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Abstract

We study algorithmic properties of the graph class Chordal−ke, that is, graphs that can be turned
into a chordal graph by adding at most k edges or, equivalently, the class of graphs of fill-in at most
k. We discover that a number of fundamental intractable optimization problems being parameterized
by k admit subexponential algorithms on graphs from Chordal− ke. While various parameterized
algorithms on graphs for many structural parameters like vertex cover or treewidth can be found
in the literature, up to the Exponential Time Hypothesis (ETH), the existence of subexponential
parameterized algorithms for most of the structural parameters and optimization problems is highly
unlikely. This is why we find the algorithmic behavior of the “fill-in parameterization” very unusual.

Being intrigued by this behaviour, we identify a large class of optimization problems on
Chordal− ke that admit algorithms with the typical running time 2O(

√
k log k) · nO(1). Examples of

the problems from this class are finding an independent set of maximum weight, finding a feedback
vertex set or an odd cycle transversal of minimum weight, or the problem of finding a maximum
induced planar subgraph. On the other hand, we show that for some fundamental optimization prob-
lems, like finding an optimal graph coloring or finding a maximum clique, are FPT on Chordal−ke

when parameterized by k but do not admit subexponential in k algorithms unless ETH fails.

Besides subexponential time algorithms, the class of Chordal − ke graphs appears to be
appealing from the perspective of kernelization (with parameter k). While it is possible to show that
most of the weighted variants of optimization problems do not admit polynomial in k kernels on
Chordal− ke graphs, this does not exclude the existence of Turing kernelization and kernelization
for unweighted graphs. In particular, we construct a polynomial Turing kernel for Weighted Clique
on Chordal− ke graphs. For (unweighted) Independent Set we design polynomial kernels on
two interesting subclasses of Chordal− ke, namely, Interval− ke and Split− ke graphs.
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1 Introduction

Many NP-hard graph optimization problems are solvable in polynomial or even linear
time when the input of the problem is restricted to a special graph class. For example,
the chromatic number of a perfect graph can be computed in polynomial time [34], the
Feedback Vertex Set problem is solvable in polynomial time on chordal graphs [31], and
Hamiltonicity on interval graphs [44]. From the perspective of parameterized complexity,
the natural question here is how stable are these nice algorithmic properties of graph classes
subject to some perturbations. For example, if an input n-vertex graph G is not chordal,
but can be turned into a chordal graph by adding at most k edges, how fast can we solve
Feedback Vertex Set on G? Can we solve the problem in polynomial time for constant
k? Or maybe for k = logn or even for k = poly(logn)? A word of warning is on order
here. Since an algorithm for Feedback Vertex Set of running time 2o(n) will refute the
Exponential Time Hypothesis (ETH) of Impagliazzo, Paturi and Zane [37, 38], and because
k ≤

(
n
2
)
, the existence of an algorithm of running time 2k1/2−ε · nO(1) for some ε > 0 (which

is polynomial for k = (logn)2/(1−2ε)) is unlikely. Interestingly, as we shall see, Feedback
Vertex Set (and many other problems) are solvable in time 2k1/2 log k · nO(1).

Leizhen Cai in [11] introduced a convenient notation for “perturbed” graph classes. Let
F be a class of graphs, then F − ke (respectively F − ve) is the class of those graphs that
can be obtained from a member of F by deleting at most k edges (respectively vertices).
Similarly one can define classes F + ke and F + ve. Then for any class F and optimization
problem P that can be solved in polynomial time on F , the natural question is whether P is
fixed-parameter tractable parameterized by k, the “distance” to F .

In this paper we obtain several algorithmic results on the parameterized complexity of
optimization problems on F − ke, where F is the class of chordal graphs. Let us remind that
a graph H is chordal (or triangulated) if every cycle of length at least four has a chord, i.e., an
edge between two nonconsecutive vertices of the cycle. We denote by Chordal−ke the class
of graphs that can be made chordal graph by adding at most k edges. While parameterized
algorithms for some optimization problems on the class of Chordal−ke graphs were studied
(see the section on previous work), our work introduces the first subexponential parameterized
algorithms in this graph class. We prove the following.

Subexponential parameterized algorithms. We discover a large class of optimization prob-
lems on graph class Chordal− ke that are solvable in time 2O(

√
k log k) · nO(1). Examples of

such optimization problems are: the problem of finding an induced d-colorable subgraph of
maximum weight (which generalizes Weighted Independent Set for d = 1 and Weighted
Bipartite Subgraph for d = 2); the problem of finding a maximum weight induced sub-
graph admitting a homomorphism into a fixed graph H; the problem of finding an induced
d-degenerate subgraph of maximum weight and its variants like Weighted Induced Forest
(or, equivalently, Weighted Feedback Vertex Set), Weighted Induced Tree, In-
duced Planar Graph, Weighted Induced Path (Cycle) or Weighted Induced
Cycle Packing; as well as various connectivity variants of these problems like Weighted
Connected Vertex Cover and Weighted Connected Feedback Vertex Set. This
implies that all these problems are solvable in polynomial time for k = ( log n

log log n )2. On the
other hand, we refute (subject to ETH) existence of a subexponential time 2o(k) · nO(1)

algorithms on graphs in Chordal− ke for Coloring and Clique. Moreover, our lower
bounds hold for way more restrictive graph class Complete− ke, the graphs within k edges
from a complete graph. We also show that both problems are fixed-parameter tractable
(FPT) (parameterized by k) on Chordal− ke graphs.
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Kernelization. It follows almost directly from the previous work [39, 8] that Weighted
Independent Set, Weighted Vertex Cover, Weighted Bipartite Subgraph,
Weighted Odd Cycle Transversal, Weighted Feedback Vertex Set and
Weighted Clique do not admit a polynomial in k kernel (unless coNP * NP/ poly)
on Complete− ke and hence on Chordal− ke. Interestingly, these lower bounds do not
refute the possibility of polynomial Turing kernelization or kernelization for unweighted
variants of the problems. Indeed, we show that Weighted Clique on Chordal − ke
parameterized by k admits a Turing kernel. For unweighted Independent Set we show that
the problem admits polynomial in k kernel on graph classes Interval− ke and Split− ke
(graphs that can be turned into an interval or split graphs, corrspondingly, by adding at
most k edges).

Previous work. Chordal graphs form an important subclass of perfect graphs. These graphs
were also intensively studied from the algorithmic perspective. We refer to books [9, 33, 58]
for introduction to chordal graphs and their algorithmic properties.

The problem of determining whether a graph G belongs to Chordal−ke, that is checking
whether G can be turned into a chordal graph by adding at most k edges, is known in the
literature as the Minimum Fill-in problem. The name fill-in is due to the fundamental
problem arising in sparse matrix computations which was studied intensively in the past
[52, 55]. The survey of Heggernes [36] gives an overview of techniques and applications of
minimum and minimal triangulations.

Minimum Fill-in (under the name Chordal Graph Completion) was one of the 12
open problems presented at the end of the first edition of Garey and Johnson’s book [30] and
it was proved to be NP-complete by Yannakakis [60]. Kaplan et al. proved that Minimum
Fill-in is fixed parameter tractable by giving an algorithm of running time 16k · nO(1) in
[43]. There was a chain of algorithmic improvements resulting in decreasing the constant in
the base of the exponents [42, 10, 7] resulting with a subexponential algorithm of running
time 2O(

√
k log k) · nO(1) [28]. A significant amount of work in parameterized algorithms is

devoted to recognition problems of classes F − ke, F + ke, F − kv, and F + kv for chordal
graphs and various subclasses of chordal graphs [1, 2, 4, 5, 14, 12, 13, 26, 40, 48, 59].

Parameterized algorithms, mostly for graph coloring problems, were studied on perturbed
chordal graphs and subclasses of this graph class [11, 56]. Among other results, Cai [11]
proved that Coloring (the problem of computing the chromatic number of a graph) is
FPT (parameterized by k) on Split − ke graphs. Marx [47] proved that Coloring is
FPT on Chordal + ke and Interval + ke graphs but is W[1]-hard on Chordal + kv and
Interval + kv graphs. Jansen and Kratsch [41] proved that for every fixed integer d, the
problems d-Coloring and d-List Coloring admit polynomial kernels on the parameterized
graph classes Split + kv, Cochordal + kv, and Cograph + kv.

Liedloff, Montealegre, and Todinca [46] gave a general theorem establishing fixed-
parameter tractability for a large class of optimization problems. Let Cpoly be a class
of graphs having at most poly(n) minimal separators. (Since every chordal graph has at
most n minimal separators, the class of chordal graphs is a subclass of Cpoly.) Let ϕ be a
Counting Monadic Second Order Logic (CMSO) formula, G be a graph, and t ≥ 0 be an
integer. Liedloff, Montealegre, and Todinca proved that on graph class Cpoly +kv, the generic
problem, whose task is to maximize |X| subject to the following constraints: (i) there is a set
F ⊆ V (G) such that X ⊆ F , (ii) the treewidth of G[F ] is at most t, and (iii) (G[F ], X) |= ϕ,
is solvable in time O(nO(t) · f(t, ϕ, k)), and thus is fixed-parameter tractable parameterized
by k. The problem generalizes many classical algorithmic problems like Independent Set,
Longest Induced Path, Induced Forest, and different packing problems, see [27].
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Since the class Cpoly + kv contains Chordal− ke, the work of Liedloff et al. [46] yields
that all these problems are fixed-parameter tractable on Chordal−ke graphs parameterized
by k + t+ |ϕ|. However, the theorem of Liedloff et al. cannot be used to derive our results.
First, this theorem provides FPT algorithm only for problems of finding an induced subgraph
of constant treewidth, which is not the case in our situation. Second, even for graphs of
treewidth 0, their technique does not derive parameterized algorithms with subexponential
running times.

Organization of the paper. In Section 2, we introduce basic notation. In Section 3, we
discuss subexponential algorithms on Chordal− ke. Section 4 contains conditional lower
bounds (assuming ETH) for Coloring and Clique on Chordal−ke. Section 5 is devoted to
kernelization. We give lower bounds and construct a polynomial Turing kernel for Weighted
Clique on Chordal − ke, and construct polynomial kernels for Independent Set on
Interval− ke and Split− ke. We conclude in Section 6 with some open problems. Due to
space constraints, we either omit or just sketch the proofs. The details can be found in the
full version of the paper [22].

2 Preliminaries

Graphs. All graphs considered in this paper are assumed to be simple, that is, finite
undirected graphs without loops or multiple edges. We follow the standard graph theoretic
notation and terminology (see, e.g., [19]). For each of the graph problems considered in
this paper, we let n = |V (G)| and m = |E(G)| denote the number of vertices and edges,
respectively, of the input graph G if it does not create confusion.

A tree decomposition of a graph G is a pair T = (T, {Xt}t∈V (T )), where T is a tree whose
every node t is assigned a vertex subset Xt ⊆ V (G), called a bag, such that the following
three conditions hold: (i)

⋃
t∈V (T ) Xt = V (G), (ii) for every uv ∈ E(G), there exists a

node t of T such that bag Xt contains both u and v, and (iii) for every u ∈ V (G), the set
Tu = {t ∈ V (T )|u ∈ Xt}, i.e., the set of nodes whose corresponding bags contain u, induces
a connected subtree of T .

A graph G is chordal (or triangulated) if it does not contain an induced cycle of length
at least four. The intersection graph of a family of intervals of the real line is called an
interval graph; it is also said that G is an interval graph if there is a family of intervals
(called interval model or representation) such that G is isomorphic to the intersection graph
of this family. A graph G is said to be split if its vertex set can be partition into independent
set and a clique. We refer to [9, 33] for detailed introduction to these graph classes. Notice
that interval and split graphs are chordal.

A triangulation (or a chordal complementation) of a graph G is a chordal supergraph
H with V (H) = V (G). The size of the triangulation is |E(H)| − |E(G)|. The fill-in of a
graph G, denoted fill-in(G), is the minimum integer k such that G ∈ Chordal− ke or, in
other words, fill-in is the minimum number of edges whose addition makes the graph chordal.
An interval complementation of a graph G is an interval supergraph H with V (H) = V (G).
Similarly, a split complementation of G is a split supergraph H and a clique complementation
is a complete supergraph with V (H) = V (G). The size of interval (split, clique) completion is
|E(H)|−|E(G)| and we denote the minimum size of an interval (split, clique) complementation
by int-comp(G) (split-comp(G), c-comp(G) respectively). Clearly, G has an interval (split,
clique) complementation of size at most k if and only if G ∈ Interval − ke (Split − ke,
Complete − ke). It is easy to see that c-comp(G) =

(|V (G)|
2
)
− |E(G)|, and it is known

that it is NP-hard to compute fill-in(G) [60] and int-comp(G) [30] and the same holds for
split-comp(G) [50]. We will make use of the following observation.
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I Observation 1. For every graph G, c-comp(G) ≥ int-comp(G) ≥ fill-in(G) and
c-comp(G) ≥ split-comp(G) ≥ fill-in(G).

In particular, this observation implies that complexity lower bounds obtained for graph
problems parameterized by the clique completion size hold for the same problems when
they are parmeterized by the interval or split completion or by the fill-in, and the hardness
for the interval or split completion parameterization implies the hardness for the fill-in
parameterization.

Parameterized Complexity and Kernelization. We refer to the books [16, 20, 25] for the
detailed introduction to the field. In the Parameterized Complexity theorey, the computa-
tional complexity is measured as a function of the input size n of a problem and an integer
parameter k associated with the input. A parameterized problem is said to be fixed parameter
tractable (or FPT) if it can be solved in time f(k) · nO(1) for some function f . Parameterized
complexity theory also provides tools for obtaining complexity lower bounds. Here we use
lower bounds based on Exponential Time Hypothesis (ETH) formulated by Impagliazzo,
Paturi and Zane [37, 38]. In particular, ETH implies that k-Satisfiability with n variables
cannot be solved in time 2o(n)nO(1).

A compression of a parameterized problem Π1 into a (non-parameterized) problem Π2
is a polynomial algorithm that maps each instance (I, k) of Π1 with the input I and the
parameter k to an instance I ′ of Π2 such that (i) (I, k) is a yes-instance of Π1 if and only
if I ′ is a yes-instance of Π2, and (ii) |I ′| is bounded by f(k) for a computable function f .
The output I ′ is also called a compression. The function f is said to be the size of the
compression. A compression is polynomial if f is polynomial. A kernelization algorithm
for a parameterized problem Π is a polynomial algorithm that maps each instance (I, k) of
Π to an instance (I ′, k′) of Π such that (i) (I, k) is a yes-instance of Π if and only if (I ′, k′)
is a yes-instance of Π, and (ii) |I ′| + k′ is bounded by f(k) for a computable function f .
Respectively, (I ′, k′) is a kernel and f is its size. A kernel is polynomial if f is polynomial.

Even if a paramterized problem admits no polynomial kernel up to some complexity
conjectures, sometimes we can reduce it to solving of a polynomial number of instances of
the same problem such that the size of each instance is bounded by a polynomial of the
parameter. Let Π be a parameterized problem and let f : Z+ → Z+ be a computable function.
A Turing kernelization or Turing kernel for Π of size f is an algorithm that decides whether
an instance (I, k) of Π is a yes-instance in time polynomial in |I|+ k, when given access to
an oracle that decides whether (I ′, k′) is a yes-instance of Π in a single step if |I ′|+ k ≤ f(k).

3 Subexponential algorithms for induced d-colorable subgraphs

To construct subexponential algorithms on Chordal− ke, we consider tree decompositions
such that each bag is “almost” a clique.

I Definition 2. Let k be a nonnegative integer. A tree decomposition T = (T, {Xt}t∈V (T ))
of a graph G is k-almost chordal if for every t ∈ V (T ), c-comp(G[Xt]) ≤ k, that is, every
bag can be converted to a clique by adding at most k edges.

Note that every chordal graph has 0-almost chordal tree decomposition. Given a k-almost
chordal tree decomposition, we are able to construct dynamic programming algorithms
that are subexponential in k for various problems. The crucial property of the graphs in
Chordal−ke is that we are able to construct k-almost chordal tree decompositions for them
in subexponential in k time by making use of the following result of Fomin and Villanger [28].

ESA 2020
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I Proposition 3 ([28]). Deciding whether graph G is in Chordal − ke can be done in
time 2O(

√
k log k) + O(k2nm). Moreover, if G ∈ Chordal − ke, then the corresponding

triangulation can be found in time 2O(
√

k log k) +O(k2nm).

Using Proposition 3 we obtain the following lemma.

I Lemma 4. A k-almost chordal decomposition of a graph G ∈ Chordal− ke with at most
n bags can be constructed in time 2O(

√
k log k) · nO(1).

The crux of our subexponential algorithms is in the following combinatorial lemma.

I Lemma 5. Let d ≥ 1 be an integer. Let G be a graph and let F be a set of induced d-
colorable subgraphs of G. Let U ⊆ V (G) be a set of vertices of G such that c-comp(G[U ]) ≤ k,
that is, U can be made a clique by adding at most k edges. Then

for every F ∈ F ,

|U ∩ V (F )| ≤ 3d+
√
d2 + 8dk
2 ,

and
the size of the projection of F on U , that is, the size of the family

S = {S | S = U ∩ V (F ) for some F ∈ F}

is at most (1 + 2(
√

1+8k−1)/2 · |U |)d.
Moreover, there is an algorithm that in time 2O(d

√
k) · nO(d) outputs a family of sets S ′ ⊇ S

such that each set from S ′ has at most 3d+
√

d2+8dk
2 vertices, the number of sets in S ′ is

(1 + 2(
√

1+8k−1)/2 · n)d and G[S] is d-colorable for S ∈ S ′.

Proof sketch. We partition U into sets X and Y as follows. Let X be the vertices of U that
have at least one non-neighbor in U . In other words, for every v ∈ X there is u ∈ U that is
not adjacent to v. Two observations about set X will be useful. First, because U , and hence
X, can be turned into a clique by adding at most k edges, we have that |X| ≤ 2k. Second,
the remaining vertices of U , namely, Y = U \X, form a clique. For every set S ∈ S, we
define SX = X ∩ S and SY = Y ∩ S. Note that S = SX ∪ SY .

Because Y is a clique in G, no d-colorable subgraph from F can contain more than d
vertices from Y . Hence, |SY | ≤ d.

Let x = |SX |. Because G[SX ] is an induced subgraph of some d-colorable graph F ∈ F ,
we have that G[SX ] is d-colorable. On the other hand, since c-comp(G[U ]) ≤ k, G[SX ] can
be turned into complete graph by adding at most k edges. These two conditions are used to
estimate x. Let us remind that Turán graph is the complete d-partite graph on x vertices
whose partition sets differ in size by at most 1. According to Turán’s theorem, see e.g. [19],
Turán graph has the maximum possible number of edges among all d-colorable graphs. The
number of edges in Turán’s graph is at most 1

2x
2 d−1

d . Thus,(
x

2

)
− k ≤ |E(G[SX ])| ≤ 1

2x
2 d− 1

d
and k ≥

(
x

2

)
− 1

2x
2 d− 1

d
= x2 − dx

2d .

Therefore, x ≤ d+
√

d2+8dk
2 . We obtain that |S| = |SX |+ |SY | ≤ x+ d ≤ 3d+

√
d2+8dk
2 , which

implies the first claim of the lemma.
To prove the second claim, let H = G[U ]. Observe that the complement H has at most k

edges. Consider Z ⊆ V (H). If |Z| ≤
√

1+8k+1
2 , then the minimum degree δ(H[Z]) ≤

√
1+8k−1

2 .
If |Z| >

√
1+8k+1

2 , then

δ(H[Z]) ≤ 2|E(H[Z])|
|Z|

≤ 4k√
1 + 8k + 1

=
√

8k + 1− 1
2 ,



F. V. Fomin and P. A. Golovach 49:7

that is, the minimum degree of every induced subgraph of H is at most
√

8k+1−1
2 . Therefore,

H is
√

1+8k−1
2 -degenerate. This implies that U has at most 2(

√
1+8k−1)/2 · |U | independent in

G subsets. Therefore, U has at most (1 + 2(
√

1+8k−1)/2 · |U |)d subsets inducing d-colorable
subgraphs. The same observations also allow to construct S ′ in 2O(d

√
k) · nO(d) time. J

Let G be a graph and let F be an induced d-colorable subgraph of G. Informally,
Lemma 5 says that for a given a k-almost chordal tree decomposition, every bag of this tree
decomposition contains roughly O(d+

√
dk) vertices of F . This statement combined with

dynamic programming over the tree decomposition could easily bring us to the algorithm
computing a maximum d-colored subgraph of G in time nO(d+

√
dk). However, this is not

what we are shooting for; such an algorithm is not fixed-parameter tractable with parameter
k. This is where the second part of the lemma becomes extremely helpful. Let us look at the
family of all d-colorable induced subgraphs of G. Then the number of different intersections
of the graphs from this family with a single bag of the tree decomposition is bounded by
2O(d

√
k)nO(d). This allows us to bound the number of “partial solutions” in the dynamic

programming, which in turn brings us to a parameterized subexponential algorithm. As
an example of the applicability of Lemma 5, we give an algorithm for the following generic
problem.

Input: Graph G with weight function w : V (G)→ R.
Task: Find a properly d-colorable induced subgraph H of G of maximum weight∑

v∈V (H) w(v).

Weighted d-colorable Subgraph

For d = 1, this is the problem of finding an independent set of maximum weight, the
Weighted Independent Set problem. For d = 2, this is the problem of finding an induced
bipartite subgraph of maximum weight, Weighted Bipartite Subgraph.

I Theorem 6. Let d ≥ 1 be an integer. For a given graph G with a nice k-almost chordal
tree decomposition with nO(1) bags, the Weighted d-colorable Subgraph problem is
solvable in time 2O(

√
k·d log d) · nO(d).

Proof sketch. Let T = (T, {Xt}t∈V (T )) be a k-almost chordal tree decomposition of G with
|V (T )| = nO(1). We perform dynamic programming over T . Let us note that the width of
the decomposition can be of order of n. As it is standard, we assume that T is rooted at
some node r. For a node t of T , let Vt be the union of all the bags present in the subtree of
T rooted at t, including Xt. For vertex sets X ⊂ X ′ of graph G, we say that a coloring c of
G[X] is extendible to a coloring c′ of G[X ′], if for every x ∈ X, c(v) = c′(v).

For every node t, every S ⊆ Xt such that G[S] is d-colorable, every mapping c : S →
{1, . . . , d} of G[S], we define the following value:

cost[t, S, c] = maximum possible weight of a set Ŝ such that (1)
S ⊆ Ŝ ⊆ Vt, Ŝ ∩Xt = S, and c is a proper coloring of G[S] extendible
to a proper d-coloring of G[Ŝ].

If c is not a proper coloring of G[S] or if no such set Ŝ exists, then we put cost[t, S, c] = −∞.
We also put cost[t, ∅, c] be the maximum possible weight of a set Ŝ such that Ŝ ⊆ Vt,
Ŝ ∩ Xt = ∅, and G[Ŝ] is d-colorable. Our algorithm computes the tables of values of
cost[t, S, c] bottom-up for t ∈ V (T ) from the leaves of T . Given the table for the root, it is
straightforward to compute the maximum weight of a d-colorable induced subgraph of G.
The corresponding optimal subgraph can be found by the standard backtracking arguments.

ESA 2020
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The proof of the correctness for this dynamic programming is very similar to the one
provided normally for graphs of bounded treewidth. However, the running time analysis
is based on Lemma 5. The crucial observation that allows us to obtain a subexponential
running time is that the running time of our dynamic programming algorithm, up to some
polynomial multiplicative factor, is dominated by the number of triples [t, S, c]. The number
t is in nO(1). Every set S should induce a d-colorable subgraph, so we can restrict our
attention only to sets of the form Xt ∩ V (F ) for some d-colorable graph F . By Lemma 5,
each of these sets is of size at most d+ d+

√
d2+8dk
2 and the total number of such sets S for

each bag Xt is is 2O(d
√

k) · nO(d) and they can be listed in time 2O(d
√

k) · nO(d). Thus, the
number of d-colorings c of each of the sets S is dO(|S|) = dO(d+

√
dk). Hence the total running

time of the dynamic programming is 2O(
√

k·d log d) · nO(d). J

Combining Lemma 4 and Theorem 6, we immediately obtain the following corollary. We
say that A ⊆

(
V (G)

2
)
\ E(G) is a chordal modulator if the graph obtained from G by adding

the edges A is chordal.

I Corollary 7. Weighted d-colorable Subgraph on a graph G ∈ Chordal − ke

is solvable in time 2O(
√

k(log k+d log d)) · nO(d). Moreover, the problem can be solved in
2O(
√

k·d log d) · nO(d) time if a chordal modulator of size at most k is given.

In particular, we derive the following corollary for Weighted Independent Set and
Weighted Bipartite Subgraph and the dual minimization problems. In the Weighted
Vertex Cover, we are given a weighted graph G and the task is to find a vertex cover
of minimum weight, that is, a set of vertices X such that every edge of G has at least one
endpoint in G. Similarly, in the Weighted Odd Cycle Transversal, we are asked to
find a set of vertices of minimum weight such that every cycle of odd length contains at least
one vertex from the set. Clearly the complement of every independent set is a vertex cover,
and the complement of every induced bipartite subgraph is an odd cycle transversal.

I Corollary 8. Weighted Independent Set (Weighted Vertex Cover) and
Weighted Bipartite Subgraph (Weighted Odd Cycle Transversal) on
G ∈ Chordal− ke are solvable in time 2O(

√
k log k) · nO(1). Moreover, the problems can be

solved in 2O(
√

k) · nO(1) time if a chordal modulator of size at most k is given.

The technique developed to prove Theorem 6 could be used to obtain subexponential al-
gorithms for other problems beyond Weighted d-colorable Subgraph. These algorithms
are very similar to the one from Theorem 6 and we mention here only few problems.

A homomorphism G→ H from a graph G to a graph H is a mapping from the vertex set
of G to that of H such that the image of every edge of G is an edge of H. In other words,
a homomorphism G→ H exists if and only if there is a mapping g : V (G)→ V (H), such
that for every edge uv ∈ E(G), we have g(u)g(v) ∈ E(H). Since there is a homomorphism
from G to a complete graph Kd on d vertices if and only if G is d-colorable, the deciding
whether there is a homomorphism from G to H is often referred as the H-coloring. Note that
if G admits an H-coloring, then G is |V (H)|-colorable. The only difference between solving
Weighted H-colorable Subgraph, the problem of finding the maximum weight induced
subgraph admitting a homomorphism to H, with Theorem 6 is that the value cost[t, S, c] in
(1) should be redefined by setting c be a homomorphism to H.

Similar running times could be derived for the variants of Weighted d-colorable
Subgraph where some additional constrains on the properties of the d-colorable induced
subgraph of minimum weight are imposed by some property C. For example, property C could
be that the required subgraph is connected, acyclic, regular, degenerate, etc. As far as the
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information of the partial solution required for property C is characterized by set S ⊆ Vt and
all possible subsets of S or all permutations of S, we can solve the corresponding problem in
time 2O((d

√
k) log(dk)) · nO(d). We summarize these observations within the following theorem.

I Theorem 9. Let d ≥ 1 be an integer and G be a graph from Chordal− ke. Then
Weighted H-colorable Subgraph can be solved in 2O(

√
k(log k+|V (H)| log |V (H)|)) ·

nO(|V (H)|) time,
Weighted d-degenerate Subgraph is solvable in time 2O((d

√
k) log(dk)) · nO(d),

Weighted Induced Forest (Weighted Feedback Vertex Set), Weighted
Induced Tree, Weighted Induced Path (Cycle), and Weighted Induced Cycle
Packing are solvable in 2O(

√
k log k) · nO(1) time.

In some cases, we can obtain a better running time if a chordal modulator of size at most
k is given. For Weighted H-colorable Subgraph, this is done in the same way as for
Weighted d-colorable Subgraph. For some other problems, like Weighted Induced
Forest (Weighted Feedback Vertex Set), this would demand using recent techniques
for dynamic programming on graphs of bounded treewidth for problems with connectivity
contstraints (see [18, 6, 23, 53]) but this goes beyond the scope of our paper.

Another extension of Theorem 6 can be derived from the very recent results of Baste, Sau
and Thilikos [3] about the F-Minor Deletion problem on graphs of bounded treewidth.
Recall that a graph F is a minor of G if a graph isomorphic to F can be obtained from G

by vertex and edge deletions and edge contractions. Respectively, G is said to be F -minor
free if G does not contain F as a minor. For a family of graphs F , G is F -minor free if G is
F -minor free for every F ∈ F . For a family F , the task of F-Minor Deletion is, given
a graph G, to find a minimum set of vertices X such that G − X is F-minor free. Then
F-Minor Deletion is equivalent to F-Minor Free Induced Subgraph, whose task is
to find a maximum F -minor free induced subgraph of G. A family of graphs F is connected
if every F ∈ F is a connected graph. Baste et al. [3] obtained, in particular, the following
result.

I Proposition 10 ([3]). Let F be a finite connected family of graphs. Then F-Minor
Deletion can be solved in time 2O(w log w) · nO(1) on graphs of treewidth at most w.1

It is well-known (see, e.g., the book [51] for the inclusion relations between the classes of
sparse graphs) that if F is a finite family, then there is a positive integer d such that every
F-minor free graph is d-degenerate. This means that for a finite family F , F-minor free
graphs are d-colorable for some constant d that depends on F only. This allows us to use
Lemma 5 and then combine our approach from Theorem 6 with the techniques of Baste et
al. [3]. Using Lemma 10, we obtain the following theorem.

I Theorem 11. Let F be a finite connected family of graphs. Let also G be a from Chordal−
ke. Then F-Minor Deletion (or, equivalently, F-Minor Free Induced Subgraph)
can be solved in time 2O(

√
k log k) · nO(1).

For example, this framework encompasses such problems as Induced Planar Subgraph
or Induced Outerplanar Subgraph whose task is to find a subgraph of maximum size
that is planar or outerplanar, respectively.

With a small adjustment the dynamic programming could be applied to the problems
with specific requirements on the complement of the maximum induced d-colored subgraph.
For example, consider the following problem. A set of vertices S ⊆ V (G) is a connected vertex

1 the constants hidden in the big-O notation depend on F .
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cover if S is a vertex cover and G[S] is connected. Then in the Weighted Connected
Vertex Cover problem, we are given a graph G with a weight function w : V (G)→ Z+ and
the task is to find a connected vertex cover in G of minimum weight. Similarly, Weighted
Connected Feedback Vertex Set is the problem of finding a connected feedback vertex
set of minimum weight. The complement of every vertex cover is an independent set, that is
a 1-colorable subgraph, and the complement of every feedback vertex set is a forest, hence
2-colorable subgraph. While now the connectivity constraints are not on the maximum
induced subgraph but on its complement our previous arguments can be adapted to handle
these problems.

I Theorem 12. Weighted Connected Vertex Cover and Weighted Connected
Feedback Vertex Set are solvable in time 2O(

√
k log k) · nO(1) on Chordal− ke.

In this section, we discussed optimization problems but, in many cases, similar dynamic
programming can be applied for counting problems. For example, we can compute the
number of (inclusion) maximal independent sets, maximal bipartite subgraphs, minimal
(connected) feedback vertex sets, minimal connected vertex covers in time 2O(

√
k log k) · nO(1)

on Chordal− ke.

4 Beyond induced d-colorable subgraphs

In Section 3, among other algorithms, we gave a subexponential (in k) algorithm on
Chordal − ke graphs that finds a maximum d-colorable subgraph. In particular, this
also implies that for every fixed d, deciding whether a graph from Chordal − ke is d-
colorable, can be done in time subexponential in k. In this section we show that two
fundamental problems, namely, Coloring and Clique, while still being FPT, are unlikely
to be solvable in subexponential parameterized time.

First, we consider the Coloring problem, where the task is for a given graph G and
positive integer `, to decide whether the chromatic number of G is at most `, that is, if
G is `-colorable. Note that ` here is not a fixed constant as in Section 3. Cai [11] proved
that Coloring is FPT (parameterized by k) on Split− ke graphs. The following theorem
generalizes his result by showing that Coloring is FPT on a larger class Chordal− ke.
Our approach is based on the dynamic programming which is similar to the one we used in
Section 3.

I Theorem 13. Coloring can be solved in time 2O(k log k) ·nO(1) on Chordal− ke graphs.

On the other hand, it is unlikely that Coloring can be solved in subexponential in k
time. For this, we show the complexity lower bound based on ETH. In fact, we prove a
stronger claim.

I Theorem 14. Coloring cannot be solved in time 2o(k) · nO(1) on Complete− ke graphs
unless ETH fails.

Next, we consider the Clique problem that asks, given a graph G and a positive integer
`, whether G has a clique of size at least `. We show that Clique is FPT on Chordal− ke
when parameterized by k even for the weighted variant of the problem in Section 5 by
demonstrating that the problem admits a Turing kernel. Here, we give a lower bound.

I Theorem 15. Clique cannot be solved in time 2o(k) · nO(1) on graphs in Complete− ke
unless ETH fails.
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We established that Coloring and Clique do not admit subexponential algorithms on
Complete− ke, when parameterized by k, unless ETH fails. By Observation 1, this yields
that these problems do not admit subexponential algorithms on Chordal− ke as well.

5 Kernelization on Chordal-ke

In this section we discuss kernelization of the problems considered in the previous section.
Jansen and Bodlaender in [39] and Bodlaender, Jansen and Kratsch in [8] proved that

Weighted Independent Set, Weighted Vertex Cover, Weighted Bipartite Sub-
graph, Weighted Odd Cycle Transversal, Weighted Feedback Vertex Set and
Clique do not admit a polynomial kernel parameterized by the size of the minimum vertex
cover of a graph unless coNP ⊆ NP/ poly. It is easy to observe that if G has a vertex cover
of size at most k, then split-comp(G) ≤

(
k
2
)
. Thus, by the results of [8, 39], we obtain the

following proposition.

I Proposition 16. Weighted Independent Set, Weighted Vertex Cover, Weighted
Bipartite Subgraph, Weighted Odd Cycle Transversal, Weighted Feedback
Vertex Set and Clique do not admit a polynomial in k kernel on Split−ke graphs unless
coNP ⊆ NP/ poly.

By Observation 1, these problems parameterized by k have no polynomial kernel on
Chordal− ke as well unless coNP ⊆ NP/poly.

These results do not refute the existence of polynomial Turing kernels. To demonstrate
this, we show that Weighted Clique has such a kernel. The input of Weighted Clique
contains a graph G together with a weight function w : V (G)→ Z+ and a nonnegative integer
W , and the task is to decide whether G has a clique C of weight at least W .

I Theorem 17. Weighted Clique on Chordal− ke parameterized by k admits a Turing
kernel with at most 16k2 vertices with size O(k8).

Proof sketch. Let (G,w,W ) be an instance of Weighted Clique. We use the result
of Natanzon, Shamir and Sharan [49] that fill-in admits a polyopt approximation. The
approximation algorithm either correctly reports that fill-in(G) > k or returns a set of
nonedges A ⊆

(
V (G)

2
)
\ E(G) of size at most 8k2 such that the graph G′ obtained by adding

the edges of A is a chordal graph. In the first case, we have that G /∈ Chordal − ke.
Assume that this is not the case. Then we use the well-known property of chordal graphs
(see [32, 57]) that G′ has at most n inclusion-maximal cliques C1, . . . , Cr and they can be
listed in linear time. Now we observe that K is a maximal clique of G if and only if K is a
clique of G[Ci] for some i ∈ {1, . . . , r}. Moreover, every such K contains all the vertices of
Ci that are not vertices of the pairs {u, v} ∈ A with u, v ∈ Ci. Then the problem is reduced
to finding solutions for G[C ′i] for i ∈ {1, . . . , r}, where each C ′i is the subset of Ci containing
the vertices of pairs {u, v} ∈ A with u, v ∈ Ci. Since |C ′i| ≤ 2|A| ≤ 16k2, we obtain the upper
bound on the number of vertices. To compress the weights and obtain the upper bound on
the size, we use the the technique of Frank and Tardos [29], see also [21] for applications of
this technique for kernelization. J

While Proposition 16 rules out the existence of a polynomial kernel for Weighted
Independent Set on Chordal − ke graphs, for unweighted Independent Set the
existence of a polynomial kernel remains open. In what follows, we obtain polynomial kernels
for Independent Set on two interesting subclasses of Chordal−ke, namely Interval−ke
and Split− ke. Let us note that again, by Proposition 16, the Weighted Independent
Set problem admits no polynomial kernel on Split− ke.
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U r
x2

X x1 x2

U `
x1

Ux1x2

Figure 1 Structure of a maximum independent set in G.

We start with the kernel on Interval − ke graphs. This kernel is the most technical
part of the paper. In order to obtain the required kernel, we show that Independent Set
parameterized by the size of interval completion of the input graph admits a polynomial
compression into the Weighted Independent Set problem. (We state Weighted
Independent Set as a decision problem, whose input contains a graph G with a weight
function w : V (G)→ Z+ and a nonnegative integer W , and the task is to decide whether G
has an independent set S with w(S) ≥W .) Then the standard arguments about polynomial
compression of NP-complete problems, see e.g. [24, Theorem 1.6], yield the polynomial kernel
for Independent Set on Interval− ke graphs.

I Theorem 18. Independent Set on G ∈ Interval − ke admits a compression of size
O(k56) into Weighted Independent Set.

Proof sketch. The proof is long and here we only sketch briefly the main ideas behind the
algorithm. Let G be a graph and let A ⊆

(
V (G)

2
)
\ E(G) be a set of pairs of nonadjacent

vertices such that the graph G′ obtained from G by adding the edges from A becomes interval.
Denote by X the set of end-vertices of the edges of A in G′.

Consider an interval model of G′. For each vertex v ∈ V (G′), let `v and rv be, respectively,
the left and right endpoint of the interval representing v. For each v ∈ V (G′), denote by G`

v

and Gr
v the subgraphs of G′ induced by the sets of vertices U `

v = {u ∈ V (G′) | ru < `v} and
Ur

v = {u ∈ V (G′) | rv < `u} respectively, and for every two distinct u, v ∈ V (G′), let Guv

be the subgraph induced by Uuv = {w ∈ V (G′) | ru < `w ≤ rw < `v} (see Figure 1). For a
graph H, denote by I(H) a maximum independent set of H. Suppose that I is a maximum
independent set of G and let I ∩X = {x1, . . . , xs} with rvi−1 < `vi for i ∈ 2, . . . , s. Then it
is possible to prove that

I ′ = I(G`
x1

) ∪
( s⋃

i=2
I(Gxi−1xi

)
)
∪ I(Gr

xs
)

is a maximum independent set of G.
This allows us to create the following compression of the initial problem to an instance

of Weighted Independent Set. Let F be the set of all induced subgraphs G`
v, Gr

v and
Guv for all u, v ∈ X. Consider the graph G with the set of vertices X ∪ F with the following
adjacencies: for distinct u, v ∈ V (G), u and v are adjacent if and only if one of the following
holds:

u, v ∈ X and xy ∈ E(G),
u ∈ X, v ∈ F and u is adjacent to a vertex of v in G,
u, v ∈ F and the subgraphs u and v have either common or adjacent vertices in G.

We define the weight w(v) for v ∈ V (G) be one if v ∈ X and set w(v) = |I(v)| for v ∈ F .
It can be shown that G has an independent set of size at least W if and only if G has an
independent set of weight at least W .

Unfortunately, the above arguments do not work for the following reason. We based our
construction on the assumption that we know the resulting interval model. But computing
such a model is an NP-hard task. Of course it would suffice even if we had a poly(OPT)
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approximation algorithm for interval completion. That is, an algorithm producing in
polynomial time an edge set A of polynomial in k size whose addition turns the input graph
G into an interval graph. However the existence of such an approximation is a long-standing
open problem. The best known result is the O(logn) approximation algorithm of Rao
and Richa [54] for the minimum number of edges of an interval supergraph of an n-vertex
graphs. While at the end we were able to implement the above idea and obtain the required
compression, the absence of a good approximation makes the proof way more difficult.

Given a graph G, we construct a vertex set X and a set of induced subgraphs F of G−X
such that the graph G defined above have the desired property: G has an independent set of
size at least W if and only if G has an independent set of weight at least W . We start the
construction of X using the algorithm of Natanzon, Shamir and Sharan [49] to approximate
fill-in(G) ≤ int-comp(G). Initially, we set X be the set of vertices that are in the pairs of
nonadjacent vertices returned by the algorithm. Then we apply a series of reduction rules
that either solve the problem, or enhance X by adding vertices, or delete vertices of the
graph. The reduction rules are based on the forbidden induced subgraph characterization
of interval graphs given by Lekkerkerker and Boland [45]. This way we construct X of size
O(k3). Then we construct F of size O(k14) and define G. Here again we use the technique
of Frank and Tardos [29] to compress the weights. J

Since Weighted Independent Set is in NP and, consecutively, has a polynomial
reduction to Independent Set that is NP-complete [30], by applying a standard trick, see
e.g. [24, Theorem 1.6], we obtain the following corollary.

I Corollary 19. Independent Set on G ∈ Interval−ke admits a polynomial kernel when
parameterized by k.

Finally, we show that Independent Set admits a polynomial kernel when parameterized
by the split completion size. For this result, we exploit the result of Hammer and Simeone
in [35] that Split Editing can be solved in polynomial time.

I Theorem 20. Independent Set on Split− ke admits a polynomial kernel with at most
2k2(k + 2) vertices when parameterized by k.

6 Conclusion

In this paper, we initiated the study of parameterized subexponential and kernelization
algorithms on Chordal − ke graphs. The existence of such algorithms makes this graph
class a very interesting object for studies. For other structural parameters, like treewidth or
vertex cover, we have quite good understanding about the complexity of various optimization
problems derived from general meta-theorems like Courcelle’s or Pilipczuk’s theorems [15, 53]
and advanced algorithmic techniques [18, 17, 23]. We believe that further exploration of
the complexity landscape of fill-in parameterization is an interesting research direction. If
an optimization problem is NP-complete on chordal graphs, like Dominating Set, then
on Chordal − ke this problem is in Para-NP. On the other hand, even if a problem is
solvable in polynomial time on chordal graphs, in theory, there is nothing preventing it from
being Para-NP on Chordal− ke. Is there a natural graph problem with this property? For
many problems that are solvable in polynomial time on chordal graphs, we also established
FPT algorithms on Chordal− ke class. This does not exclude a possibility that there are
problems that are not FPT parameterized by k but solvable in polynomial time for every fixed
k. We do not know any such problem (in other words, the problem in class XP) yet. It will
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be interesting to see, if there is any natural graph problem of such complexity. In addition,
we proved that there are problems that are FPT on Chordal − ke when parameterized
by k and which cannot be solved in subexponential time unless ETH fails. We believe it
would be exciting to obtain a logical characterization of problems that can be solved in
subexponential time on Chordal − ke when parameterized by k, similar to the classical
Courcelle’s theorem [15].

Some concrete open problems. Observe that for our subexponential dynamic programming
algorithms, we only need a k-almost chordal tree decomposition of the input graph, that is,
a decomposition where each bag can be made a clique by adding at most k edges. (Recall
Definition 2.) The maximum of numbers c-comp(G[Xt]) ≤ k can be significantly smaller
than the minimum fill-in of a graph. For graphs in Chordal − ke, we can find fill-in in
a subexponential in k time by the algorithm of Fomin and Villanger [28]. However, we
do not know if it is FPT in k to decide, whether a graph admits a k-almost chordal tree
decomposition. And if yes, can it be done in subexponential time?

By the results of Natanzon, Shamir and Sharan [49], fill-in(G) can be approximated in
polynomial time within a polyopt factor 8 · fill-in(G). Deciding whether fill-in(G) ≤ k can be
done in time 2O(

√
k log k) · nO(1) by the results of Fomin and Villanger [28] (Proposition 3).

Is there a constant-factor approximation FPT algorithm with running time 2O(
√

k) · nO(1)?
The existence of such an algorithm would speed-up our algorithms for several problems. For
example, we would be able to solve Weighted Independent Set in 2O(

√
k) · nO(1) time on

Chordal-ke.
Finally, we proved that Independent Set on Interval − ke and Split − ke admit

polynomial kernels when parameterized by k. We leave open the question whether or not
this problem has a polynomial (Turing) kernel on Chordal− ke.
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