
On the Complexity of Recovering Incidence
Matrices
Fedor V. Fomin
University of Bergen, Norway
fomin@ii.uib.no

Petr Golovach
University of Bergen, Norway
Petr.Golovach@ii.uib.no

Pranabendu Misra
Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany
pmisra@mpi-inf.mpg.de

M. S. Ramanujan
University of Warwick, Coventry, UK
R.Maadapuzhi-Sridharan@warwick.ac.uk

Abstract
The incidence matrix of a graph is a fundamental object naturally appearing in many applications,
involving graphs such as social networks, communication networks, or transportation networks.
Often, the data collected about the incidence relations can have some slight noise. In this paper,
we initiate the study of the computational complexity of recovering incidence matrices of graphs
from a binary matrix: given a binary matrix M which can be written as the superposition of two
binary matrices L and S, where S is the incidence matrix of a graph from a specified graph class,
and L is a matrix (i) of small rank or, (ii) of small (Hamming) weight. Further, identify all those
graphs whose incidence matrices form part of such a superposition. Here, L represents the noise in
the input matrix M . Another motivation for this problem comes from the Matroid Minors project
of Geelen, Gerards and Whittle, where perturbed graphic and co-graphic matroids play a prominent
role. There, it is expected that a perturbed binary matroid (or its dual) is presented as L + S where
L is a low rank matrix and S is the incidence matrix of a graph. Here, we address the complexity of
constructing such a decomposition.

When L is of small rank, we show that the problem is NP-complete, but it can be decided in
time (mn)O(r), where m, n are dimensions of M and r is an upper-bound on the rank of L. When L

is of small weight, then the problem is solvable in polynomial time (mn)O(1). Furthermore, in many
applications it is desirable to have the list of all possible solutions for further analysis. We show
that our algorithms naturally extend to enumeration algorithms for the above two problems with
delay (mn)O(r) and (mn)O(1), respectively, between consecutive outputs.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms;
Mathematics of computing → Enumeration

Keywords and phrases Graph Incidence Matrix, Matrix Recovery, Enumeration Algorithm

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.50

1 Introduction

Suppose that we are given a large binary data matrix M , and we know that this matrix is of
the form M = L + S, where S is the incidence matrix of an undirected graph and L is a
sparse binary matrix. We assume that the sums are taken over GF(2) and thus 1 + 1 = 0.
See Section 2 for a formal definition of incidence matrices. Now, consider the following two
computational questions.

© Fedor V. Fomin, Petr Golovach, Pranabendu Misra, and M. S. Ramanujan;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 50; pp. 50:1–50:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:fomin@ii.uib.no
mailto:Petr.Golovach@ii.uib.no
mailto:pmisra@mpi-inf.mpg.de
mailto:R.Maadapuzhi-Sridharan@warwick.ac.uk
https://doi.org/10.4230/LIPIcs.ESA.2020.50
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

50:2 On the Complexity of Recovering Incidence Matrices

Question 1: How efficiently can we recover some incidence matrix S such that M = L+ S

as described above?

Question 2: How efficiently can we recover all possible graphs whose incidence matrices
form part of such a superposition M = L+ S?

Our main motivation for studying these questions comes from the study of perturbed
graphic matroids, which naturally arise in many settings. A prominent example is the
emerging Matroid Minors Project of Geelen, Gerards, and Whittle [5], mirroring the Graph
Minors project. Let us recall that binary matroids are represented by a matrix over GF(2),
and graphic matroids are a sub-class of binary matroids defined by the incidence matrices of
graphs. Then, for each proper minor-closed classM of binary matroids, there exists a non-
negative integer r such that every well-connected matroid M ∈M is either a perturbation
of a graphic matroid or a co-graphic matroid [5]. In other words, either M or M? (the dual
matroid) can be decomposed as L+ S where S is the incidence matrix of a graph and L is
a matrix of rank at most r. Matroid Minors and perturbed matroids are expected to have
important applications in matroid algorithms, similar to the applications of Graph Minors
and H-minor free decompositions in graph algorithms. In the applications of perturbed
binary matroids [6, 4], it is expected that a decomposition of the perturbed matroid M into
L+ S is given as a part of the input. A natural computational question that arises here is
the construction of such a decomposition for a given matroid.

Such a problem can be seen as the problem of the recovery of incidence matrices, which is
a fundamental representation of graphs. Often the data collected about the network incidence
relations contains some slight noise or errors. Our objective is to decompose the data matrix
M into two sparse matrices L and S, where L is a low weight matrix, that is matrix with a
small number of ones, representing the error or noise, and S is the incidence matrix of some
graph from a specified graph class.

Besides applications in matroid minors theory, the problem of superposing binary matrix
M in L+S has strong connections to robust Principal Component Analysis (PCA), a popular
approach to robust subspace learning by the decomposition of the data matrix into low rank
and sparse components. Here we have as data a matrix M , which is the superposition of a
low rank component L and a sparse component S. In particular, this approach to robust
PCA was popularized by Candès et al. [1], Wright et al. [11], and Chandrasekaran et al. [2].
Thus our problem can be seen as a variant of robust PCA for binary matrices, with additional
constraint on sparse component S of being incidence matrix of some graph. Other variants
of robust PCA when the structure of the sparse matrix S is imposed from the structure of
some graph were studied in [10, 12].

In this paper, we initiate the study of the computational complexity of graph recovering
problems and identify several settings which imply efficient algorithms for the questions
stated above. Moreover, we also provide complexity theoretic lower bounds for certain other
settings that preclude polynomial-time solvability of either question. Let us formally describe
our contributions and state our results.

Our contributions. Our first contribution is the formulation of a pair of generic Graph
Recovering problems dealing with two common notions of sparsity for L. Let C be a fixed
class of simple graphs.

F. V. Fomin, P. Golovach, P. Misra, and M. S. Ramanujan 50:3

(min-rank, C)-Graph Recovery
Input: An n×m binary matrix M and r ∈ N.
Question: Decide whether M = L+ S, where L is a binary matrix of GF(2)-rank at
most r, S is the incidence matrix of a graph in C and the sums are taken over GF(2).

Let ‖L‖ denote the (Hamming) weight of a matrix L, i.e. the number of non-zero entries
in L.

(min-weight, C)-Graph Recovery
Input: An n×m binary matrix M and r ∈ N.
Question: Decide whether M = L+ S, where L is a binary matrix of weight at most r,
S is the incidence matrix of a graph in C and the sums are taken over GF(2).

Our second contribution is establishing the computational complexity of (min-rank, C)-
Graph Recovery and (min-weight, C)-Graph Recovery for some fundamental graph
classes and obtain the following upper and lower bounds.

(a) We show that if C is one of {simple graphs, acyclic graphs, trees, arboricity-d graphs,
connected graphs}, then (min-rank, C)-Graph Recovery can be solved in time
(mn)O(r).

(b) We show that if C is one of {simple graphs, acyclic graphs, trees, connected graphs},
then (min-weight, C)-Graph Recovery is polynomial-time solvable, i.e., in time
(mn)O(1).

(c) We show that the running time in Result (a) cannot be improved to a purely polynomial
dependence on m and n (as in Result (b)) unless P=NP. Specifically, we show that if C
is any of {simple graphs, acyclic graphs, trees, arboricity-d graphs, connected graphs},
then the (min-rank, C)-Graph Recovery problem is NP-complete.

A key feature of the methodology we introduce to obtain our algorithms is that it not only
answers Question 1 (i.e., the decision problem) for the settings above, it also naturally extends
to an algorithm that addresses the significantly harder Question 2 (i.e., the enumeration of
all solutions) in these settings. Specifically, we show that in the case of Result (a) above,
we can also enumerate all possible solution matrices S (if any exist) with a delay of time
(mn)O(r) between consecutive outputs. Similarly, we show that in the case of Result (b),
we can also enumerate all possible solution matrices S (and equivalently, the corresponding
graphs) with polynomial delay, i.e., a delay of time (mn)O(1) between consecutive outputs.
The importance of enumeration lies in the fact that a solution M = S+L may not be unique,
and further analysis of the list of all solutions is required.

Roadmap of the paper

Following the introduction of the requisite notation, we first describe the methodology behind
our enumeration algorithms, where we reduce the problem of enumerating all solutions to one
of deciding whether a solution exists for appropriate annotated variants of (min-rank, C)-
Graph Recovery and (min-weight, C)-Graph Recovery. We then present our decision
algorithms for the aforementioned annotated problems. The precise formulation of these
problems involves some notation and we do not go into more details here. The algorithms
for the annotated variant of (min-rank, C)-Graph Recovery are centred around a novel
application of Matroid Intersection involving carefully chosen matroids. On the other
hand, the algorithms for (min-weight, C)-Graph Recovery are designed through an

ESA 2020

50:4 On the Complexity of Recovering Incidence Matrices

intricate analysis of the structure of bridges (or cut edges) in graphs and appropriate
repeated reassignments of these to columns of our input matrix in a manner reminiscent
of the “augmenting path” step in maximum matching algorithms. Finally, we give our
NP-completeness result for (min-rank, C)-Graph Recovery.

2 Preliminaries

Matrices and Linear Algebra

For ` ∈ N, we use [`] to denote the set {1, . . . , `}. For a matrix M , we denote the set of
rows of M by rows(M) and the set of column of M by cols(M). For a set P ⊆ cols(M),
we denote by M [P] the submatrix of M induced by the columns in P . Consider the set
V = {v1, v2, . . . , vk} of vectors over F. The vectors in V are said to be linearly dependent
if there exist elements a1, a2, . . . , ak ∈ F, not all zero, such that

∑k
i=1 aivi = 0. Otherwise

these vectors are said to be linearly independent. The rank of a matrix is the cardinality of a
maximum sized set of columns which are linearly independent. The vector space spanned
by V is the set of all linear combinations of vectors in V and is denoted by span(V). The
vector space spanned by the set of columns of a matrix M over the field F is defined as
span(cols(M)) and is denoted by col-span(M). We say a matrix A has dimension n ×m
(or is an n×m matrix) if A has n rows and m columns. In this paper we always view the
elements of a binary matrix as elements of GF(2), the Galois field of two elements. Then the
GF(2)-rank of a binary n ×m matrix A is the minimum r such that A = U · V , where U
and V are n× r and r ×m binary matrices respectively, and arithmetic operations are over
GF(2).

Graphs

For standard graph theoretic terminology and notation, we refer to [3]. For an undirected
graph G, we denote by inc(G), the incidence matrix of G which is the |V (G)| × |E(G)|
binary matrix M with a row for each vertex and a column for each edge such that for every
v ∈ V (G) and e ∈ E(G), M [v, e] = 1 if and only if v is an endpoint of e. When considering
the incidence matrix M of an unspecified graph, we denote by inc−1(M) the graph G where
V (G) = rows(M), E(G) = cols(M) and whose incidence matrix is precisely M . For ` ∈ N,
we denote by K` the complete graph on ` vertices. We assume without loss of generality that
the vertices of K` are labelled 1 to ` and unless otherwise specified, the columns in inc(Kn)
are assumed to be arranged in lexicographically increasing order based on the endpoints of
the corresponding edges.

Matroids

We recall relevant definitions related to matroids. For a broader overview on matroids, we
refer to [9].

I Definition 1. A matroid M is a pair (E, I), where E is a set called the universe or
ground set, and I is a family of subsets of E, called independent sets, with the following
three properties : (i) ∅ ∈ I, (ii) if I ∈ I and I ′ ⊆ I, then I ′ ∈ I, and (iii) if I, J ∈ I and
|I| < |J |, then there is e ∈ J \ I such that I ∪ {e} ∈ I.

Any set F ⊆ E, F /∈ I, is called a dependent set and an inclusion-wise maximal set B such
that B ∈ I is called a basis. The cardinality of a basis in a matroid M is called the rank
of M and is denoted by rank(M). The rank function of M , denoted by rankM () (with the
reference to M omitted when clear from the context), is a function from 2E to N ∪ {0} and
is defined as, rank(S) = maxS′⊆S,S′∈I |S′| for every S ⊆ E.

F. V. Fomin, P. Golovach, P. Misra, and M. S. Ramanujan 50:5

I Definition 2. Let A be a matrix over a field F and E be the set of columns of A. The pair
(E, I), where I defined as follows, is a matroid. For every X ⊆ E, X ∈ I if and only if the
columns of A corresponding to X are linearly independent over F. Such matroids are called
linear matroids. If a matroid M can be defined by a matrix A over a field F, then we say
that the matroid is representable over F and A is a linear representation of M .

I Definition 3 (Elongation of matroids). Let M = (E, I) be a matroid and k ∈ N. Suppose
that rank(M) ≤ k ≤ |E|. A k-elongation matroid Mk of M is a matroid with the universe as
E and S ⊆ E is a basis of Mk if and only if, it contains a basis of M and |S| = k.

Observe that the rank of the matroid Mk in the definition above is k.

I Definition 4 (Direct-sum of matroids). Consider a set of ` matroids {Mi = (Ei, Ii) | i ∈ [`]},
where Ei ∩ Ej = ∅ for every i 6= j. The direct-sum of these matroids is the matroid
M = (

⋃
i∈[`] Ei, I) where I ∈ I if and only if I =

⋃
i∈[`] Ii where Ii ∈ Ii for every i ∈ [`].

Given the representations of ` linear matroids over F, it is straightforward to obtain a
representation for their direct-sum over F and this can be done in polynomial time.

For a finite field F, F[X] denotes the ring of polynomials in X over F and F(X) denotes
the field of fractions of F[X]. A vector v over a field F is a tuple of elements from F.

The next two propositions follow from [8].

I Proposition 5 ([8]). Let M be a linear matroid of rank r, over a ground set of size n,
which is representable over a field F. Given k ≥ r, we can compute a representation of the
k-elongation of M , over the field F(X) in O(nrk) field operations over F.

I Proposition 6 ([8]). Given a linear representation of the k-elongation of M over the field
F(X) and a set of columns in the representation matrix, one can test for linear dependence
of this set in polynomial time.

In the Weighted Matroid Intersection problem, the input is a pair of matroids
M1 = (E, I1),M2 = (E, I2) and a weight function w : E → N ∪ {0} and the objective is to
find a maximum-weight common independent set in the two matroids. That is, the goal is
to compute I ∈ I1 ∩ I2 such that Σe∈Iw(e) is maximized. We will use the polynomial-time
algorithm for this problem stated in Proposition 7.

I Proposition 7 ([7]). Given two general matroids M1 and M2 over the element set E, one
can solve Weighted Matroid Intersection in time O(τWnr1.5), where W is the largest weight
assigned to an element, n = |E|, r = min{rank(M1), rank(M2)} and τ is the time required
to test whether a given subset of E is independent in M1 and M2.

Graphic Matroids. These are matroids that arise from graphs in the following way. The
graphic matroid M(G) of an undirected graph G has universe E(G) and a set S ⊆ E(G)
is independent if the subgraph with vertex set V (G) and edge set S is acyclic. Graphic
matroids are representable over every field and a representation of M(G) over GF(2) can
be computed in time polynomial in the size of G [9]. Observe that testing whether a set is
independent in the matroid M(G) can be done in polynomial time if one is given either the
linear representation of the matroid or the graph G.

Transversal Matroids. For a bipartite graph G = (X,Y,E), we can define a matroid M
with universe X, where a set S ⊆ X is independent if there exists a matching in G such that
every vertex in S is an endpoint of a matching edge. We denote this matroid by Tr(G,X).

ESA 2020

50:6 On the Complexity of Recovering Incidence Matrices

Observe that if G is given, then one can use a Maximum Matching algorithm as a subroutine
to determine in polynomial time (in the size of G) whether a given set is independent in
Tr(G,X).

Gammoids. Let D be a digraph and S, T ⊆ V (D). Then a gammoid with respect to D
and S on ground set T is a matroid (T, I), where I is defined as follows. For any T ′ ⊆ T ,
T ′ ∈ I, if and only if there are |T ′| vertex disjoint paths which originate in S and end in T ′.
Observe that if D,S are given, then one can use a Maximum Flow algorithm as a subroutine
to determine in polynomial time (in the size of D) whether a given set is independent in this
gammoid.

I Definition 8. A pair of matroids M1 = (E1, I1),M2 = (E2, I2) are said to be isomorphic
if there is a bijection φ : E1 → E2 such that for every S ⊆ E1, S ∈ I1 if and only if φ(S) ∈ I2
where the function φ is extended in the natural way to subsets of E1. Equivalently, we say
that M1 and M2 are isomorphic under the bijection φ.

3 The enumeration algorithms for (min-rank, C)-Graph Recovery and
(min-weight, C)-Graph Recovery

This section is devoted to our enumeration algorithms. We begin by reducing the enumeration
task to one of deciding an annotated version of the problem at hand.

3.1 Reducing enumeration to decision
Our enumeration strategy is based on first designing an algorithm for the decision version
of an “annotated” version of these problems. In this version, certain columns of the input
matrix M already have their corresponding columns in the hypothetical solution matrix
S (equivalently, in the matrix L) identified and the goal is to check whether this partial
mapping can be extended to a full solution. We now formally define the annotated versions
of these problems.

In the Extended (min-rank, C)-Graph Recovery problem, we are given an n×m binary
matrix M , number r ∈ N, a set CM ⊆ cols(M) and an injective mapping τ : CM → GF(2)n

and the task is to decide whether there exist binary matrices L and S such thatM = L+S, S
is an incidence matrix of a simple graph belonging to the class C, rank(L) ≤ r and moreover,
for every x ∈ CM , S[{x}] = τ(x). Similarly in the Extended (min-weight, C)-Graph Recovery
problem, the input is the same and the the goal is to decide whether there exist binary
matrices L and S such that M = L+S, S is an incidence matrix of a simple graph belonging
to the class C, ‖L‖ ≤ r and for every x ∈ CM , S[{x}] = τ(x).

We remark that if, in an instance (M, r,CM , τ) of either problem, it holds that CM = ∅,
then the corresponding mapping τ : CM → GF(2)n is denoted by τ∅. Moreover, notice
that by setting CM = ∅ and τ = τ∅, we have that (min-rank, C)-Graph Recovery
((min-weight, C)-Graph Recovery) is a special case of Extended (min-rank, C)-Graph
Recovery (respectively, Extended (min-weight, C)-Graph Recovery).

Our enumeration algorithms are based on the following pair of algorithms for Extended
(min-rank, C)-Graph Recovery and Extended (min-weight, C)-Graph Recovery.

I Lemma 9. For every C ∈ {simple graph, forest, connected graph, arboricity-d graph},
there is an algorithm C-D that runs in time (mn)O(r) and correctly decides whether or
not the given input (M, r,CM , τ) is a yes-instance of Extended (min-rank, C)-Graph Recovery.

F. V. Fomin, P. Golovach, P. Misra, and M. S. Ramanujan 50:7

Algorithm 1 Algorithm C-E .

1 if CM = [m] then

2 Define the matrix S as S[{x}] = τ(x) for every x ∈ [m].
3 if inc−1(S) ∈ C and rank(M + S) ≤ r then
4 Output S
5 end

6 end
7 return
8 x← minp∈[m]{p /∈ CM}
9 for each y ∈ cols(inc(Kn)) such that τ−1(y) is undefined do

10 if C-D((M, r,CM ∪ {x}, τ ∪ {x 7−→ y})) returns Yes then

11 C-E((M, r,CM ∪ {x}, τ ∪ {x 7−→ y}))

12 end
13 end
14 return

I Lemma 10. For every C ∈ {simple graph, forest, connected graph}, there is an algorithm
C-D′ that runs in time (mn)O(1) and correctly decides whether or not the given input
(M, r,CM , τ) is a yes-instance of Extended (min-weight, C)-Graph Recovery.

We first assume Lemma 9 and Lemma 10, and present our enumeration algorithms
(Theorem 11 and Theorem 12).

I Theorem 11. For every C ∈ {simple graph, forest, connected graph, arboricity-d graph},
there is an algorithm C-E that, on input (M, r,CM , τ), outputs precisely those matrices S
such that M = S + L for some binary matrix L of GF(2)-rank at most r, S is an incidence
matrix of a simple graph in C such that for every x ∈ CM , S[{x}] = τ(x). Moreover, the
delay between successive outputs is (mn)O(r) and each such matrix S is output exactly once.

Proof. The algorithm C-E is described in Algorithm 1. The for loop is executed at most(
n
2
)
times in any single call to the algorithm and the recursive call to C-E is made precisely

when there is at least one solution to be output for a specific extension of CM and τ . This is
witnessed by the positive answer returned by the execution of the decision algorithm C-D.
Finally, since the depth of the recursion is bounded by m, the first part of the lemma follows.
The fact that this algorithm outputs precisely the required matrices (exactly once each) with
delay bounded by (mn)O(r) follows from the correctness and running time bound of the
algorithm C-D in Lemma 9. J

The enumeration algorithm for (min-weight, C)-Graph Recovery is analogous to that
for (min-rank, C)-Graph Recovery (building on Lemma 10 instead of Lemma 9) and so
we only state the theorem, omitting the proof.

I Theorem 12. For every C ∈ {simple graph, forest, connected graph, arboricity-d graph},
there is an algorithm C-E ′ that, on input (M, r,CM , τ), outputs precisely those matrices S
such that M = S + L for some binary matrix L such that ‖L‖ ≤ r, S is an incidence matrix
of a simple graph in C such that for every x ∈ CM , S[{x}] = τ(x). Moreover, the delay
between successive outputs is (mn)O(1) and each such matrix S is output exactly once.

ESA 2020

50:8 On the Complexity of Recovering Incidence Matrices

Notice that in order to enumerate all possible solutions for an instance (M, r) of
(min-rank, C)-Graph Recovery ((min-weight, C)-Graph Recovery), it is sufficient to
execute the enumeration algorithm C-E (respectively, C-E ′) on input (M, r, ∅, τ∅). We next
prove Lemma 9.

3.2 Decision algorithms for Extended (min-rank, C)-Graph Recovery
The goal of this subsection is to prove Lemma 9. We always assume that without loss of
generality, the input M satisfies: m,n ≥ r. Note that since we require that for every x ∈ CM ,
S[{x}] = τ(x), the range of τ can be assumed to be cols(inc(Kn)).

Our algorithms for deciding the Extended (min-rank, C)-Graph Recovery problem
comprise the following two steps, the first of which only relies on S being an incidence matrix
and L being a matrix of rank at most r. The second step depends on the class C under
consideration and we will describe it in detail for each application separately.
1. We show that given M , one can enumerate in time (mn)O(r), a set Qr

M of sufficiently few
sets, each of which contains at most r n-dimensional binary vectors such that for every
L, S such that M = L+ S, rank(L) ≤ r and S is an incidence matrix, there is a Q ∈ Qr

M

whose elements form a basis for col-span(L).
2. We then show that for each class C that we consider, if one is given a basis for the vector

space spanned by the columns of the hypothetical solution matrix L of rank ≤ r, then
it is possible to determine the existence of the required matrix S in polynomial time (in
the size of M) using an appropriate Weighted Matroid Intersection algorithm as a
subroutine.

We begin by formalizing Step 1 of our algorithms.

I Lemma 13. GivenM and r, one can enumerate in time (mn)O(r), a set Qr
M ={Q1, . . . , Q`}

satisfying the following properties: (a) ` = (mn)O(r), (b) each Qi is a set of r n-dimensional
vectors over GF(2), (c) for every pair of matrices L, S such that M = L+S, S is an incidence
matrix and rank(L) ≤ r, there is an i ∈ [`] such that Qi is a basis for col-span(L).

In the rest of this section, for given r and M , we denote by Qr
M the set described in

Lemma 13.

I Definition 14. For an n × m binary matrix M and a set Q ∈
(GF(2)n

≤r

)
, we denote

by GQ
M the bipartite graph (XQ

M = [m], Y Q
M = cols(inc(Kn)), EQ

M) where the edge set EQ
M

is defined as all those pairs (x, y) such that x ∈ [m], y ∈ cols(inc(Kn)) and satisfying
∃q ∈ span(Q) such that M [{x}] = y + q.

Note that in the graph GQ
M , the set Y Q

M contains all columns of the incidence matrix of
every simple graph on n vertices.

I Observation 15. Given M , r and Q, the graph GQ
M can be computed in time 2r ·(m+n)O(1)

and has m+
(

n
2
)
vertices.

The time bound in the above observation comes from the fact that for each x ∈ XQ
M

and y ∈ Y Q
M , deciding whether (x, y) ∈ EQ

M can be done by iterating over all the at most 2r

vectors in span(Q).

I Definition 16. Consider an n ×m binary matrix M , Q ∈
(GF(2)n

≤r

)
, CM ⊆ cols(M) and

an injective mapping τ : CM → GF(2)n. If Z = {(x, τ(x)) | x ∈ CM} is a matching in the
graph GQ

M , then we denote by G̃Q
M the graph obtained from GQ

M by deleting all edges incident

F. V. Fomin, P. Golovach, P. Misra, and M. S. Ramanujan 50:9

on the set V (Z) except the edges in Z. Otherwise, we denote by G̃Q
M the graph obtained from

GQ
M by deleting every edge. Then, Tr(GQ

M , Y Q
M , 〈CM , τ〉) denotes the transversal matroid

Tr(G̃Q
M , Y Q

M).

I Definition 17. Let φ : Y Q
M → E(Kn) be the trivial bijection which maps y ∈ Y Q

M to the
corresponding edge of Kn (recall that Y Q

M is precisely the set of columns of the incidence matrix
of Kn). We denote byM(Kn, Y

Q
M) the matroid over the element set Y Q

M which is isomorphic
to the graphic matroid M(Kn) under the bijection φ. We assume that φ is extended in the
natural way to subsets of vertices. That is, for every Y ⊆ Y Q

M , φ(Y) =
⋃

y∈Y φ(y).

I Observation 18. Let φ andM(Kn, Y
Q

M) be as in Definition 17. For every n×m incidence
matrix S, the graph inc−1(S) is isomorphic to the subgraph of Kn with edge set φ(cols(S)).

We are now ready to give our algorithms for each choice of C.

3.2.1 Recovering simple graphs
I Lemma 19. (M, r,CM , τ) is a yes-instance of Extended-(min-rank, simple)-Graph Re-
covery if and only if there is a Q ∈ Qr

M such that the graph GQ
M has a matching saturating

XQ
M and containing the edges {(x, τ(x)) | x ∈ CM}.

Proof. In the forward direction, suppose that M = S + L where inc−1(S) is a simple graph,
rank(L) ≤ r and for every x ∈ CM , S[{x}] = τ(x). By Lemma 13, we know that some
Q ∈ Qr

M is a basis for col-span(L). Consequently, by Definition 14, for each x ∈ [m], there
is an edge in GQ

M between x and S[{x}]. Since no 2 columns in S are identical (inc−1(S)
is a simple graph), this implies a matching saturating XQ

M in GQ
M and extending the set

{(x, τ(x)) | x ∈ CM} as required.
Conversely, suppose that there is a matching C saturating XQ

M in GQ
M and extending the

set {(x, τ(x)) | x ∈ CM}. For each x ∈ XQ
M = [m], we denote by xC the partner of x in C.

By definition, for every x ∈ CM , xC = τ(x). We define S and L as follows. For each x ∈ [m],
set S[{x}] = xC and L[{x}] = M [{x}] + xC . Since S contains only distinct columns and
these are all contained in cols(inc(Kn)), it follows that S is the incidence matrix of a simple
graph. On the other hand, Definition 14 implies that for every x ∈ [m], since (x, xC) ∈ EQ

M ,
it must be the case that L[{x}] = M [{x}] + xC ∈ span(Q). Consequently we have that
col-span(L) ⊆ span(Q) and since |Q| ≤ r, the lemma follows. J

Lemma 13 and Lemma 19 imply our algorithm for Extended-(min-rank, simple)-Graph
Recovery.

I Lemma 20. Extended-(min-rank, simple)-Graph Recovery can be solved in time
(mn)O(r).

Observe that based on Lemma 19, we may conclude that if the given instance is positive,
then there is a solution M = S + L where the columns of S form an independent set of size
m in the transversal matroid Tr(GQ

M , Y Q
M) for some Q ∈ Qr

M . Moreover, there must be such
an independent set saturated by a matching extending {(x, τ(x)) | x ∈ CM}. Consequently,
we have the following observation which forms a critical part of all our algorithms.

I Observation 21. (M, r,CM , τ) is a yes-instance of Extended-(min-rank, simple)-Graph
Recovery if and only if there is a Q ∈ Qr

M such that there is an independent set of size m
in the transversal matroid Tr(GQ

M , Y Q
M , 〈CM , τ〉).

ESA 2020

50:10 On the Complexity of Recovering Incidence Matrices

3.2.2 Recovering acyclic graphs
I Lemma 22. (M, r,CM , τ) is a yes-instance of Extended (min-rank, acyclic)-Graph
Recovery if and only if there is a Q ∈ Qr

M such that there is a common independent set of
size m in the transversal matroid Tr(GQ

M , Y Q
M , 〈CM , τ〉) and the matroidM(Kn, Y

Q
M).

Proof. In the forward direction, suppose that M = S + L where inc−1(S) is a forest, for
every x ∈ CM , S[{x}] = τ(x) and rank(L) ≤ r. By Lemma 13, we know that some Q ∈ Qr

M

is a basis for col-span(L). Moreover, we know that the columns of S form an independent
set in Tr(GQ

M , Y Q
M , 〈CM , τ〉) (by Observation 21). Hence, it is sufficient to show that the

set of columns of S form an independent set of the matroidM(Kn, Y
Q

M). But this follows
from the fact that inc−1(S) is a forest andM(Kn, Y

Q
M) is isomorphic to M(Kn) under φ (see

Definition 17 and Observation 18).
In the converse direction, suppose that for some Q ∈ Qr

M , there is a common independent
set I of size m in the transversal matroid Tr(GQ

M , Y Q
M , 〈CM , τ〉) and the matroidM(Kn, Y

Q
M).

We construct S and L as follows. Pick a matching C in G̃Q
M (see Definition 16) saturating

I and XQ
M . Since |I| = m, such a matching exists. For each x ∈ XQ

M = [m], we denote by
xC the partner of x in C. Notice that by the definition of G̃Q

M , every vertex x ∈ CM has a
unique neighbor, which must be τ(x).

We now define S and L as follows. For each x ∈ [m], set S[{x}] = xC and L[{x}] =
M [{x}] + xC . Since S contains only distinct columns and these are all contained in
cols(inc(Kn)), it follows that S is the incidence matrix of a simple graph. In addition,
for every x ∈ CM , S[{x}] = τ(x) by the definition of S. Moreover, from Observation 18 and
the fact that the set I = {xC |x ∈ [m]} is an independent set inM(Kn, Y

Q
M), we have that

inc−1(S) is isomorphic to the subgraph of Kn induced by the edge set φ(I), which is a forest.
Finally, by the definition of GQ

M , we have that for every x ∈ [m], M [{x}] + xC ∈ span(Q).
Consequently we have that col-span(L) ⊆ span(Q) and since |Q| ≤ r, and the lemma
follows. J

I Lemma 23. Extended (min-rank, acyclic)-Graph Recovery can be solved in time
(mn)O(r).

3.2.3 Recovering Graphs of Fixed Arboricity
In the Arboricity-d Graph Recovery problem, the input is the pair (M, r) and the
goal is to decide whether M = S + L, where H = inc−1(S) has arboricity at most d and
rank(L) ≤ r. Observe that Extended Arboricity-d Graph Recovery is a generalization
of Extended Acyclic Graph Recovery (set d = 1).

I Definition 24. For every d ∈ N, we define the gammoid Gamd(GQ
M , Y Q

M , 〈CM , τ〉) as
follows. Consider the digraph D1 obtained from G̃Q

M by orienting all edges from XQ
M to Y Q

M .
For each y ∈ Y Q

M , construct a directed path Dy
2 = (y, 1), . . . , (y, d). We define the digraph D3

as the graph obtained by identifying each y ∈ Y Q
M in D1 with (y, 1) in Dy

2 . The vertex set of
D3 is now XQ

M ∪ (Y Q
M × [d]). Then, Gamd(GQ

M , Y Q
M , 〈CM , τ〉) is defined as the gammoid with

respect to D3 and XQ
M on ground set Y Q

M × [d].

I Definition 25. For each i ∈ [d], define the matroid J i(Kn, Y
Q

M) as the matroid over
element set Y Q

M × {i} which is isomorphic to M(Kn, Y
Q

M) under the bijection ψi where
ψi(y, i) = y, for each y ∈ Y Q

M . We denote byMd(Kn, Y
Q

M) the direct-sum of the d matroids
{J i(Kn, Y

Q
M) | i ∈ [d]}. We also extend each ψi to sets in the following way: for every

Z1 ⊆ Y Q
M , and Z2 = Z1 × {i}, ψi(Z2) = Z1.

F. V. Fomin, P. Golovach, P. Misra, and M. S. Ramanujan 50:11

The following lemma generalizes Lemma 22.

I Lemma 26. (M, r,CM , τ) is a yes-instance of Extended Arboricity-d Graph Re-
covery if and only if there is a Q ∈ Qr

M such that there is a common independent set of
size m in the gammoid Gamd(GQ

M , Y Q
M , 〈CM , τ〉) and the matroidMd(Kn, Y

Q
M).

I Lemma 27. For every fixed constant d, Extended (min-rank, d-arboricity)-Graph Re-
covery can be solved in time (mn)O(r) on input (M, r,CM , τ).

Proof. (Sketch) The crux of this lemma is a proof that (M, r,CM , τ) is a yes-instance of
Extended (min-rank, d-arboricity)-Graph Recovery if and only if there is a Q ∈ Qr

M

such that there is a common independent set of size m in an appropriate defined gammoid
and the matroidMd(Kn, Y

Q
M). J

3.2.4 Recovering connected graphs
Here, we prove an analogous version of Lemma 23 for Extended (min-rank, connected)-
Graph Recovery.

I Lemma 28. Extended (min-rank, connected)-Graph Recovery can be solved in time
(mn)O(r).

Proof. (Sketch) The crux of this lemma is a proof that (M, r,CM , τ) is a yes-instance
of Extended (min-rank, connected)-Graph Recovery if and only if there is a Q ∈
Qr

M such that there is a common independent set of size m in the transversal matroid
Tr(GQ

M , Y Q
M , 〈CM , τ〉) and the m-elongation of the matroid M(Kn, Y

Q
M) (assuming that

m ≥ n− 1, otherwise we have a no-instance). The details of this argument follow along the
same lines as the proof of Lemma 22. The crucial part of this lemma is the choice of the
m-elongation ofM(Kn, Y

Q
M) as the matroid that we intersect with Tr(GQ

M , Y Q
M , 〈CM , τ〉). J

Lemma 9 is now a straightforward consequence of Lemma 20, Lemma 23, Lemma 28, and
Lemma 27.

3.3 Decision algorithms for Extended (min-weight, C)-Graph Recovery
The goal of this subsection is to prove Lemma 10. The proof is involved and has several
stages. In the following, we provide a high level overview of our proof strategy.

Recall that an instance of (min-weight, C)-Graph Recovery is of the form (M,k,CM , τ)
where CM ⊆ cols(M) and τ fixes the mapping of the columns in CM in the solution. When
we just want G to be a simple graph (i.e., C is the class of all simple graphs), a solution
M = L + S minimizing the cost, ‖L‖, can be computed in polynomial time using an
algorithm for Minimum Weight Bipartite Matching, in an auxiliary bipartite graph
which represents the costs of mapping each column of M to a specific edge. The design of
this bipartite graph is similar in spirit to that of the graph in Definition 14. We refer to a
solution M = L+ S minimizing the cost ‖L‖, as a minimum cost solution.

To obtain connected graphs and forests, we build upon this algorithm. We first describe
an algorithm that computes a minimum cost solution M = L0 + S0 along with the graph
G0 and try to reassign columns of M associated with non-bridge edges in G0 to reduce the
number of connected components without increasing the cost of the solution at hand. That
is, we move from one solution to another without increasing the cost but while decreasing
the number of connected components in the graph corresponding to the incidence matrix in
the solution. Note that, we may need to perform a number of reassignments in a sequence

ESA 2020

50:12 On the Complexity of Recovering Incidence Matrices

before the number of connected components is reduced. To determine this sequence of
reassignments, we associate them with paths in an auxiliary digraph, where the nodes are the
edges and non-edges of the current graph, and directed edges indicate feasible reassignments,
or reassignments that convert a bridge in the current graph to a non-bridge. We show that the
current solution minimizes the number of connected components if and only if the auxiliary
digraph has no paths starting from a non-bridge edge and ending at a non-edge. This requires
an intricate analysis of the structure of a solution and how reassignments affect them. This
leads to an iterative algorithm that “remaps” the edges in the graph associated with the
current solution using paths in the auxiliary digraph. When this algorithm terminates, we
obtain a minimum cost solution that minimizes the number of connected components in the
corresponding graph. We then use this algorithm as the starting point for the algorithms to
recover connected graphs and forests. To recover a connected graph, we observe that any
further reassignments to reduce the number of connected components must increase the cost
of the solution. Therefore, we design an iterative algorithm that reassigns non-bridge edges
until every edge is a bridge, or the graph becomes connected. This algorithm can be used to
recover a connected graph, or a forest satisfying the required properties.

3.4 NP-completeness of (min-rank, C)-Graph Recovery
I Theorem 29. (min-rank, C)-Graph Recovery is NP-complete for C ∈ {simple graphs,
acyclic graphs, connected graphs, arboricity-d graphs}.

4 Concluding remarks and future work

In this paper, we have initiated the study of a family of graph recovery problems. In these
problems, the aim is to recover the incidence matrix of a graph (contained in a specific graph
class) from a given binary matrix. The input matrix is assumed to be a perturbation of
an incidence matrix by either a small rank or low weight matrix. We have demonstrated
the rich combinatorial structure possessed by these problems by designing decision and
enumeration algorithms using classic concepts such as matchings and matroids. We leave
open the following concrete questions.

1. Is (min-rank, C)-Graph Recovery fixed-parameter tractable parameterized by r for the
classes we consider? That is, can it be solved in time f(r)(mn)O(1) for some computable
function f?

2. Identify classes C for which (min-rank, C)-Graph Recovery is polynomial-time solvable.
3. Characterize those C for which (min-weight, C)-Graph Recovery is polynomial-time

solvable.

References
1 Emmanuel J. Candès, Xiaodong Li, Yi Ma, and John Wright. Robust principal component

analysis? J. ACM, 58(3):11:1–11:37, 2011. doi:10.1145/1970392.1970395.
2 Venkat Chandrasekaran, Sujay Sanghavi, Pablo A. Parrilo, and Alan S. Willsky. Rank-sparsity

incoherence for matrix decomposition. SIAM Journal on Optimization, 21(2):572–596, 2011.
doi:10.1137/090761793.

3 Reinhard Diestel. Graph theory, volume 173 of Graduate Texts in Mathematics. Springer-Verlag,
Berlin, 3rd edition, 2005.

4 Fedor V Fomin, Petr A Golovach, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi.
Covering vectors by spaces in perturbed graphic matroids and their duals. arXiv preprint,
2019. arXiv:1902.06957.

https://doi.org/10.1145/1970392.1970395
https://doi.org/10.1137/090761793
http://arxiv.org/abs/1902.06957

F. V. Fomin, P. Golovach, P. Misra, and M. S. Ramanujan 50:13

5 Jim Geelen, Bert Gerards, and Geoff Whittle. On rota’s conjecture and excluded minors
containing large projective geometries. Journal of Combinatorial Theory, Series B, 96(3):405–
425, 2006.

6 Jim Geelen and Rohan Kapadia. Computing girth and cogirth in perturbed graphic matroids.
Combinatorica, 38(1):167–191, 2018.

7 Chien-Chung Huang, Naonori Kakimura, and Naoyuki Kamiyama. Exact and approximation
algorithms for weighted matroid intersection. In Proceedings of the Twenty-Seventh Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January
10-12, 2016, pages 430–444, 2016. doi:10.1137/1.9781611974331.ch32.

8 Daniel Lokshtanov, Pranabendu Misra, Fahad Panolan, and Saket Saurabh. Deterministic
truncation of linear matroids. ACM Trans. Algorithms, 14(2):14:1–14:20, 2018. doi:10.1145/
3170444.

9 James G. Oxley. Matroid theory, volume 21 of Oxford Graduate Texts in Mathematics. Oxford
University Press, 2nd edition, 2010.

10 Nauman Shahid, Nathanael Perraudin, Vassilis Kalofolias, Gilles Puy, and Pierre
Vandergheynst. Fast robust pca on graphs. IEEE Journal of Selected Topics in Signal
Processing, 10(4):740–756, 2016.

11 John Wright, Arvind Ganesh, Shankar R. Rao, YiGang Peng, and Yi Ma. Robust
principal component analysis: Exact recovery of corrupted low-rank matrices via con-
vex optimization. In Proceedings of 23rd Annual Conference on Neural Information
Processing Systems (NIPS), pages 2080–2088. Curran Associates, Inc., 2009. URL:
http://papers.nips.cc/paper/3704-robust-principal-component-analysis-exact-
recovery-of-corrupted-low-rank-matrices-via-convex-optimization.

12 Mengnan Zhao, M Devrim Kaba, René Vidal, Daniel P Robinson, and Enrique Mallada.
Sparse recovery over graph incidence matrices. In 2018 IEEE Conference on Decision and
Control (CDC), pages 364–371. IEEE, 2018.

ESA 2020

https://doi.org/10.1137/1.9781611974331.ch32
https://doi.org/10.1145/3170444
https://doi.org/10.1145/3170444
http://papers.nips.cc/paper/3704-robust-principal-component-analysis-exact-recovery-of-corrupted-low-rank-matrices-via-convex-optimization
http://papers.nips.cc/paper/3704-robust-principal-component-analysis-exact-recovery-of-corrupted-low-rank-matrices-via-convex-optimization

	Introduction
	Preliminaries
	The enumeration algorithms for (min-rank,{C})-Graph Recovery and (min-weight,{C})-Graph Recovery
	Reducing enumeration to decision
	Decision algorithms for Extended (min- rank,{C})-Graph Recovery
	Recovering simple graphs
	Recovering acyclic graphs
	Recovering Graphs of Fixed Arboricity
	Recovering connected graphs

	Decision algorithms for Extended (min-weight,{C})-Graph Recovery
	NP-completeness of (min- rank,{C})-Graph Recovery

	Concluding remarks and future work

