
Approximate CVPp in Time 20.802 n

Friedrich Eisenbrand
Ecole Polytechnique Fédérale de Lausanne, Switzerland
friedrich.eisenbrand@epfl.ch

Moritz Venzin
Ecole Polytechnique Fédérale de Lausanne, Switzerland
moritz.venzin@epfl.ch

Abstract
We show that a constant factor approximation of the shortest and closest lattice vector problem
w.r.t. any `p-norm can be computed in time 2(0.802+ε) n. This matches the currently fastest constant
factor approximation algorithm for the shortest vector problem w.r.t. `2. To obtain our result, we
combine the latter algorithm w.r.t. `2 with geometric insights related to coverings.

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis;
Theory of computation → Randomness, geometry and discrete structures

Keywords and phrases Shortest and closest vector problem, approximation algorithm, sieving,
covering convex bodies

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.43

Funding The authors acknowledge support from the Swiss National Science Foundation within the
project Lattice Algorithms and Integer Programming (Nr. 200021-185030).

Acknowledgements The authors would like to thank the reviewers for their careful reviews and
suggestions. The second author would like to thank Christoph Hunkenschröder, Noah Stephens-
Davidowitz and Márton Naszódi for inspiring discussions.

1 Introduction

The shortest vector problem (SVP) and the closest vector problem (CVP) are important
algorithmic problems in the geometry of numbers. Given a rational lattice

L(B) = {Bx : x ∈ Zn}

with B ∈ Qn×n and a target vector t ∈ Qn the closest vector problem asks for lattice vector
v ∈ L(B) minimizing ‖t− v‖. The shortest vector problem asks for a nonzero lattice vector
v ∈ L(B) of minimal norm. When using the `p norms for 1 ≤ p ≤ ∞, we denote the problems
by SVPp resp. CVPp.

Much attention has been devoted to the hardness of approximating SVP and CVP. In a
long sequence of papers, including [42, 7, 32, 10, 18, 28, 23] it has been shown that SVP and
CVP are hard to approximate to within almost polynomial factors under reasonable com-
plexity assumptions. The best polynomial-time approximation algorithms have exponential
approximation factors [29, 41, 8].

The first algorithm to solve CVP for any norm that has exponential running time in the
dimension only was given by Lenstra [30]. The running time of his procedure is 2O(n2) times
a polynomial in the encoding length. In fact, Lenstra’s algorithm solves the more general
integer programming problem. Kannan [27] improved this to nO(n) time and polynomial
space. It took almost 15 years until Ajtai, Kumar and Sivakumar presented a randomized
algorithm for SVP2 with time and space 2O(n) and a 2O(1+1/ε)n time and space algorithm
for (1 + ε)-CVP2 [8, 9]. Here (1 + ε)-CVP2 is the problem of finding a lattice vector, whose

© Friedrich Eisenbrand and Moritz Venzin;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 43; pp. 43:1–43:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:friedrich.eisenbrand@epfl.ch
mailto:moritz.venzin@epfl.ch
https://doi.org/10.4230/LIPIcs.ESA.2020.43
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

43:2 Approximate CVPp in Time 20.802 n

distance to the target is at most 1 + ε times the minimal distance. Blömer and Naewe [14]
extended the randomized sieving algorithm of Ajtai et al. to solve SVPp and obtain a 2O(n)

time and space exact algorithm for SVPp and an O(1 + 1/ε)2n time algorithm to compute
a (1 + ε) approximation for CVPp. For CVP∞, one has a faster approximation algorithm.
Eisenbrand et al. [20] showed how to boost any constant approximation algorithm for CVP∞
to a (1 + ε)-approximation algorithm in time O(log(1 + 1/ε))n. Recently, this idea was
adapted in [36] to all `p norms, showing that (1 + ε) approximate CVPp can be solved in
time O(1 + 1/ε)n/min(2,p) by boosting the deterministic CVP algorithm for general (even
asymmetric) norms with a running time of (1 + 1/ε)n that was developed by Dadush and
Kun [16].

The first deterministic singly-exponential time and space algorithm for exact CVP2 (and
SVP2) was developed by [33]. The fastest exact algorithms for SVP2 and CVP2 run in time
and space 2n+o(n) [3, 1, 6]. Single exponential time and space algorithms for exact CVP are
only known for `2. Whether CVP and the more general integer programming problem can
be solved in time 2O(n) is a prominent mystery in algorithms.

Recently there has been exciting progress in understanding the fined grained complexity
of exact and constant approximation algorithms for CVP [2, 12, 5]. Under the assumption of
the strong exponential time hypothesis (SETH) and for p 6= 0 (mod 2), exact CVPp cannot
be solved in time 2(1−ε)d. Here d is the ambient dimension of the lattice, which is the number
of vectors in a basis of the lattice. Under the assumption of a gap-version of the strong
exponential time hypothesis (gap-SETH) these lower bounds also hold for the approximate
versions of CVPp. More precisely, for each ε > 0 there exists a constant γε > 1 such that
there exits no 2(1−ε)d algorithm that computes a γε-approximation of CVPp.

Unfortunately, the currently fastest algorithms for CVPp resp. SVPp do not match
these lower bounds, even for large approximation factors. These algorithms are based on
randomized sieving, [8, 9]. Many lattice vectors are generated that are then, during many
stages, subtracted from each other to obtain shorter and shorter vectors w.r.t. `p (resp.
any norm) until a short vector is found. However, the algorithm needs to start out with
sufficiently many lattice vectors just to guarantee that two of them are close. This issue
directly relates to the kissing number (w.r.t. some norm) which is the maximum number of
unit norm balls that can be arranged so that they touch another given unit norm ball. In the
setting of sieving, this is the number of vectors of length r that are needed to guarantee that
the difference of two of them is strictly smaller than r. Among all known upper bounds on
the kissing numbers, the best (i.e. smallest) upper bound is known for `2 and equals 20.401n,
[26]. For `2 the fastest such approximation algorithms require time 20.802n - the square of
the kissing number w.r.t. `2. For `∞ the kissing number equals 3n− 1 which is also an upper
bound on the kissing number for any norm. The current best constant factor approximation
algorithms for SVP∞ and CVP∞ require time 3n, their counterparts w.r.t. `p require even
more time, see [4, 35]. This then suggests the question, originally raised by Aggarwal et al.
in [2] for `∞, whether the kissing number w.r.t. `p is a natural lower bound on the running
time of SVPp resp. CVPp.

Our results indicate otherwise. For constant approximation factors, we are able to reduce
these problems w.r.t. `p to another lattice problem but w.r.t. `2. This directly improves the
running time of the algorithms for `p norms that hinge on the kissing number. Furthermore,
given that the development of algorithms for `2 has been much more dynamic than for
arbitrary `p norms and the difficulty of establishing hardness results for `2, there is hope to
find still faster algorithms for SVP2 that may not even rely on the kissing number w.r.t. `2.
It is likely that this would then improve the situation for `p norms as well.

F. Eisenbrand and M. Venzin 43:3

Our main results are resumed in the following theorem.
I Theorem. For each ε > 0, there exists a constant γε such that a γε approximate solution
to CVPp, as well as to SVPp for p ∈ [1,∞] can be found in time 2(0.802+ε)n.
Our main idea is to use coverings in order to obtain a constant factor approximation to the
shortest resp. closest vector w.r.t. `p by using a (approximate) shortest vector algorithm
w.r.t. `2. We need to distinguish between the cases p ∈ [2,∞] and p ∈ [1, 2). For p ∈ [2,∞],
we show that exponentially many short vectors w.r.t. `2 cannot all have large pairwise
distance w.r.t. `p. This follows from a bound on the number of `p norm balls scaled by some
constant that are required to cover the `2 norm ball of radius n1/2−1/p. The final procedure
is then to sieve w.r.t. `2 and to pick the smallest non zero pairwise difference w.r.t. `p of the
(exponentially many) generated lattice vectors. This yields a constant factor approximation
to the shortest resp. closest vector w.r.t. `p, p ∈ [2,∞]. For p ∈ [1, 2), we use a more direct
covering idea. There is a collection of at most 2εn balls w.r.t. `2, whose union contains the
`p norm ball but whose union is contained in the `p norm ball scaled by some constant. This
leads to a simple algorithm for `p norms (p ∈ [1, 2)) by using the approximate closest vector
algorithm w.r.t. `2 from this paper.
This paper is organized as follows. In Section 2 we present the main idea for p =∞ that also
applies to the case p ≥ 2. In Section 3 we first reintroduce the list-sieve method originally
due to [34] but with a slightly more general viewpoint, we resume this in Theorem 4. We
then present in detail our approximate CVP∞ resp. SVP∞ algorithm and extend this idea
resp. algorithm to `p, p ≥ 2. This is Theorem 5. Finally, in Section 4, using the covering
technique from Section 2 and our approximate CVP2 algorithm from Section 3.1, we show
how to solve approximate CVPp for p ∈ [1, 2). This is Theorem 8.

2 Covering balls with boxes

We now outline our main idea in the setting of an approximate SVP∞ algorithm. Let us
assume that the shortest vector of L w.r.t. `∞ is s ∈ L \ {0}. We can assume that the
lattice is scaled such that ‖s‖∞ = 1 holds. The euclidean norm of s is then bounded by√
n. Suppose now that there is a procedure that, for some constant γ > 1 independent of n,

generates distinct lattice vectors v1, . . . ,vN ∈ L of length at most ‖vi‖2 ≤ γ
√
n.

γ
√
n

vi

vj

α/2

Figure 1 The difference vi − vj is an α-approximate shortest vector w.r.t. `∞.

How large does the number of vectors N have to be such that we can guarantee that
there exist two indices i 6= j with

‖vi − vj‖∞ ≤ α, (1)

ESA 2020

43:4 Approximate CVPp in Time 20.802 n

where α ≥ 1 is the approximation guarantee for SVP∞ that we want to achieve? Suppose
that N is larger than the minimal number of copies of the box (α/2)Bn∞ that are required
to cover the ball

√
nBn2 . Here Bnp = {x ∈ Rn : ‖x‖p ≤ 1} denotes the unit ball w.r.t. the

`p-norm. Then, by the pigeon-hole principle, two different vectors vi and vj must be in
the same box. Their difference satisfies (1) and thus is an α-approximate shortest vector
w.r.t. `∞, see Figure 1.

Thus we are interested in the translative covering number N(
√
nBn2 , aB

n
∞), which is the

number of translated copies of the box aBn∞ that are needed to cover the `2-ball of radius
√
n.

In the setting above, a is the constant α/(2γ). For this procedure to be efficient, we need
N(
√
nBn2 , aB

n
∞) to be relatively small for a large enough - this is equivalent to decreasing

the number of vectors N we need to generate by worsening (increasing) the approximation
guarantee α. Since 2O(n) vol(Bn∞) = vol(

√
nBn2) and by a simple covering argument, we have

that N(
√
nBn2 , B

n
∞) ≤ 2Cn. This gives hope that by taking a large enough (but independent

of n), we can decrease N(
√
nBn2 , aB

n
∞) to, say, 20.401n or 2εn for ε > 0.

Covering problems like these have received considerable attention in the field of convex
geometry, see [11, 37]. These techniques rely on the classical set-cover problem and the
logarithmic integrality gap of its standard LP-relaxation, see, e.g. [43, 15]. To keep this
paper self-contained, we briefly explain how this can be applied to our setting.

If we cover the finite set (1/n)Zn ∩
√
nBn2 with cubes whose centers are on the grid

(1/n)Zn, then by increasing the side-length of those cubes by an additive 1/n, one obtains a
full covering of

√
nBn2 . Thus we can focus on the corresponding set-covering problem with

ground set U = (1/n)Zn ∩
√
nBn2 and sets

St = U ∩ aBn∞ + t, t ∈ (1/n)Zn,

ignoring empty sets. An element of the ground set is contained in exactly |(1/n)Zn ∩ aBn∞|
many sets. Therefore, by assigning each element of the ground set the fractional value
1/|(1/n)Zn ∩ aBn∞|, one obtains a feasible fractional covering. The weight of this fractional
covering is

T

|(1/n)Zn ∩ aBn∞|

where T is the number of sets. Clearly, if a cube intersects
√
nBn2 , then its center is contained

in the Minkowski sum
√
nBn2 + aBn∞ and thus the weight of the fractional covering is

|(
√
nBn2 + aBn∞) ∩ 1

nZ
n|

| 1nZn ∩ aBn∞|
= O

(
vol(
√
nBn2 + aBn∞)

vol(aBn∞)

)
Since the size of the ground-set is bounded by nO(n) and since the integrality gap of the
set-cover LP is at most the logarithm of this size, one obtains

N(
√
nBn2 , aB

n
∞) ≤ poly(n) vol(

√
nBn2 + aBn∞)

vol(aBn∞) (2)

By Steiner’s formula, see [22, 40, 24], the volume of K + tBn2 is a polynomial in t, with
coefficients Vj(K) only depending on the convex body K:

vol(K + tBn2) =
n∑
j=0

Vj(K) vol(Bn−j2)tn−j

For K = aBn∞, Vj(K) = (2a)j
(
n
j

)
. Setting t =

√
n, the resulting expression has been

evaluated in [25, Theorem 7.1].

F. Eisenbrand and M. Venzin 43:5

I Theorem 1 ([25]). Denote by H the binary entropy function and let φ ∈ (0, 1) the unique
solution to

1− φ2

φ3 = 2a2

π
(3)

Then

vol(aBn∞ +
√
nBn2) = O(2n[H(φ)+(1−φ) log(2a)+φ

2 log(2πe
φ)])

Using this bound in inequality (2) and simplifying, we find

N(
√
nBn2 , aB

n
∞) ≤ poly(n) 2n[H(φ)+φ

2 log(2πe
φ)]

Both H(φ) and φ
2 log(2πe

φ) decrease to 0 as φ decreases to 0. Since φ, the unique solution to
(3), satisfies φ ≤ 3

√
(π/2)a− 2

3 , we obtain the following bound.

I Lemma 2. For each ε > 0, there exists aε ∈ R>0 independent of n, such that

N(
√
nBn2 , aεB

n
∞) ≤ 2εn.

Going back to the idea for an approximate SVP∞ algorithm, we will use Lemma 2 with
ε = 0.401. If we generate 20.401n distinct lattice vectors of euclidean length at most γ

√
n,

then there must exist a pair of lattice vectors with pairwise distance w.r.t. `∞ shorter than
2γa0.401. We find it by trying out all possible pairwise combinations, this takes time 20.802n.

The main idea for approximate SVPp is similar. Set s̃ the shortest vector in L w.r.t. `p
and scale the lattice so that ‖s̃‖p = 1. The euclidean norm of s̃ is bounded by n1/2−1/p.
Again, we can consider the question of how many different lattice vectors there have to
be within a ball of radius γn1/2−1/p so that we can guarantee that there exist two lattice
vectors with constant pairwise distance w.r.t. `p. This leads us to consider the translative
covering number N(n1/2−1/pBn2 , aB

n
p). Since n−1/pBn∞ ⊆ Bnp , the following is immediate

from Lemma 2.

I Lemma 3. For each ε > 0, there exists aε ∈ R>0 independent of n, such that

N(n1/2−1/pBn2 , aεB
n
p) ≤ 2εn.

3 Approximate CVPp for p ≥ 2

We now describe our main contribution. As we mentioned already, SVP2 can be approximated
up to a constant factor in time 2(0.802+ε)n for each ε > 0. This follows from a careful analysis
of the list sieve algorithm of Micciancio and Voulgaris [34], see [31, 38]. The running time and
space of this algorithm is directly related to the kissing number of the `2-norm. The running
time is the square of the best known upper bound by Kabatiansky and Levenshtein [26].

The main insight of our paper is that the current list-sieve variants can be used to
approximate SVPp and CVPp by testing all pairwise differences of the generated lattice
vectors.

3.1 List sieve
We begin by describing the list-sieve method [34] to a level of detail that is necessary to
understand our main result. Our exposition follows closely the one given in [38]. Let L(B)
be a given lattice and s ∈ L be an unknown lattice vector. This unknown lattice vector s is
typically the shortest, respectively closest vector in L(B).

ESA 2020

43:6 Approximate CVPp in Time 20.802 n

The list-sieve algorithm has two stages. The input to the first stage of the algorithm is
an LLL-reduced lattice basis B of L(B), a constant ε > 0 and a guess µ on the length of s
that satisfies

‖s‖2 ≤ µ ≤ (1 + 1/n)‖s‖2. (4)

The first stage then constructs a list of lattice vectors L ⊆ L(B) that is random. This list of
lattice vectors is then passed on to the second stage of the algorithm.

The second stage of the algorithm proceeds by sampling points y1, . . . ,yN uniformly and
independently at random from the ball

(ξε · µ)Bn2 ,

where ξε is an explicit constant depending on ε only. It then transforms these points via a
deterministic algorithm ListRedL into lattice points

ListRedL(y1), . . . , ListRedL(yN) ∈ L(B).

The deterministic algorithm ListRedL uses the list L ⊆ L(B) from the first stage.

−s 0

IS

ξε · µBn
2

−s + ξε · µBn
2

Figure 2 The lens Is.

As we mentioned above, the list L ⊆ L(B) that is used by the deterministic algorithm
ListRedL is random. We will show the following theorem in the next section. The novelty
compared to the literature is the reasoning about pairwise differences lying in centrally
symmetric sets. In this theorem, ε > 0 is an arbitrary constant, ξε as well as cε are explicit
constants and K is some centrally symmetric set. Furthermore, we assume that µ satisfies (4).

The theorem reasons about an area Is that is often referred as the lens, see Figure 2.
The lens was introduced by Regev as a conceptual modification to facilitate the proof of the
original AKS algorithm [39].

Is = (ξε · µ)Bn2 ∩ (−s + (ξε · µ)Bn2) (5)

I Theorem 4. With probability at least 1/2, the list L that was generated in the first stage
satisfies the following. If y1, · · · ,yN are chosen independently and uniformly at random
within Bn2 (0, ξεµ) then
i) The probability of the event that two different samples yi,yj satisfy

yi,yj ∈ Is and ListRedL(yi)− ListRedL(yj) ∈ K

is at most twice the probability of the event that two different samples yi,yj satisfy

ListRedL(yi)− ListRedL(yj) ∈ K + s

F. Eisenbrand and M. Venzin 43:7

ii) For each sample yi the probability of the event

‖ListRedL(yi)‖2 ≤ cε ‖s‖2 and yi ∈ Is

is at least 2−εn.
The complete procedure, i.e. the construction of the list L in stage one and applying
ListRedL to the N samples y1, . . . ,yn in stage two takes time N2(0.401+ε)n + 2(0.802+ε)n

and space N + 2(0.401+ε)n.
The proof of Theorem 4 follows verbatim from Pujol and Stehlé [38], see also [31]. In [38],

s is a shortest vector w.r.t. `2. But this fact is never used in the proof and in the analysis.
Part ii) follows from Lemma 5 and Lemma 6 in [38]. Their probability of a sample being in
the lens Is ⊆ ξ ‖s‖2 B

n
2 depends only on ξ (corresponding to our ξε). By choosing ξ large

enough, this happens with probability at least 2−εn. Their Lemma 6 then guarantees that
the list L, with probability 1/2, when yi ∼ Is is sampled uniformly, returns a lattice vector
of length at most r0 ‖s‖2 (r0 corresponds to our cε). This corresponds to part ii) in our
setting. The size of their list (denoted by NT) is bounded above by 2(0.401+δ)n where δ > 0
decreases to 0 as the ratio r0/ξ increases, this is their Lemma 4.

Finally, part i) also follows from Pujol and Stehlé [38]. It is in their proof of correctness,
Lemma 7, involving the lens Is. We briefly comment on our general viewpoint. Given
y ∼ (ξ · µ)Bn2 , the algorithm computes the linear combination w.r.t. to the lattice basis
b1, . . . ,bn

y =
n∑
i=1

λibi

and then the remainder

y (mod L) =
n∑
i=1
bλicbi.

The important observation is that this remainder is the same for all vectors y + v, v ∈ L.
Next, it keeps reducing (minus) the remainder w.r.t. the list, as long as the length decreases.
This results in a vector of the form

−y (mod L)− v1 − · · · − vk, for some vi ∈ L.

The output ListRedL(y) is then

−y (mod L)− v1 − · · · − vk + y ∈ L.

The algorithm bases its decisions on y (mod L) and not on y directly. This is why one
can imagine that, after y (mod L) has been created, one applies a bijection τ of the ball
τ(·) : ξµBn2 → ξµBn2 on y with probability 1/2. For y ∈ Is one has τ(y) = y + s. We refer
to [38] for the definition of τ . Since τ is a bijection and preserves the measure, the result
of applying τ(y) with probability 1/2 is distributed uniformly. This means that for y ∈ Is
this modified but equivalent procedure outputs ListRedL(y) or ListRedL(y) + s, both with
probability 1/2. If ListRedL(yi)− ListRedL(yj) ∈ K, we toss a coin for i and j each. With
probability 1/2, their difference is in ±K + s.

3.2 Approximation to CVPp and SVPp for p ∈ [2,∞]
We now combine Theorem 4 with the covering ideas presented in Section 2.

ESA 2020

43:8 Approximate CVPp in Time 20.802 n

I Theorem 5. For p ≥ 2, there is a randomized algorithm that computes with constant
probability a constant factor (depending on ε) approximation to CVPp and SVPp respectively.
The algorithm runs in time 2(0.802+ε)n and it requires space 2(0.401+ε)n.

In short, the algorithm is the standard list-sieve algorithm with a slight twist: Check all
pairwise differences.
We first present in detail the case p =∞. Even though there is an approximation preserving
reduction from SVP to CVP, [21], we present separately the case SVP and CVP to highlight
the ideas from Section 2 and Theorem 4. The case p ≥ 2 then follows from this, we briefly
comment on it.

Proof for p =∞. We assume that the list L that was computed in the first stage satisfies
the properties described in Theorem 4. Recall that this is the case with probability at
least 1/2.
We first consider SVP∞. By Lemma 2, there is a > 0 such that N(

√
nBn2 , aB

n
∞) ≤ 20.401n.

Let s be a shortest vector w.r.t. `∞ and let µ > 0 such that ‖s‖2 ≤ µ < (1 + 1
n) ‖s‖2 as

above. Since ‖s‖2 ≤
√
n ‖s‖∞ we have N(cε ‖s‖2 B

n
2 , cεa ‖s‖∞Bn∞) ≤ 20.401n. This means

that, if d20.401ne+ 1 lattice vectors are contained in the ball cε‖s‖2B
n
2 at least two of them

have `∞-distance bounded by 2cεa which is a constant.
Set N = 2 · d2(ε+0.401)n+ 1e and {y1, . . . ,yN}

iid∼ Bn2 (0, ξεµ) uniformly and independently
at random. By Theorem 4 ii) and by the Chebychev inequality, see [38], the following event
has probability at least 1/2.

(Event A): There is a subset S ⊆ {1, . . . , N} with |S| = d20.401ne+ 1 such that for
each i ∈ S

yi ∈ Is and ‖ ListRedL(yi)‖2 ≤ cε‖s‖2. (6)

This event is the disjoint union of the event A ∩B and A ∩B, where B denotes the event
where the vectors ListRedL(yi), yi ∈ Is are all distinct. Thus

Pr(A) = Pr(A ∩B) + Pr(A ∩B).

The probability of at least one of the events A ∩B and A ∩B is bounded below by 1/4. In
the event A ∩B, there exists i 6= j such that

‖ ListRedL(vi)− ListRedL(vj)‖∞ ≤ 2cεa.

By Theorem 4 i) with K = {0} one has

Pr(A ∩B) ≤ 2 Pr (∃i 6= j : ListRedL(vi)− ListRedL(vj) = s) .

Therefore, with constant probability, there exist i, j ∈ {1, . . . , N} with

0 < ‖ ListRedL(yi)− ListRedL(yj)‖∞ ≤ 2cεa.

We try out all the pairs of N elements, which amounts to N2 = 2(0.802+ε′)n additional time.
We next describe how list-sieve yields a constant approximation for CVP∞. Let w ∈ L(B)

be the closest lattice vector w.r.t. `∞ to t ∈ Rn and let µ > 0 such that ‖t−w‖2 ≤ µ <

(1 + 1
n) ‖t−w‖2. We use Kannan’s embedding technique [27] and define a new lattice L′

with basis

B̃ =
(
B t
0 1

nµ

)
∈ Q(n+1)×(n+1),

F. Eisenbrand and M. Venzin 43:9

Finding the closest vector to t w.r.t. `∞ in L(B) amounts to finding the shortest vector
w.r.t. `∞ in L′(B̃) ∩ {x ∈ Rn+1 : xn+1 = 1

nµ}. The vector s = (t−w, 1
nµ) is such a vector

and its euclidean length is smaller than (1 + 1
n)µ. Let a > 0 be such that

N(
√
nBn2 , aB

n
∞) ≤ 20.401n.

This means that there is a covering of the n-dimensional ball (cε‖s‖2)Bn+1
2 ∩ {x ∈ Rn+1 :

xn+1 = 0} by 20.401n translated copies of K, where

K = (cε · a(1 + 1/n)‖s‖∞)Bn+1
∞ ∩ {x ∈ Rn+1 : xn+1 = 0}. (7)

(The factor (1 + 1/n) is a reminiscent of the embedding trick, s is n + 1 dimensional.)
Similarly, we may cover (cε‖s‖2)Bn+1

2 ∩ {x ∈ Rn+1 : xn+1 = k · µn} for all k ∈ Z (such that
the intersection is not empty) by translates of K. There are only 2cε(n+ 1) + 1 such layers
to consider and so (2cε(n+ 1) + 1)20.401n translates of K suffice. The last component of a
lattice vector of L′ is of the form k · µn and it follows that these translates of K cover all
lattice vectors of euclidean norm smaller than cε ‖s‖2, see Figure 3.

c
ǫ
‖s‖2

xn+1 = µ/n

xn+1 = 2µ/nvi
vj

s

xn+1 = 0

K

Figure 3 Covering the lattice points with translates of K.
.

Set N = d(2cε(n+1)+2)2(ε+0.401)ne and sample again {y1, . . . ,yN}
iid∼ Bn2 (0, ξεµ) uniformly

and independently at random. By Theorem 4 ii) and by the Chebychev inequality, see [38],
the following event has a probability at least 1/2.

(Event A′): There is a subset S ⊆ {1, . . . , N} with |S| = (2cε(n+ 1) + 1)20.401n + 1
such that for each i ∈ S

yi ∈ Is and ‖ ListRedL(yi)‖2 ≤ cε‖s‖2. (8)

In this case, there exists a translate of K that holds at least two vectors ListRedL(yi) and
ListRedL(yj) for different samples yi and yj , see Figure 3 with vi,vj ∈ L′ instead. Thus,
with probability at least 1/2, there are i, j ∈ [N] with yi,yj ∈ Is such that

ListRedL(yi)− ListRedL(yj) ∈ 2K

Theorem 4 i) implies that, with probability at least 1/4, there exist different samples yi and
yj such that

ListRedL(yi)− ListRedL(yj) ∈ 2K + s

ESA 2020

43:10 Approximate CVPp in Time 20.802 n

In this case, the first n coordinates of ListRedL(yi)− ListRedL(yj) can be written of the
form t− v for v ∈ L and the first n coordinates on the right hand side are of the of the form
(t −w) + z, where z ∈ L′ and ‖z‖∞ ≤ 2cε(1 + 1/n)a ‖s‖∞ = 2cε(1 + 1/n)a ‖t−w‖∞. In
particular, the lattice vector v ∈ L is a 2acε(1 + 1/n) + 1 approximation to the closest vector
to t. Since we need to try out all pairs of the N elements, this takes time N2 = 2(0.802+ε′)n

and space N . J

I Remark 6. For clarity we have not optimized the approximation factor. There are various
ways to do so. We remark that for SVP∞ we actually get a smaller approximation factor
than the one that we describe. Let ã be such that N(

√
nBn2 , ãB

n
∞) ≤ 20.802n, the algorithm

described above yields a 2cεã approximation instead of a 2cεa approximation to the shortest
vector. This follows by applying the birthday paradox in the way that it was used by Pujol
and Stehlé [38]. The same argument also applies to CVP∞. Finally, we remark that in the
case of SVP we have not really used property i) of Theorem 4. We only use this property to
ensure that the generated vectors are different. It is plausible that this can be done more
efficiently or with a better approximation factor.

Proof continued, p ≥ 2. For SVPp, p ≥ 2, we define s to be shortest vector w.r.t. `p instead.
Since ‖s‖2 ≤ n1/2−1/p ‖s‖p, we simply use Lemma 3 instead of Lemma 2 to conclude that
there is some a > 0 such that if we have a set of 20.401n different lattice vectors of (euclidean)
length smaller than cε ‖s‖2, then two of them must have pairwise distance smaller than 2cεa
w.r.t. `p.
For CVPp, we define w to be the closest lattice vector to t w.r.t. `p. Both s and L′ are
defined analogously. We will need to replace the convex body K in (7) by

K = (cε · a(1 + 1/n)‖s‖p)Bn+1
p ∩ {x ∈ Rn+1 : xn+1 = 0}.

The respective algorithms for SVPp and CVPp and the proof of correctness now follow from
the case p =∞. In particular, we can use the same parameters cε and a.

For the important case p = 2 we note that we can chose a = 1. This yields a approximation
to the closest vector with the approximation guarantee cε matching that of the fastest
approximate shortest vector problem w.r.t. `2, see [31]. J

4 Approximate CVPp for p ∈ [1, 2)

In the previous section, we have extended the approximate SVP2 solver to yield constant
factor approximations to SVPp and CVPp for p ∈ [2,∞] in time 2(0.802+ε)n. From simple
volumetric considerations, the technique from the previous section cannot be adapted to
solve SVPp and CVPp for p ∈ [1, 2) (in single exponential time). Instead, we can use a simple
covering technique similar to the one considered by Eisenbrand et al. in [20]. We first show
that for any constant ε > 0, there is a constant aε > 0, so that the crosspolytope Bn1 can be
covered by 2εn balls (w.r.t. `2) with radius (aε/

√
n) and whose union is contained inside

the crosspolytope scaled by aε. A similar covering also exists for Bnp . Using the centers of
these balls as targets, we can use the approximate CVP2 algorithm to solve approximate
CVP1 resp. CVPp. This is also similar to the technique of Dadush et al. in [17] resp. [16]
where they cover general norm balls with M-ellipsoids to solve SVP and CVP w.r.t. to
this norm by using the CVP2 algorithm due to [33]. Unfortunately, there is only an upper
bound of 2Cn for some (large) constant C > 0 on the number of required M-ellipsoids, for
our purpose we need a finer estimate. To achieve this, we rely on the set-covering idea and
volume computations as outlined in Section 2. The following analogue to Lemma 2 is shown
in the appendix.

F. Eisenbrand and M. Venzin 43:11

I Lemma 7. For each ε > 0, there exists aε ∈ R>0 independent of n such that

vol(Bn1 + (aε/
√
n)Bn2)

vol((aε/
√
n)Bn2)

≤ 2εn.

We now sketch the covering procedure for CVP1 and SVP1. Up to scaling the lattice and a
guess on the distance of the closest (resp. shortest) lattice vector v to the target t, we may
assume that 1 − 1/n ≤ ‖v− t‖1 ≤ 1 (resp. 1 − 1/n ≤ ‖v‖1 ≤ 1). We uniformly sample a
point x, [19], within t + Bn1 + (aε/

√
n)Bn2 (set t = 0 for SVP1) and place a ball of radius

aε/
√
n around x (or x′, the closest point to x in Bn1 , see Fig. 4).

x

x
′

v

Bn

1
+ (c/

√

n)Bn

2

Bn

1

x+ (c/
√

n)Bn

2

Figure 4 Generating a covering of Bn
1 by (c/

√
n)Bn

2 .
.

By Lemma 7, with probability at least 2−εn, v is covered by x+(aε/
√
n)Bn2 . Running the

c-approximate (randomized) CVP2 algorithm with target x (provided ‖v− x‖2 ≤ (aε/
√
n)),

a lattice vector w ∈ x + (c · aε/
√
n)Bn2 ⊆ t + c · (aε + 1)Bn1 is returned. The lattice vector

w is thus a c · (aε + 1) approximation to the closest (resp. shortest) vector. In general, we
run the c-approximate CVP2 algorithm O(poly(n)2εn) times with targets uniformly chosen
within t +Bn1 + (aε/

√
n)Bn2 and only output the closest of the resulting lattice vectors if it

is within c · (aε + 1)Bn1 . This ensures that, if there is lattice vector v in t +Bn1 , a constant
factor approximation to ‖t− v‖1 is found with high probability.
The same covering technique can be applied to Bnp , p ∈ (1, 2). By Hölder’s inequality,

Bnp ⊆ n1−1/pBn1 and n1/2−1/pBn2 ⊆ Bnp .

The first of these inclusions implies that for any ε > 0, we can pick the same constant aε as
in Lemma 7 and cover Bnp by at most 2εn translates of aεn1/2−1/pBn2 .

vol(Bnp + cn1/2−1/pBn2)
vol(cn1/2−1/pBn2)

≤ vol(n1−1/pBn1 + cn1/2−1/pBn2)
vol(cn1/2−1/pBn2)

= vol(Bn1 + (c/
√
n)Bn2)

vol((c/
√
n)Bn2)

The second inclusion implies that these translates do not overlap Bnp by more then a constant
factor. It is then straightforward to adapt the boosting procedure described for CVP1 to
CVPp. Using the approximate CVP2 algorithm from the previous section then implies the
following algorithm.

I Theorem 8. There is a randomized algorithm that computes with constant probability a
constant (depending on ε) factor approximation to CVPp, p ∈ [1, 2). The algorithm runs in
time 2(0.802+ε)n and requires space 2(0.401+ε)n.

ESA 2020

43:12 Approximate CVPp in Time 20.802 n

5 Proof of Lemma 7

Recall that the volume of K + tBn2 is a polynomial in t, with coefficients Vj(K) that only
depend on the convex body K:

vol(K + tBn2) =
n∑
j=0

Vj(K) vol(Bn−j2)tn−j

The coefficients Vj(K) are known as the intrinsic volumes of K. The intrinsic volumes of the
crosspolytope Bn1 were computed by Betke and Henk in [13], and are given by the following
formulae:

Vn(Bn1) = 2n

n!
and for 0 ≤ j ≤ n− 1

Vj(Bn1) = 2n
(

n

j + 1

) √
j + 1

j!
√
π
n−j ·

∫ ∞
0

e−x
2

(∫ x/
√
j+1

0
e−y

2
dy

)n−j−1

dx

Given that the upper bound of Lemma 7 is exponential in n, we do not care about
polynomial factors in n. For the sake of brevity, we will hide these polynomial factors by
“.”, i.e. poly(n) . 1. This already simplifies the intrinsic volumes and, for 1 ≤ j ≤ n:

Vj(Bn1) . 2j

j!

(
n

j

)
The volume of the k−dimensional ball Bk2 is given by

vol(Bk2) = πk/2

Γ(k/2 + 1)
Γ(·) is the Gamma function. For n ∈ N, we have Γ(n+ 1) = n!. By Stirling’s formula we
have the following estimate on Γ(·).(z

e

)z
. Γ(z + 1) .

(z
e

)z
With these estimates at hand, we can now prove Lemma 7.

vol(Bn1 + (c/
√
n)Bn2)

vol((c/
√
n)Bn2)

=
∑n
j=0 Vj(Bn1) vol(Bn−j2)(c/

√
n))n−j

(c/
√
n)n vol(Bn2)

.
n∑
j=0

2j n!
j!(n− j)!j!

nj/2

cj
vol(Bn−j2)
vol(Bn2)

.
n∑
j=0

(2e)j nn

jj (n− j)n−jjj
nj/2

cj
nn/2

(n− j)(n−j)/2(2πe)j/2

.
n∑
j=0

n3n/2nj/2

j2j(n− j)3(n−j)/2

(
2e
πc2

)j/2

(j=φn)
. max

φ∈[0,1]

e(3/2) ln(n)n+ln(n)nφ/2

e2 ln(φn)φn+(3/2) ln((1−φ)n)(1−φ)n

(
2e
πc2

)φn/2

. max
φ∈[0,1]

e−2 ln(φ)φn−2 ln(1−φ)(1−φ)n
(

2e
πc2

)φn/2

= max
φ∈[0,1]

22 H(φ)n
(

2e
πc2

)φn/2

F. Eisenbrand and M. Venzin 43:13

In passing to the second last line, we have added the factor e−(1/2) ln(1−φ)(1−φ)n which is
always greater than 1 for φ ∈ [0, 1]. H(·) is the binary entropy function, i.e. H(φ) =
− ln(φ)φ− ln(1− φ)(1− φ). H(φ) ≤ 1 for φ ∈ [0, 1] and H(φ) = H(1− φ)→ 0 monotonically
as φ→ 0. Thus, for some fixed c, the above expression reaches a maximum for some φ ∈ (0, 1).
If we increase c, we see that the φ∗ realizing the maximum will decrease which then implies
the lemma. This can be shown formally by fixing some c and taking a derivative w.r.t. φ.
This will then show that the maximum is reached when φ∗ = Θ(1√

c
).

Thus, for any ε > 0, we can chose c large enough so that Lemma 7 holds.

References
1 D. Aggarwal, D. Dadush, and N. Stephens-Davidowitz. Solving the closest vector problem

in 2n time – the discrete gaussian strikes again! In 2015 IEEE 56th Annual Symposium on
Foundations of Computer Science, pages 563–582, October 2015. doi:10.1109/FOCS.2015.41.

2 Divesh Aggarwal, Huck Bennett, Alexander Golovnev, and Noah Stephens-Davidowitz. Fine-
grained hardness of cvp (p) – everything that we can prove (and nothing else). arXiv preprint,
2019. arXiv:1911.02440.

3 Divesh Aggarwal, Daniel Dadush, Oded Regev, and Noah Stephens-Davidowitz. Solving the
shortest vector problem in 2n time using discrete gaussian sampling. In Proceedings of the
forty-seventh annual ACM symposium on Theory of computing, pages 733–742, 2015.

4 Divesh Aggarwal and Priyanka Mukhopadhyay. Faster algorithms for SVP and CVP in the
infinity norm. CoRR, abs/1801.02358, 2018. arXiv:1801.02358.

5 Divesh Aggarwal and Noah Stephens-Davidowitz. (gap/s)eth hardness of svp. In Proceedings
of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, page
228–238, New York, NY, USA, 2018. Association for Computing Machinery. doi:10.1145/
3188745.3188840.

6 Divesh Aggarwal and Noah Stephens-Davidowitz. Just take the average! An embarrassingly
simple 2ˆn-time algorithm for SVP (and CVP). In 1st Symposium on Simplicity in Algorithms,
SOSA 2018, January 7-10, 2018, New Orleans, LA, USA, pages 12:1–12:19, 2018. doi:
10.4230/OASIcs.SOSA.2018.12.

7 Miklós Ajtai. The shortest vector problem in l2 is np-hard for randomized reductions (extended
abstract). In Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing,
STOC ’98, page 10–19, New York, NY, USA, 1998. Association for Computing Machinery.
doi:10.1145/276698.276705.

8 Miklós Ajtai, Ravi Kumar, and D. Sivakumar. A sieve algorithm for the shortest lattice vector
problem. In Proceedings on 33rd Annual ACM Symposium on Theory of Computing, July 6-8,
2001, Heraklion, Crete, Greece, pages 601–610, 2001. doi:10.1145/380752.380857.

9 Miklós Ajtai, Ravi Kumar, and D. Sivakumar. Sampling short lattice vectors and the
closest lattice vector problem. In Proceedings of the 17th Annual IEEE Conference on
Computational Complexity, Montréal, Québec, Canada, May 21-24, 2002, pages 53–57, 2002.
doi:10.1109/CCC.2002.1004339.

10 Sanjeev Arora. Probabilistic Checking of Proofs and Hardness of Approximation Problems.
PhD thesis, University of California at Berkeley, Berkeley, CA, USA, 1995. UMI Order No.
GAX95-30468.

11 Shiri Artstein-Avidan and Boaz A Slomka. On weighted covering numbers and the levi-hadwiger
conjecture. Israel Journal of Mathematics, 209(1):125–155, 2015.

12 H. Bennett, A. Golovnev, and N. Stephens-Davidowitz. On the quantitative hardness of cvp.
In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), pages
13–24, October 2017. doi:10.1109/FOCS.2017.11.

13 Ulrich Betke and Martin Henk. Intrinsic volumes and lattice points of crosspolytopes. Monat-
shefte für Mathematik, 115(1):27–33, 1993. doi:10.1007/BF01311208.

ESA 2020

https://doi.org/10.1109/FOCS.2015.41
http://arxiv.org/abs/1911.02440
http://arxiv.org/abs/1801.02358
https://doi.org/10.1145/3188745.3188840
https://doi.org/10.1145/3188745.3188840
https://doi.org/10.4230/OASIcs.SOSA.2018.12
https://doi.org/10.4230/OASIcs.SOSA.2018.12
https://doi.org/10.1145/276698.276705
https://doi.org/10.1145/380752.380857
https://doi.org/10.1109/CCC.2002.1004339
https://doi.org/10.1109/FOCS.2017.11
https://doi.org/10.1007/BF01311208

43:14 Approximate CVPp in Time 20.802 n

14 Johannes Blömer and Stefanie Naewe. Sampling methods for shortest vectors, closest vectors
and successive minima. Theor. Comput. Sci., 410(18):1648–1665, 2009. doi:10.1016/j.tcs.
2008.12.045.

15 V. Chvatal. A greedy heuristic for the set-covering problem. Math. Oper. Res., 4(3):233–235,
August 1979. doi:10.1287/moor.4.3.233.

16 Daniel Dadush and Gábor Kun. Lattice sparsification and the approximate closest vector
problem. Theory of Computing, 12(1):1–34, 2016. doi:10.4086/toc.2016.v012a002.

17 Daniel Dadush, Chris Peikert, and Santosh S. Vempala. Enumerative lattice algorithms in any
norm via m-ellipsoid coverings. In Rafail Ostrovsky, editor, IEEE 52nd Annual Symposium on
Foundations of Computer Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011,
pages 580–589. IEEE Computer Society, 2011. doi:10.1109/FOCS.2011.31.

18 Irit Dinur, Guy Kindler, Ran Raz, and Shmuel Safra. Approximating CVP to within
almost-polynomial factors is NP-hard. Combinatorica, 23(2):205–243, 2003. doi:10.1007/
s00493-003-0019-y.

19 Martin E. Dyer, Alan M. Frieze, and Ravi Kannan. A random polynomial time algorithm for
approximating the volume of convex bodies. J. ACM, 38(1):1–17, 1991. doi:10.1145/102782.
102783.

20 Friedrich Eisenbrand, Nicolai Hähnle, and Martin Niemeier. Covering cubes and the closest
vector problem. In Proceedings of the 27th ACM Symposium on Computational Geometry,
Paris, France, June 13-15, 2011, pages 417–423, 2011. doi:10.1145/1998196.1998264.

21 O. Goldreich, D. Micciancio, S. Safra, and Jean-Pierre Seifert. Approximating shortest lattice
vectors is not harder than approximating closet lattice vectors. Inf. Process. Lett., 71(2):55–61,
July 1999. doi:10.1016/S0020-0190(99)00083-6.

22 Peter Gruber. Convex and Discrete Geometry. Encyclopedia of Mathematics and its Applica-
tions. Springer, 2007.

23 Ishay Haviv and Oded Regev. Tensor-based hardness of the shortest vector problem to within
almost polynomial factors. In Proceedings of the thirty-ninth annual ACM symposium on
Theory of computing, pages 469–477, 2007.

24 Martin Henk, Jürgen Richter-Gebert, and Günter M Ziegler. Basic properties of convex
polytopes. In Handbook of discrete and computational geometry, pages 243–270. CRC Press,
1997.

25 Varun Jog and Venkat Anantharam. A geometric analysis of the awgn channel with a (σ, ρ)-
power constraint. IEEE Transactions on Information Theory, April 2015. doi:10.1109/TIT.
2016.2580545.

26 Grigorii Anatol’evich Kabatiansky and Vladimir Iosifovich Levenshtein. On bounds for packings
on a sphere and in space. Problemy Peredachi Informatsii, 14(1):3–25, 1978.

27 Ravi Kannan. Minkowski’s convex body theorem and integer programming. Math. Oper. Res.,
12(3):415–440, 1987. doi:10.1287/moor.12.3.415.

28 Subhash Khot. Hardness of approximating the shortest vector problem in lattices. J. ACM,
52(5):789–808, September 2005. doi:10.1145/1089023.1089027.

29 A. K. Lenstra, H. W. Lenstra, and L. Lovász. Factoring polynomials with rational coefficients.
Mathematische Annalen, 261(4):515–534, 1982. doi:10.1007/BF01457454.

30 Hendrik W. Lenstra. Integer programming with a fixed number of variables. Math. Oper. Res.,
8(4):538–548, 1983. doi:10.1287/moor.8.4.538.

31 Mingjie Liu, Xiaoyun Wang, Guangwu Xu, and Xuexin Zheng. Shortest lattice vectors in the
presence of gaps. IACR Cryptology ePrint Archive, 2011:139, 2011.

32 Daniele Micciancio. The shortest vector in a lattice is hard to approximate to within some
constant. SIAM journal on Computing, 30(6):2008–2035, 2001.

33 Daniele Micciancio and Panagiotis Voulgaris. A deterministic single exponential time algorithm
for most lattice problems based on voronoi cell computations. In Proceedings of the 42nd ACM
Symposium on Theory of Computing, STOC 2010, Cambridge, Massachusetts, USA, 5-8 June
2010, pages 351–358, 2010. doi:10.1145/1806689.1806739.

https://doi.org/10.1016/j.tcs.2008.12.045
https://doi.org/10.1016/j.tcs.2008.12.045
https://doi.org/10.1287/moor.4.3.233
https://doi.org/10.4086/toc.2016.v012a002
https://doi.org/10.1109/FOCS.2011.31
https://doi.org/10.1007/s00493-003-0019-y
https://doi.org/10.1007/s00493-003-0019-y
https://doi.org/10.1145/102782.102783
https://doi.org/10.1145/102782.102783
https://doi.org/10.1145/1998196.1998264
https://doi.org/10.1016/S0020-0190(99)00083-6
https://doi.org/10.1109/TIT.2016.2580545
https://doi.org/10.1109/TIT.2016.2580545
https://doi.org/10.1287/moor.12.3.415
https://doi.org/10.1145/1089023.1089027
https://doi.org/10.1007/BF01457454
https://doi.org/10.1287/moor.8.4.538
https://doi.org/10.1145/1806689.1806739

F. Eisenbrand and M. Venzin 43:15

34 Daniele Micciancio and Panagiotis Voulgaris. Faster exponential time algorithms for the
shortest vector problem. In Proceedings of the Twenty-First Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA ’10, page 1468–1480, USA, 2010. Society for Industrial and
Applied Mathematics.

35 Priyanka Mukhopadhyay. Faster provable sieving algorithms for the shortest vector problem
and the closest vector problem on lattices in `p norm. CoRR, abs/1907.04406, 2019. arXiv:
1907.04406.

36 Márton Naszódi and Moritz Venzin. Covering convex bodies and the closest vector problem.
arXiv preprint, 2019. arXiv:1908.08384.

37 Márton Naszódi. On some covering problems in geometry. Proceedings of the American
Mathematical Society, 144, April 2014. doi:10.1090/proc/12992.

38 Xavier Pujol and Damien Stehlé. Solving the shortest lattice vector problem in time 2 2.465n.
IACR Cryptology ePrint Archive, 2009:605, January 2009.

39 Oded Regev. Lattices in computer science, lecture 8: 2O(n) algorithm for svp, 2004.
40 Rolf Schneider. Convex Bodies: The Brunn–Minkowski Theory. Encyclopedia of Math-

ematics and its Applications. Cambridge University Press, 2 edition, 2013. doi:10.1017/
CBO9781139003858.

41 Claus-Peter Schnorr. A hierarchy of polynomial time lattice basis reduction algorithms.
Theoretical computer science, 53(2-3):201–224, 1987.

42 P. van Emde Boas. Another NP-complete problem and the complexity of computing short
vectors in a lattice. Technical Report 81-04, Mathematische Instituut, University of Amsterdam,
1981.

43 Vijay V Vazirani. Approximation algorithms. Springer Science & Business Media, 2013.

ESA 2020

http://arxiv.org/abs/1907.04406
http://arxiv.org/abs/1907.04406
http://arxiv.org/abs/1908.08384
https://doi.org/10.1090/proc/12992
https://doi.org/10.1017/CBO9781139003858
https://doi.org/10.1017/CBO9781139003858

	Introduction
	Covering balls with boxes
	Approximate CVP_{p} for p > = 2
	List sieve
	Approximation to CVP_p and SVP_{p} for p in [2,infinity]

	Approximate CVP_{p} for p in [1,2)
	Proof of Lemma 7

