smaller than α. The gap is often tight: For example, Chung–Lu graphs with a power-law
degree distribution exponent α are α-power-law-bounded and preferential attachment graphs
have a power-law degree distribution with exponent 3 and are 3-power-law-bounded. For the
interesting case α = 3, the inequality in Definition 2 simplifies to

Pr
[
E ⊆ E(Gn)

]
≤ log(n)O(|E|2)

∏
vivj∈E

1√
ij
.

2.2 Model Checking
We now present our model-checking algorithm for α-power-law-bounded graphs. We express
its run time relative to the term

d̃α(n) =


O(1) α > 3
log(n)O(1) α = 3
O(n3−α) α < 3.
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This term is related to an established property of degree distributions, namely the second
order average degree [12]. If a random graph with n vertices has expected degrees w1, . . . , wn
then the second order average degree is defined as

∑n
i=1 w

2
i /
∑n
k=1 wk. In graphs with a

power-law degree distribution α we have wi = Θ((n/i)1/(α−1)). The second order average
degree then is Θ

(∑n
i=1(n/i)2/(α−1)/

∑n
k=1(n/k)1/(α−1)). For α > 3, this term is constant,

for α = 3 it is logarithmic, and for α < 3 it is polynomial in n [12]. Thus, we can interpret
d̃α(n) as an estimate of the second order average degree. We prove that the model-checking
problem can be solved efficiently if d̃α(n) is small.

I Theorem 3. There exists a function f such that one can solve p-MC(FO,Glb) on every
α-power-law-bounded random graph model in expected time d̃α(n)f(|ϕ|)n.

The term d̃α(n) naturally arises in our proofs and is not a consequence of how we defined
the multiplicative factor (i.e., 2O(|E|2), log(n)O(|E|2), O(nε)|E|2) in Definition 2. In fact the
dependence goes the other way: We defined the factor for each α as large as possible such
that it does not dominate the run time of the algorithm. Next we specify exactly those
values of α where the previous theorem leads to FPT run times. (In the third case ε > 0 can
be chosen arbitrarily small since we require α to be arbitrarily close to 3.)

I Theorem 4. Let (Gn)n∈N be a random graph model and ε > 0. There exists a function f
such that one can solve p-MC(FO,Glb) in expected time

f(|ϕ|)n if (Gn)n∈N is α-power-law-bounded for some α > 3,
log(n)f(|ϕ|)n if (Gn)n∈N is α-power-law-bounded for α = 3,
f(|ϕ|, ε)n1+ε for all ε > 0 if (Gn)n∈N is α-power-law-bounded for every 2 < α < 3.

This solves the model-checking problem efficiently on a wide range of random graph
models. These tractability results are matched by previous intractability results. (Note that
the third case of Theorem 4 requires power-law-boundedness for every 2 < α < 3 and thus
does not contradict Proposition 5.)

I Proposition 5 ([28] and [26, Lemma 10.3]). For every 2 < α < 3 there exists an α-power-
law-bounded random graph model (Gn)n∈N such that one cannot solve p-MC(FO,Glb) on
(Gn)n∈N in expected FPT time unless AW[∗] ⊆ FPT/poly.

We observe a phase transition in tractability at power-law exponent α = 3. Also the run
time of our algorithm cannot be linear in n for α ≤ 3 as a 3-power-law-bounded random
graph can have for example n log(n) edges in expectation. We discuss some of the algorithmic
implications of our result for some well-known random graph models in Section 9. More
details can be found in Section 10 of [26].

2.3 Structure
Many algorithmic results are based on structural decompositions. For example, bidimen-
sionality theory introduced by Demaine et al. [20, 21] is based on the grid minor theorem,
which is itself based on a structural decomposition into a clique-sum of almost-embeddable
graphs developed by Robertson and Seymour [61]. The model-checking algorithm for graph
classes with bounded expansion by Dvořak, Král, and Thomas [30] relies on a structural
decomposition of bounded expansion graph classes by Nešetřil and Ossona de Mendez called
low tree-depth colorings [63]. Our algorithms are based on a structural decomposition of
α-power-law-bounded random graph models.

All algorithms prior to this work rely on showing that a certain graph model is with high
probability contained in a certain well-known tractable graph class (for example bounded
expansion) and then use the structural decompositions [63] of said graph class. However,

ESA 2020
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these decompositions were not originally designed with random graphs in mind and therefore
may not provide the optimal level of abstraction for random graphs. Our algorithms are
based on a specially defined structural decomposition. This direct approach helps us capture
random graph models that could otherwise not be captured such as the a.a.s. somewhere
dense preferential attachment model. By focusing on α-power-law-bounded random graph
models, we obtain structural decompositions for a wide range of models.

We observe that α-power-law-bounded random graphs have mostly an extremely sparse
structure with the exception of a part whose size is bounded by the second order average
degree. However, this denser part can be separated well from the remaining graph. We show
that local regions consist of a core part, bounded in size by the second order average degree,
to which trees and graphs of constant size are attached by a constant number of edges. This
decomposition is similar to so called protrusion decompositions, which have been used by
Bodlaender et al. to obtain meta-theorems on kernelization [5]. Our structural decomposition
is valid for all graphs that fit into the framework of α-power-law-boundedness, such as
preferential attachment graphs or Chung–Lu graphs. We define an approximation of the
second order average degree of the degree distribution as d̂α(n) = 2 for α > 3, d̂α(n) = log(n)
for α = 3 and d̂α(n) = n3−α for α < 3 (similarly to d̃α(n) without O-notation).

I Theorem 6. Let (Gn)n∈N be an α-power-law-bounded random graph model. There exist
constants c, r0 such that for every r ≥ r0 a.a.s. for every r-neighborhood H of Gn one can
partition V (H) into three (possibly empty) sets X, Y , Z with the following properties.
|X| ≤ d̂α(n)cr2 .
Every connected component of H[Y ] has size at most cr and at most c neighbors in X.
Every connected component of H[Z] is a tree with at most one edge to H[X ∪ Y ].

Removing a few vertices makes the local neighborhoods even sparser:

I Corollary 7. Let (Gn)n∈N be an α-power-law-bounded random graph model. There exist
constants c, r0 such that for every r ≥ r0 a.a.s. one can remove d̂α(n)cr2 vertices from Gn
such that every r-neighborhood has treewidth at most 26.

Further structural results that may be interesting beyond the purpose of model-checking as
well as proofs of the results outlined here can be found in Section 9 of [26]. We now discuss
how we use the decomposition of Theorem 6 for our algorithms and why decompositions
similar to Corollary 7 are not sufficient for our purposes.

3 Techniques and Outline

A first building block of our algorithm is Gaifman’s locality theorem [39]. It implies that
in order to solve the first-order model-checking problem on a graph, it is sufficient to solve
the problem on all r-neighborhoods of the graph for some small r. We can therefore restrict
ourselves to the model-checking problem on the neighborhoods of random graphs. With this
in mind, we want to obtain structural decompositions of these neighborhoods.

One important thing to note is that a decomposition according to Corollary 7 is not
sufficient. Let us focus on the interesting case α = 3 where efficient model-checking is still
possible. Corollary 7 then states that the removal of polylogarithmically many vertices yields
neighborhoods with treewidth at most 26. While we could easily solve the model-checking
problem on graphs with treewidth at most 26 via Courcelle’s theorem [16], we cannot solve
it on graphs where we need to remove a set X of log(n) vertices to obtain a treewidth of at
most 26. Every vertex not in X may have an arbitrary subset of X as neighborhood. Since



J. Dreier, P. Kuinke, and P. Rossmanith 40:9

there are 2|X| = n possible neighborhoods, we can encode a large complicated structure
into this graph by stating that two vertices i, j ∈ N are adjacent if and only if there is
a vertex whose neighborhood in X represents a binary encoding of the edge ij (omitting
some details). Because of this, the model-checking problem on this graph class is as hard as
on general graphs. We need the additional requirement that X is only loosely connected
to the remaining graph. The decomposition in Theorem 6 fulfills this requirement. Every
component of H \X has at most a constant number of neighbors in X.

Let us assume we have decompositions of the neighborhoods of a graph according to
Theorem 6 where the sets X are chosen as small as possible. We can now use a variant of
the Feferman–Vaught theorem [48] for each r-neighborhood to prune the protrusions and
thereby construct a smaller graph that satisfies the same (short) first-order formulas as the
original graph, We call this smaller graph the kernel. The size of this kernel will be some
function of |X|. We then use the brute-force model-checking algorithm on the kernel.

For the first steps of the algorithm (decomposition into neighborhoods, kernelization
using Feferman–Vaught) one can easily show that they always take FPT time. However, the
run time of the last step requires a careful analysis. One can check a formula ϕ on a graph of
size x in time O(x|ϕ|) by brute force. Thus, checking the formula on the kernel of all n many
r-neighborhoods of a random graph takes expected time at most n

∑n
x=1 pxO(x|ϕ|), where

px is the probability that the kernelization procedure on an r-neighborhood of a random
graph yields a kernel of size x. In order to guarantee a run time of the form log(n)f(|ϕ|)n for
some function f , px should be of order log(n)f(|ϕ|)x−|ϕ|.

Earlier, we discussed that the size of the kernel will be some function of |X| and that
we choose X as small as possible. It is therefore sufficient to bound the probability that
the set X of the decomposition of a neighborhood exceeds a certain size. Parameterizing
the decomposition by two values (denoted by b and µ later on) gives us enough control
to guarantee such a bound on px. A large part of this work is devoted to proving a good
trade-off between the size of the set X of the decomposition and the probability that X is
of minimal size. Furthermore, computing the set X is computationally hard, so the whole
procedure has to work without knowing the set X, but only its existence.

Our proofs are structured as follows. First, we show in Section 5 that α-power-law-
bounded random graph models have the following structure with high probability: They
can be partitioned into sets A, B, C, where A ∪ B is small, B ∪ C is sparse and A and C
locally share only few edges. This is done by characterizing this structure by a collection
of small forbidden edge-sets and then excluding these edge-sets using the union bound and
Definition 2. Then in Section 6 we show that the partition into A, B, C implies the protrusion
decomposition of Theorem 6. In Section 7, we partially recover the protrusion decomposition
from a given input, and use it to kernelize each r-neighborhood into an equivalent smaller
graph. At last, in Section 8, we combine Gaifman’s locality theorem with the previous
algorithms and probability bounds to obtain our algorithm and bound its run time. Some
proofs are quite tedious, but the nature of this problem seems to stop us from using simpler
methods.

3.1 Missing Proofs

Many proofs of the results presented in this paper have been omitted. In particular Section
2.3, 5 – 9 sketch only the main ideas behind our results. All missing proofs can be found in
the corresponding full version of this paper [26].

ESA 2020



40:10 First-Order Model-Checking in Random Graphs and Complex Networks

4 Notations and Definitions

4.1 Graph Notation
We use common graph theory notation [23]. The length of a path equals its number of edges.
The distance between two vertices u and v (dist(u, v)) equals the length of a shortest path
between u and v. For a vertex v let NG

r (v) be the set of vertices that have distance at most
r to v in G. The radius of a graph is the minimum among all maximum distances from one
vertex to all other vertices. An r-neighborhood in G is an induced subgraph of G with radius
at most r. The order of a graph is |G| = |V (G)|. The size of a graph is ‖G‖ = |V (G)+E(G)|.
The edge-excess of a graph G is |E(G)| − |V (G)|.

In this work we obtain results for labeled graphs [45]. A labeled graph is a tuple
G = (V (G), E(G), P1(G), . . . , Pl(G)) with Pi(G) ⊆ V (G). We call P1(G), . . . , Pl(G) the labels
of G. We say a vertex v is labeled with label Pi(G) if v ∈ Pi(G). A vertex may have multiple
labels. We say the unlabeled simple graph G′ = (V (G), E(G)) is the underlying graph of G
and G is a labeling of G′. All notations for graphs extend to labeled graphs as expected. The
union of two labeled graphsG andH, (G∪H), is obtained by setting V (G∪H) = V (G)∪V (H),
E(G ∪H) = E(G) ∪ E(H) and for each label Pi(G ∪H) = Pi(G) ∪ Pi(H).

For a graph class G, we define Glb to be the class of all labelings of G. We define G to be
the class of all simple graphs and Glb to be the class of all labeled simple graphs.

4.2 Probabilities and Random Graph Models
We denote probabilities by Pr[∗] and expectation by E[∗]. We consider a random graph
model to be a sequence of probability distributions. For every n ∈ N a random graph model
describes a probability distribution on unlabeled simple graphs with n vertices. In order
to speak of probability distributions over graphs we fix a sequence of vertices (vi)i≥1 and
require that a graph with n vertices has the vertex set {v1, . . . , vn}. A random graph model
is a sequence G = (Gn)n∈N, where Gn is a probability distribution over all unlabeled simple
graphs G with V (G) = {v1, . . . , vn}. Even though some random processes naturally lead to
graphs with multi-edges or self-loops, we interpret them as simple graphs by removing all
self-loops and replacing multiple edges with one single edge. In slight abuse of notation, we
also write Gn for the random variable which is distributed according to Gn. This way, we
can lift graph notation to notation for random variables of graphs: For example edge sets
and neighborhoods of a random graph Gn are represented by random variables E(Gn) and
NGn
r (v).

4.3 Sparsity
At first, we define nowhere and somewhere density as a property of graph classes and then
lift the notation to random graph models. There are various equivalent definitions and we
use the most common definition based on shallow topological minors.

I Definition 8 (Shallow topological minor [63]). A graph H is an r-shallow topological minor
of G if a graph obtained from H by subdividing every edge up to 2r times is isomorphic to a
subgraph of G. The set of all r-shallow topological minors of a graph G is denoted by G Õ r.
We define the maximum clique size over all shallow topological minors of G as

ω(G Õ r) = max
H∈G Õ r

ω(H).
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I Definition 9 (Nowhere dense [62]). A graph class G is nowhere dense if there exists a
function f , such that for all r ∈ N and all G ∈ G, ω(G Õ r) ≤ f(r).

I Definition 10 (Somewhere dense [62]). A graph class G is somewhere dense if for all
functions f there exists an r ∈ N and a G ∈ G, such that ω(G Õ r) > f(r).

Observe that a graph class is somewhere dense if and only if it is not nowhere dense. We
lift these notions to random graph models using the following two definitions.

I Definition 11 (a.a.s. nowhere dense). A random graph model G is a.a.s. nowhere dense if
there exists a function f such that for all r ∈ N

lim
n→∞

Pr[ω(Gn Õ r) ≤ f(r)] = 1.

I Definition 12 (a.a.s. somewhere dense). A random graph model G is a.a.s. somewhere
dense if for all functions f there is an r ∈ N such that

lim
n→∞

Pr[ω(Gn Õ r) > f(r)] = 1.

While for graph classes the concepts are complementary, a random graph model can both be
neither a.a.s. somewhere dense nor a.a.s. nowhere dense (e.g., if the random graph model is
either the empty or the complete graph, both with a probability of 1/2).

4.4 First-Order Logic
We consider only first-order logic over labeled graphs. We interpret a labeled graph G =
(V,E, P1, . . . , Pl), as a structure with universe V and signature (E,P1, . . . , Pl). The binary
relation E expresses adjacency between vertices and the unary relations P1, . . . , Pl indicate
the labels of the vertices. Other structures can be easily converted into labeled graphs. We
write ϕ(x1, . . . , xk) to indicate that a formula ϕ has free variables x1, . . . , xk. The quantifier
rank of a formula is the maximum nesting depth of quantifiers in the formula. Two labeled
graphs G1, G2 with the same signature are q-equivalent (G1 ≡q G2) if for every first-order
sentence ϕ with quantifier rank at most q and matching signature holds G1 |= ϕ if and only
if G2 |= ϕ. Furthermore, |ϕ| is the number of symbols in ϕ. There exists a simple algorithm
which decides whether G |= ϕ in time O(|G||ϕ|).

4.5 Model-Checking
With all definitions in place, we can now properly restate the model-checking problem and
what it means to solve it efficiently on a random graph model. The model-checking problem
on labeled graphs is defined as follows.

p-MC(FO,Glb)
Input: A graph G ∈ Glb and a first-order sentence ϕ

Parameter: |ϕ|
Problem: G |= ϕ?

Under worst-case complexity, p-MC(FO,Glb) is AW[∗]-complete [25] (and PSPACE-
complete when unparameterized [71]). We want average case algorithms for p-MC(FO,Glb)
to be efficient for all possible labelings of a random graph model. A function L : G→ Glb is
called a l-labeling function for l ∈ N if for every G ∈ G, L(G) is a labeling of G with up to l
labels.
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I Definition 1. We say p-MC(FO,Glb) can be decided on a random graph model (Gn)n∈N
in expected time f(|ϕ|, n) if there exists a deterministic algorithm A which decides p-
MC(FO,Glb) on input G, ϕ in time tA(G,ϕ) and if for all n ∈ N, all first-order sentences ϕ
and all |ϕ|-labeling functions L, EG∼Gn

[
tA(L(G), ϕ)

]
≤ f(|ϕ|, n). We say p-MC(FO,Glb) on

a random graph model can be decided in expected FPT time if it can be decided in expected
time g(|ϕ|)nO(1) for some function g.

5 Structure Theorem for Power-Law-Bounded Random Graph
Models

The goal of this section is to partition α-power-law-bounded random graph models. We show
in Theorem 14 that their vertices can with high probability be partitioned into sets A,B,C
with the following properties: The sets A and B are small, the graph G[B ∪ C] is locally
almost a tree, i.e., has locally only a small edge-excess, and the set B almost separates A
from C, i.e., every neighborhood in G[C] has only a small number of edges to A. We call
(A,B,C) a b-r-µ-partition. We state the formal definition.

I Definition 13 (b-r-µ-partition). Let b, r, µ ∈ N+. Let G be a graph. A tuple (A,B,C) is
called a b-r-µ-partition of G if
1. the sets A,B,C are pairwise disjoint and their union is V (G),
2. |A| ≤ b and |B| ≤ bµ,
3. every 40µr-neighborhood in G[B ∪ C] has an edge-excess of at most µ2, and
4. for every 20µr-neighborhood in G[C] there are at most µ edges incident to both the

neighborhood and to A.
A graph for which a b-r-µ-partition exists is called b-r-µ-partitionable.

In summary, B and C are well behaved and the large set C is almost separated from A.
Note that the properties of a b-r-µ-partition depend on three parameters b, r, µ. The
results of this section imply that our random graphs are asymptotically almost surely b-r-µ-
partitionable for b = d̃α(n)Ω(1) and constant r, µ. It therefore helps to assume that b is a
slowly growing function in n, such as log(n) and r, µ are constants. Higher values of µ boost
the probability of a random graph being b-r-µ-partitionable. The parameter µ is therefore
crucial for the design of efficient algorithms. The main result of this section is the following.

I Theorem 14. Let (Gn)n∈N be an α-power-law-bounded random graph model and let
b, r, µ, n ∈ N+ with µ ≥ 5. The probability that Gn is not b-r-µ-partitionable is at most
d̃α(n)O(µ6r2)b−µ

2/10.

For proofs of the results in this section, we refer the reader to Section 6 of the full version
of this paper [26]. In the following we only sketch the main ideas.

For an α-power-law-bounded random graph model (Gn)n∈N, we always assume the
vertices of Gn to be v1, . . . , vn, ordered as in Definition 2. We will choose A = {v1, . . . , vb},
B = {vb+1, . . . , vbµ}, C = {vbµ+1, . . . , vn} and show that the probability is low that (A,B,C)
does not form a b-r-µ-partition. To do so, we first define Hn(b, r, µ) to be a set of graphs
over the vertex set {v1, . . . , vn}.

I Definition 15. Let b, r, µ, n ∈ N+. We define Hn(b, r, µ) to be the set of
all graphs with vertex set V ⊆ {vb+1, . . . , vn} such that |V | ≤ 200rµ3, all vertices have
degree at least two, and the graph has an edge-excess of µ2, and
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all graphs (V1∪V2, E) such that V1 ⊆ {v1, . . . , vb}, V2 ⊆ {vbµ+1, . . . , vn}, |V1∪V2| ≤ 25rµ2,
|E| ≤ 25rµ2, |V1| ≤ µ, all vertices in V2 have degree at least two, and the summed degree
of V2 is 2|V2| − 2 + µ.

We show that if (A,B,C) is not a b-r-µ-partition then the complete edge-set of some
graph in Hn(b, r, µ) is present in the graph.

I Definition 16. Let G be a graph and H be a set of graphs over V (G). We say H v G if
for some H ∈ H, E(H) ⊆ E(G).

I Lemma 17. Let b, r, µ, n ∈ N+. If a graph G with vertex set {v1, . . . , vn} is not b-r-µ-
partitionable, then Hn(b, r, µ) v G.

For a fixed graph H ∈ Hn(b, r, µ), α-power-law-boundedness (Definition 2) immediately
gives us a good bound on the probability Pr

[
E(H) ⊆ E(Gn)

]
that its edge-set occurs. Using

the union bound over all graphs in Hn(b, r, µ) and some tedious calculations (Lemmas 5.6,
5.7, 5.8, 5.9 in [26]) we can bound the probability of the edge-set of any graph from Hn(b, r, µ)
being present in the random graph model, proving the main result Theorem 14.

At last, we present one more result in which we bound the sum of the expected sizes
of all r-neighborhoods in an α-power-law-bounded graph class. This is needed in Section 8
to bound the expected run time of an algorithm that iterates over all r-neighborhoods of a
graph.

I Lemma 18. Let (Gn)n∈N be an α-power-law-bounded random graph model. Let r, µ, n ∈ N+

with µ ≥ 5. Let Ab be the event that b ∈ N+ is the minimal value such that Gn is b-r-µ-
partitionable. Then

E
[ ∑
v∈V (Gn)

‖Gn[NGn
r (v)]‖

∣∣ Ab]Pr[Ab] ≤ (rµ)O(r)d̃α(n)O(µ6r2)b−µ
2/10n.

6 Protrusion Decompositions of Neighborhoods

In this section, we show that local neighborhoods of power-law-bounded graph classes are
likely to have the following nice structure: They consist of a (small) core graph to which
so called protrusions are attached. Protrusions are (possibly large) subgraphs with small
treewidth and boundary. The boundary of a subgraph is the size of its neighborhood in
the remaining graph. Protrusions were introduced by Bodlaender et al. for very general
kernelization results in graph classes with bounded genus [5].

Earlier, (Theorem 14) we showed that α-power-law-bounded random graph models are
(for certain values of α, b, r, µ) likely to be b-r-µ-partitionable. It is therefore sufficient
to show that r-neighborhoods of b-r-µ-partitionable graphs have such a nice protrusion
structure.

However, in general it is not easy to find protrusions in a graph [49]. As we later need
to be able to find them, we define special protrusion decompositions, called b-r-µ-local-
protrusion-partitions in which (most of) the protrusions can be efficiently identified. The
main and only result of this section is the following theorem.

I Theorem 19. Let b, r, µ ∈ N+ and let G be a b-r-µ-partitionable graph. Let Gr be an
r-neighborhood in G. Then Gr is O(µ17r3b)-r-O(µ)-locally-protrusion-partitionable.

It remains to define what a b-r-µ-local-protrusion-partition of a graph Gr with radius at
most r is. The definition has to strike the right balance: It needs to be permissive enough
such that neighborhoods of power-law-bounded graph classes are likely to have this structure
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and it needs to be restrictive enough to admit efficient algorithms. Informally speaking, a
b-r-µ-local-protrusion-partition of a graph Gr is a partition (X,Y, Z) of the vertices of Gr
such that X has small size and the connected components of Gr[Y ∪ Z] are protrusions. In
order to be able to efficiently identify the protrusions, we further require that the components
of Gr[Y ] have bounded size and the components of Gr[Z] are trees. This is formalized in the
following definition.

I Definition 20 (b-r-µ-local-protrusion-partition). Let b, r, µ ∈ N+. Let Gr be a graph with
radius at most r. A tuple (X,Y, Z) is called a b-r-µ-local-protrusion-partition of Gr if
1. the sets X,Y, Z are pairwise disjoint and their union is V (Gr),
2. |X| ≤ bµ,
3. every connected component of Gr[Y ] has size at most rµ7 and at most µ neighbors in X,
4. every connected component of Gr[Z] is a tree with at most one edge to Gr[X ∪ Y ],
5. for a subgraph H of Gr[Y ∪Z] we say NGr (V (H))∩X is the boundary of H. The connected

components of Gr[Y ] may have at most bµ distinct boundaries, i.e., |{NGr (V (H)) ∩X |
H connected component of Gr[Y ∪ Z]}| ≤ bµ.

A graph for which a b-r-µ-local-protrusion-partition exists is called b-r-µ-locally-protrusion-
partitionable.

Property 3 and 4 enforce that the components of Gr[Y ∪ Z] are protrusions. Later, we
will transform b-r-µ-local-protrusion-partitions into equivalent graphs of bounded size by
replacing the protrusions with small graphs. Thus, Property 2 and 5 are there to ensure that
the resulting kernelized graph will have size roughly bµ (without Property 5 we could only
guarantee a size of roughly bµ2 which is too large for our purposes).

Proving Theorem 19 involves multiple pages of proofs for which we refer to the full
version of this paper [26]. Here, we only sketch the construction of an O(µ17r3b)-r-O(µ)-
local-protrusion-partition. Let a graph G and b, r, µ ∈ N+ be fixed. We further assume
G to be b-r-µ-partitionable and we fix a b-r-µ-partition (A,B,C) of G. Let further Gr
be an r-neighborhood in G and let Ar = A ∩ V (Gr), Br = B ∩ V (Gr), Cr = C ∩ V (Gr).
We construct an O(µ17r3b)-r-O(µ)-local-protrusion-partition (X,Y, Z) of Gr by placing all
vertices from Ar ∪Br into X. In order to distribute the vertices Cr to the sets X, Y , and Z,
we define so called ties.

I Definition 21 (Tie). Let W ⊆ Br ∪ Cr. We say (u1, u2, v) is a W -tie if u1, u2 ∈W and
v lies on a walk p with the following properties: Every inner vertex of p is contained in Cr
and has at least two neighbors in p; u1 and u2 are contained only as endpoints of p; and p is
contained in a 20µr-neighborhood in G[Br ∪ Cr].

We use this notion to partition the set Cr. We distinguish vertices connected to Ar,
vertices connected to Br (but not to Ar), those which are connected to neither but lie on a
tie, and the rest. We set

CrA = N(Ar) ∩ Cr,
CrB = (N(Br) \N(Ar)) ∩ Cr,
CrY = {v | v ∈ Cr \ (CrA ∪CrB) and there exist u1, u2 ∈ CrA ∪CrB such that (u1, u2, v) is a
(CrA ∪ CrB)-tie },
CrZ = Cr \ (CrA ∪ CrB ∪ CrY ).

Finally, we define X to be the union of Ar, Br and all vertices from CrA ∪CrB ∪CrY which
are in a connected component of G[Cr] with more than one edge to Br. We define Y to be
the vertices from CrA ∪ CrB ∪ CrY which are in a connected component of G[Cr] with at most
one edge to Br, and we define Z = CrZ . The fact that (X,Y, Z) is an O(µ17r3b)-r-O(µ)-local-
protrusion-partition is proved in Section 6 of [26].



J. Dreier, P. Kuinke, and P. Rossmanith 40:15

7 Compressing Neighborhoods

In this section, we kernelize b-r-µ-partitionable graphs. This means we replace the protrusions
with subgraphs of bounded size that retain the same boundary. This yields a smaller graph
which is q-equivalent to the original graph. The same technique has been used for obtaining
small kernels in larger graph classes, e.g., in graphs that exclude a fixed minor [36]. The
main result of this section is the following theorem.

I Theorem 22. There exists an algorithm that takes q, r, µ ∈ N+ and a connected labeled
graph G with radius at most r and at most q labels as input, runs in time at most f(q, r, µ)‖G‖
for some function f(q, r, µ), and computes a labeled graph G∗ ≡q G. If G is b-r-µ-locally-
protrusion-partitionable for some b ∈ N+ then |G∗| ≤ f(q, r, µ)bµ.

This kernelization procedure and its run time bound is independent in b but the size of
the output kernel is not: If b is small, then the output is small. The result is obtained by
replacing protrusions with the help of the Feferman–Vaught theorem [48]. However, in order
to replace the protrusions, one first has to identify them. The main complication in this
section lies in partitioning a graph such that the relevant protrusions can be easily identified.
It is crucial that we obtain the size bound |G∗| ≤ f(q, r, µ)bµ in Theorem 22. Weaker bounds
are easier to obtain but would not be sufficient for our purposes.

We use a variant of the Feferman–Vaught theorem [48] to replace a protrusion by a
q-equivalent boundaried graph of minimal size. This size depends only on q and the size of
the boundary. The original Feferman–Vaught theorem states that the validity of FO-formulas
on the disjoint union or Cartesian product of two graphs is uniquely determined by the value
of FO-formulas on the individual graphs. Makowsky adjusted the theorem for algorithmic
use [55] in the context of MSO model-checking. The following proposition contains the
Feferman–Vaught theorem in a very accessible form. There is also a nice and short proof
in [45]. The notation is borrowed from [45], too. At first, we need to define so called q-types.

I Definition 23 ([45]). Let G be a labeled graph and v̄ = (v1, . . . , vk) ∈ V (G)k, for some
nonnegative integer k. The first-order q-type of v̄ in G is the set tpFOq (G, v̄) of all first-order
formulas ψ(x1, . . . xk) of rank at most q such that G |= ψ(v1, . . . , vk).

A q-type could be an infinite set, but one can reduce them to a finite set by syntactically
normalizing formulas, so that there are only finitely many normalized formulas of fixed
quantifier rank and with a fixed set of free variables. These finitely many formulas can
be enumerated. For a tuple ū = (u1, . . . , uk), we write {ū} for the set {u1, . . . , uk}. The
following is a variant of the Feferman–Vaught theorem [48].

I Proposition 24 ([45, Lemma 2.3]). Let G,H be labeled graphs and ū ∈ V (G)k, such that
V (G) ∩ V (H) = {ū}. Then for all q ≥ 0, tpFOq (G ∪H, ū) is determined by tpFOq (G, ū) and
tpFOq (H, ū).

We use this proposition to define a q-type preserving protrusion replacement procedure.
Assume we identify a protrusionH of a graph with boundary ū. Using Courcelle’s theorem [17],
we can compute tpFOq (H, ū) by checking all representing formulas. By then enumerating all
graphs in ascending order by their size we can find a small graph H ′ with tpFOq (H ′, ū) =
tpFOq (H ′, ū). Proposition 24 now states that we can replace H with H ′ to obtain a smaller
q-equivalent graph. We repeat this for every protrusion we identify. In the full version of this
paper [26], this procedure and the proof of Theorem 22 is presented in detail (Section 7).
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8 Model-Checking

In this section, we finally obtain the main result of this paper, namely that for certain values
of α one can perform model-checking on α-power-law-bounded random graph models in
efficient expected time.

An important tool in this section is Gaifman’s locality theorem [39]. It states that
first-order formulas can express only local properties of graphs. It is a well established tool
for the design of model-checking algorithms (e.g. [44, 45, 37]). We use it to reduce the
model-checking problem on a graph to the model-checking problem on neighborhoods of said
graph [26, Lemma 8.2]. This technique is described well by Grohe [45, section 5].

To illustrate our approach, consider the following thought experiment: Let X be a
non-negative random variable with Pr[X = b] = Θ(b−10) for all b ∈ N. Assume an algorithm
that gets an integer b ∈ N as input and runs in time t(b). Its expected run time on input X
is
∑
b∈N Θ(b−10)t(X). If t(b) = b10 then the expected run time is infinite. If t(b) = b8 then

the expected run time is Θ(1). Thus, small polynomial differences in the run time can have
a huge impact on the expected run time. We notice that the run time on an input has to
grow slower than the inverse of the probability that the input occurs.

Let us fix a formula ϕ and let r and µ be constants depending on ϕ. In this section we
provide a model-checking algorithm whose run time on a graph G depends on the minimal
value b ∈ N such that G is b-r-µ-partitionable. This means, we need to solve the model-
checking problem on b-r-µ-partitionable graphs faster than the inverse of the probability
that b is minimal.

Section 5 states that a graph from power-law-bounded graph classes is for some b not
b-r-µ-partitionable with probability approximately b−µ2 (we ignore the terms in r, µ and
d̃α(n) for now). Thus, the probability that a value b is minimal is approximately b−µ2 .

Let G be a graph and a be the minimal value such that G is b-r-µ-partitionable. In
Section 6 we showed that all its r-neighborhoods are O(µ17r3b)-r-O(µ)-locally-protrusion-
partitionable. The kernelization result from Section 7 states that such r-neighborhoods
can be converted in linear time into |ϕ|-equivalent graphs of size approximately bµ (we
again ignore the factors independent of b for now). This means, using the naive model-
checking algorithm, one can decide for an r-neighborhood Gr of G whether Gr |= ϕ in time
approximately ‖G‖bµ|ϕ|. Thus, one can perform model-checking on all r-neighborhoods of G
in time approximately bµ|ϕ|

∑
v ‖NG

r (v)‖. Using Gaifman’s locality theorem, this (more or
less) yields the answer to the model checking problem in the whole graph. Let G be a graph
from a power-law-bounded random graph model. In summary, we have for every b ∈ N:

b ∈ N is the minimal value such that a graph is b-r-µ-partitionable with probability
approximately b−µ2 .
If b ∈ N is the minimal value such that G is b-r-µ-partitionable then we can decide
whether G |= ϕ in time approximately bµ|ϕ|

∑
v ‖NG

r (v)‖.

In this example one may choose µ = |ϕ|2 such that the run time grows slower than the
inverse of the probability. We changed some numbers in these examples to simplify our
arguments. Thus, in reality, µ needs to be chosen slightly differently.

The proofs of this section proceed as follows. We first use slightly nonstandard version
of Gaifman locality [26, Lemma 8.2] and the kernelization result in Theorem 22 to solve
the model-checking in b-r-µ-partitionable graphs, obtaining the following result (see [26,
Lemma 8.4] for the proof).
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I Lemma 25. Let µ ∈ N+. There exist functions ρ and f such that for every first-order
sentence ϕ and every labeled graph G with at most |ϕ| labels one can decide whether G |= ϕ

in time f(ρ(|ϕ|), µ)bµρ(|ϕ|)
∑
v∈V (G) ‖G[NG

ρ(|ϕ|)(v)]‖, where b ∈ N+ is the minimal value such
that G is b-ρ(r)-µ-partitionable.

The run time of this algorithm depends not only on b but also on the sum of the sizes of
all neighborhoods in a graph, which might be quadratic in the worst case. In order to get
almost linear expected run time, we bound the expectation of this value in Lemma 18. We
can now prove our main result.

I Theorem 3. There exists a function f such that one can solve p-MC(FO,Glb) on every
α-power-law-bounded random graph model in expected time d̃α(n)f(|ϕ|)n.

Proof. Let (Gn)n∈N be an α-power-law-bounded random graph model and ϕ be a first-order
formula. We fix a |ϕ|-labeling function L and n ∈ N. We consider labeled graphs with
vertices V (Gn) whose underlying graph is distributed according to Gn, and analyze the
expected run time of the model-checking algorithm from Lemma 25 on these graphs.

Let ρ be the function from Lemma 25 and let r = ρ(|ϕ|) and µ = ρ(|ϕ|)2 + 100. For
every graph G there exists a value b ∈ N+ such that G is b-r-µ-partitionable (i.e., by setting
b = |V (G)|, A = V (G)). Let Ab be the event that b ∈ N+ is the minimal value such that Gn
is b-r-µ-partitionable and let R be the expected run time of the model-checking algorithm
from Lemma 25. The expected run time of the algorithm is exactly

∑∞
b=1 E[R | Ab] Pr[Ab].

We use Lemma 25 and 18 to bound
∞∑
b=1

E[R | Ab] Pr[Ab]

≤
∞∑
b=1

E
[
f ′(r, µ)brµ

∑
v∈V (Gn)

‖Gn[NGn
r (v)]‖ | Ab

]
Pr[Ab]

=
∞∑
b=1

f ′(r, µ)brµ E
[ ∑
v∈V (Gn)

‖Gn[NGn
r (v)]‖ | Ab

]
Pr[Ab]

≤
∞∑
b=1

f ′(r, µ)brµ(200rµ3)O(r)d̃α(n)O(µ6r2)b−µ
2/10n

=f ′(r, µ)(200rµ3)O(r)d̃α(n)O(µ6r2)n

∞∑
b=1

b−µ
2/10+rµ.

Note that for µ = ρ(|ϕ|)2 +100 and r = ρ(|ϕ|) we have
∑∞
b=1 b

−µ2/10+rµ ≤
∑∞
b=1 b

−2 = O(1).
This yields a run time of d̃α(n)f(|ϕ|)n for some function f . J

By substituting the values of d̃α(n) and distinguishing three cases we obtain the following
alternative form of our main result.

I Theorem 4. Let (Gn)n∈N be a random graph model and ε > 0. There exists a function f
such that one can solve p-MC(FO,Glb) in expected time

f(|ϕ|)n if (Gn)n∈N is α-power-law-bounded for some α > 3,
log(n)f(|ϕ|)n if (Gn)n∈N is α-power-law-bounded for α = 3,
f(|ϕ|, ε)n1+ε for all ε > 0 if (Gn)n∈N is α-power-law-bounded for every 2 < α < 3.
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9 Implications for Various Graph Models

A wide range of unclustered random graph models are α-power-law-bounded. In this section,
we discuss the implications of our result for preferential attachment, Chung–Lu, and Erdős–
Rényi graphs. A more detailed discussion with proofs can be found in Section 10 in the full
version [26].

9.1 Preferential Attachment Model
The preferential attachment model [3, 64] may be the best-known model for complex networks.
In this model, graphs are created by a random process that iteratively adds new vertices
and randomly connects them to already existing ones, where the attachment probability is
proportional to the current degree of a vertex. The preferential attachment process exhibits
small world behavior [24] and has been widely recognized as a reasonable explanation of
the heavy tailed degree distribution of complex networks [7]. It has a vanishing clustering
coefficient [8], but there exist extensions of the model that admit clustering [73].

Recent efficient model-checking algorithms on random graph models only worked on
random graph models that asymptotically almost surely (a.a.s.) are nowhere dense [44, 22].
It is known that preferential attachment graphs are not a.a.s. nowhere dense [22] and even
a.a.s. somewhere dense [27], thus previous techniques do not work.

We define Gnm to be the preferential attachment graph with n vertices and m edges
per vertex. Usually, the parameter m is considered to be constant. We obtain efficient
algorithms even if we allow m to be a function of the size of the network. For a function
m(n) : N→ N we define (Gnm(n))n∈N to be the random graph model where the number of
edges per vertex grows according to m(n). Previous work [29] implies that this model is
α-power-law-bounded ([26, Lemma 10.1]), which immediately implies the following model
checking result.

I Corollary 26. Let m : N → N. There exists a function f such that one can solve p-
MC(FO,Glb) on the preferential attachment model (Gnm(n))n∈N in expected time

log(n)f(|ϕ|)n if m(n) = log(n)O(1),
f(|ϕ|, ε)n1+ε for every ε > 0 if m(n) = O(nε) for every ε > 0.

9.2 Chung–Lu Model
This model generates random graphs that fit a certain degree sequence and has been studied
extensively [12, 13, 14]. The degree sequence is defined by a power-law distribution with
exponent α. One can easily show that this model is α-power-law-bounded [26, Lemma 10.3].
We can therefore characterize the tractability of the labeled model-checking problem on
Chung–Lu graphs based on α.

I Corollary 27. Let G be the Chung–Lu random graph model with exponent α. There exists
a function f such that one can solve p-MC(FO,Glb) on G in expected time

f(|ϕ|)n if α > 3,
log(n)f(|ϕ|)n if α = 3.

Furthermore, if 2.5 ≤ α < 3, α ∈ Q then one cannot solve p-MC(FO,Glb) on G in
expected FPT time unless AW[∗] ⊆ FPT/poly.

Previously, the model-checking problem has been known to be tractable on Chung–Lu
graphs with exponent α > 3, and hard on Chung–Lu graphs with exponent 2.5 ≤ α < 3.
The important case α = 3 was open. Furthermore, the previous tractability result assumes
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the maximum expected degree of a Chung–Lu graph with exponent α to be at most O(n1/α),
while in the canonical definition of Chung–Lu graphs it is Θ(n1/(α−1)). Our results hold for
the canonical definition. The missing case α < 2.5 is still open. We believe it can be proven
to be hard with similar techniques as for 2.5 ≤ α < 3.

9.3 Erdős–Rényi Model
One of the earliest and most intensively studied random graph models is the Erdős–Rényi
model [31]. We say G(n, p(n)) is a random graph with n vertices where each pair of vertices
is connected independently uniformly at random with probability p(n). Many properties of
Erdős–Rényi graphs are well studied, including but not limited to, threshold phenomena,
the sizes of components, diameter, and length of paths [9]. With a three-line argument [26,
Lemma 10.8], we obtain a fine grained picture over the tractability of the model-checking
problem on sparse Erdős–Rényi graphs.

I Corollary 28. There exists a function f such that one can solve p-MC(FO,Glb) on
G(n, p(n)) in expected time

f(|ϕ|)n if p(n) = O(1/n),
log(n)f(|ϕ|)n if p(n) = log(n)O(1)/n,
f(|ϕ|, ε)n1+ε for every ε > 0 if p(n) = O(nε/n) for every ε > 0.

The third case has been shown previously by Grohe [44]. Furthermore, under reasonable
assumptions (AW[∗] 6⊆ FPT/poly) we know that p-MC(FO,Glb) cannot be decided in
expected FPT time on denser Erdős–Rényi graphs with p(n) = nδ/n for some 0 < δ < 1,
δ ∈ Q [28].

10 Conclusion

We define α-power-law-bounded random graphs which generalize many unclustered random
graphs models. We provide a structural decomposition of neighborhoods of these graphs and
use it to obtain a meta-algorithm for deciding first-order properties in the the preferential
attachment-, Erdős–Rényi-, Chung–Lu- and configuration random graph model.

There are various factors to consider when evaluating the practical implications of this
result. The degree distribution of most real world networks is similar to a power-law
distribution with exponent between two and three [15], but our algorithm is only fast for
exponents at least three. This leaves many real world networks where our algorithm is slow.
However, it has been shown that the model-checking problem (with labels) becomes hard on
these graphs if we assume independently distributed edges [28].

So far, we do not know whether the model-checking problem is hard or tractable on
clustered random graphs. If a random graph model is 3-power-law-bounded then one can
show that the expected number of triangles is polylogarithmic (via union bound of all possible
embeddings of a triangle). Therefore, random models with clustering, such as the Kleinberg
model [50], the hyperbolic random graph model [53, 11], or the random intersection graph
model [47], which have a high number of triangles currently do not fit into our framework (see
[26, Section 10.5] for a proof that random intersection graphs are not α-power-law-bounded
for any α). This is unfortunate, since clustering is a key aspect of real networks [72]. In
the future, we hope to extend our results to clustered random graph models. We observe
that some clustered random graph models can be expressed as first-order transductions of
α-power-law-bounded random graph models. For example the random intersection graph
model is a transduction of a sparse Erdős–Rényi graph. We believe this connection can be
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used to transfer tractability results to clustered random graphs. If we can efficiently compute
for a clustered random graph model G a pre-image of a transduction that is distributed like
an α-power-law-bounded random graph then we can efficiently solve p-MC(FO,Glb) on G.
The same idea is currently being considered for solving the model checking problem for
transductions of sparse graph classes (e.g. structurally bounded expansion classes) [40].

In our algorithm, we use Gaifman’s locality theorem to reduce our problem to r-neighbor-
hoods of the input graph. In this construction the value of r can be exponential in the length
of the formula [39]. On the other hand, the small world property states that the radius of
real networks is rather small. This means, even for short formulas our neighborhood-based
approach may practically be working on the whole graph instead of neighborhoods. It would
be interesting to analyze for which values of r practical protrusion decompositions according
to Theorem 6 exist in the real world.

At last, a big problem with all parameterized model-checking algorithms is their large
run time dependence on the length of the formula. Grohe and Frick showed that already
on trees every first-order model-checking algorithm takes worst-case time at least f(|ϕ|)n
where f is a non-elementary tower function [38]. So far, it is unclear whether this also
holds in the average-case setting. The results presented in this paper have a non-elementary
dependence on the length of the formula. We are curious whether one can find average-case
model-checking algorithms with elementary expected FPT run time. In summary, many more
obstacles need to be overcome to obtain a truly practical general purpose meta-algorithm for
complex networks.
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