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Abstract
We present new bounds for the required area of Right Angle Crossing (RAC) drawings for complete
graphs, i.e. drawings where any two crossing edges are perpendicular to each other. First, we
improve upon results by Didimo et al. [15] and Di Giacomo et al. [12] by showing how to compute a
RAC drawing with three bends per edge in cubic area. We also show that quadratic area can be
achieved when allowing eight bends per edge in general or with three bends per edge for p-partite
graphs. As a counterpart, we prove that in general quadratic area is not sufficient for RAC drawings
with three bends per edge.
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1 Introduction

Graphs that appear in real-world applications are in fact mostly nonplanar. Experiments on
the human perception of graph drawings indicate that two important parameters affecting
readability are angles formed by two edges at their crossing points (the larger the better) [20,
21] as well as the number of bends along an edge (the fewer the better) [24, 25]. The first
theoretical drawing model that has taken these experimental results into account is the
so-called RAC (or right-angle-crossing) drawing introduced in [15]. In some sense, the
RAC model generalizes the popular orthogonal graph drawing model [17]. Formally, a RAC
drawing is a node-link drawing of a graph, in which edges are drawn as polylines so that
the angles formed at the crossing points of two edges are always equal to π/2. Since a RAC
drawing is a geometric embedding, in most studies on RAC drawings the number of bends
per edge has also been taken into account. In the following, we denote a RAC drawing with
at most k bends per edge as a RACk drawing.

Many main research questions of graph drawing have been studied for RAC drawings.
Regarding their density, already Didimo et al. [15] showed that graphs admitting straight-line
RAC drawings have at most 4n−10 edges, which is a tight bound. They also showed that the
density for graphs admitting RAC1 or RAC2 drawings is subquadratic, whereas all graphs
admit a RAC3 drawing. Subsequently, Arikushi et al. [6] showed that graphs admitting a
RAC1 drawing can only have 6.5n− 13 edges, while graphs admitting RAC2 drawings can
have at most 74.2n edges; the former bound for RAC1 drawings was recently improved by
Angelini et al. [2] to 5.5n− 11. The recognition problem for graphs admitting straight-line
RAC drawings is known to be NP-hard [5], even in the case where the resulting drawing must
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Table 1 Overview of area bounds on RAC drawings of general graphs.

Known Results Our New Results
RAC3: O(n4) [15] RAC3: O(n3)
RAC4: O(n3) [12] RAC3 (p-partite): O(p4n2)

RAC≥ 3: Ω(n2) [15] RAC3: ω(n2)

RAC6: O(n2.75) [26] RAC8: O(n2)

be upward [3] or 1-planar [8]. Note that a k-planar graph is a graph which admits a drawing
where every edge is crossed at most k times. While the recognition of graphs admitting
RAC3 drawings is trivial, the corresponding problem for graphs admitting RAC1 or RAC2
drawings is yet unsettled. Curiously, the maximally dense graphs admitting straight-line
RAC drawings have been shown to be 1-planar [18]. In addition, subclasses of 1-planar
graphs have been investigated: Brandenburg et al. [9] proved that all IC-planar graphs
admit a straight-line RAC drawing, which has been shown to be not true for NIC-planar
graphs [7]. IC-planar and NIC-planar graphs are graphs with a 1-planar drawing where the
set of vertices involved in a crossing shares at most zero and one vertices with the set of
vertices involved in a different crossing, respectively. Di Giacomo et al. [11] and Hong and
Nagamochi [19] studied variants of RAC drawings with restricted vertex positioning in the
straight-line setting. Angelini et al. [3] showed that all graphs of maximum degree three
admit a RAC1 drawing, whereas graphs of maximum degree six admit a RAC2 drawing.

To evaluate the area of RAC drawings, vertices and bends are assumed to be located
on an integer grid. The area of a drawing then is the product of the number of horizontal
and vertical grid lines appearing in a bounding axis-aligned rectangle. It is known that even
planar graphs may still require quadratic area in any straight-line RAC drawing [3]. Recently,
Chaplick et al. [10] showed that NIC planar graphs admit RAC1 drawings in polynomial area,
whereas 1-planar graphs admit RAC2 drawings in polynomial area. The drawing algorithm
by Didimo et al. [15] achieves RAC3 drawings in O(n4) area. Subsequently, Di Giacomo
et al. [12] improved the area to O(n3) for RAC4 drawings and Rahmati and Emami [26]
recently achieved O(n2.75) area for RAC6 drawings. For the closely related family of LAC
graphs (short for large-angle-crossing), in which edges may cross at angles at least π/2− ε for
some small ε > 0, Di Giacomo et al. [12] also showed that the complete graph on n vertices
admits a drawing with one bend per edge in O(n2(cot ε/2)2) area, which can be assumed
to be O(n2) area for fixed values of ε. Note however that for very small values of ε such as
π/180, the multiplicative constant is very large and may therefore be infeasible in practise.
For further results on LAC drawings see also [4, 16].

It is noteworthy that these drawing algorithms only place vertices and bends on an
integer grid while crossings may occur on non-grid points. The positions of crossings are
implicitly defined by the positions of endpoints of the intersecting segments. Since by the
crossing lemma [1, 22] there are Ω(n4) crossings in the complete graph Kn, it is impossible
to achieve an area bound of o(n4) if also the crossings are required to be on the grid. In
the variant where crossings are located on the grid, the algorithm by Didimo et al. [15] for
RAC3 drawings in O(n4) area yields optimal solutions. We emphasize that it is not trivial
to compute RAC drawings with O(n2) area with additional bends as only O(1) bends per
edge can fit in O(n2) area. Finally, tradeoffs between area and planar thickness [14] as well
as number of crossings per edge [13] also have been investigated.
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Figure 1 RAC3 drawing of K5 in 21× 7 area.

We emphasize that we study simple graphs on n vertices, i.e., graphs without self-loops
and parallel edges. The restriction to simple graphs is common in this line of research as
each edge connecting the same vertices must be assigned distinct positions for its bends.
In Section 2, we give new area upper bounds. We prove that every graph admits a RAC3
drawing in O(n3) area improving the known bound by a factor of n. Also, we show that
even O(n2) area can be achieved when eight bends per edge are allowed or when the input
graph is p-partite. Then, in Section 3, we prove that quadratic area cannot be achieved in
general for RAC3 drawings. See also Table 1 for an overview of our new results compared to
results from the literature. We conclude the paper with some open problems.

2 New Area Upper Bounds for RAC Drawings

I Theorem 1.
1. Every n-vertex graph G = (V,E) admits a RAC3 drawing in O(n3) area.
2. Every n-vertex graph G = (V,E) admits a RAC8 drawing in O(n2) area.
3. Every p-partite n-vertex graph G = (V,E) admits a RAC3 drawing in O(p4n2) area.

Proof (of Result 1). Our algorithm is a refinement of the algorithm by Didimo et al. [15].
Note that it is easy to see that the drawings produced by the algorithm in [15] require Θ(n4)
area as two bends for each edge are located on a horizontal line.

For an example of a drawing of K5 refer to Fig. 1. The vertices and the segments incident
to vertices are drawn planar in a disjoint region of quadratic area for each vertex; see the
gray regions in Fig. 1. In contrast to [15], each vertex (except for the outermost two) is
incident to two types of bends (white and black squares in Fig. 1) which lead to vertices with
larger and smaller indices, resp. The remaining two segments of edges use nearly horizontal
or nearly vertical slopes.

We number the vertices arbitrarily from 0 to n−1. We place vertex vi at position (i ·n, 0);
see white disks in Fig. 1. The three bends of edge (vi, vj) with i < j are placed as follows:
Bend ai,j connected to vi is placed at (i · n+ 1, j − i− 1); see white squares in Fig. 1. The
middle bend bi,j is placed at (i · n+ 2, n+ j − i− 2); see gray squares in Fig. 1. Bend ci,j

connected to vj is placed at (j · n− j + i+ 2, n− 2); see black squares in Fig. 1.
It remains to show that the resulting drawing is indeed RAC. Consider the start segments

incident to vertex vi, i.e., segments of types (vi, ai,j) for (vi, vj) ∈ E and (vi, cj,i) for
(vj , vi) ∈ E. Together with vi they form a fan and do not intersect each other as the bend
points of types ai,j and cj,i are distinct. Note that while a0,n−1 is located at (1, n− 2), for
other vertices vi the bend ci−1,i is located at (i · n + 1, n − 2). These fans are drawn in
disjoint start regions (gray shaded areas in Fig. 1); more precisely, the fan of vi is located
within a rectangle ranging from 0 to n− 2 in y-direction and from (i− 1) · n+ 3 to i · n+ 1
in x-direction. Since all segments (bi,j , ci,j) are located above the start regions and because

ESA 2020
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Figure 2 (a) RAC8 drawing of K5 in 55× 47 area, (b)–(c) zoom into vertex and matching area.

segments (ai,j , bi,j) are located between x-coordinates i · n+ 1 and i · n+ 2 (i.e., they are
located between two start regions), there are no crossings within start regions. As all crossings
occur between segments of type (ai,j , bi,j) (which have slope n − 1) and (bi,j , ci,j) (which
have slope −1/(n− 1)), all proper crossings are at right angles.

It remains to prove that there are no overlaps. Recall that bend points in each start
region are distinct, hence, we consider only the remaining segments. Segments of edges with
a common endpoint cannot overlap. As the regions containing edges (ai,j , bi,j) and (ak,l, bk,l)
for i 6= k are disjoint, overlaps may only occur at segments (bi,j , ci,j) and (bk,l, ck,l) for some
i 6= k. Since both segments have the same slope and their crossings with the horizontal at
y = n− 2 (dashed in Fig. 1) are distinct (i.e., ci,j and ck,l), they also do not overlap.

As the lowest x- and y-coordinates are both 0 whereas the largest x- and y-coordinates
are (n− 1)n+ 1 and 2n− 3, resp., the area bound follows.

Proof (of Result 2). We describe how to draw Kn for odd n in quadratic area. For even
n, refer to the construction of Kn+1. For an example of a drawing of K5 refer to Fig. 2. We
number the vertices arbitrarily from 0 to n− 1. The general idea is as follows: vertices and
start segments are located in the vertex area such that each start segment bend is connected
to a segment whose slope is slightly less than 1; see Fig. 2b. Edges are treated as two half
edges that are routed to the matching area independently with segments of slopes s and
−1/s. One half edge is routed to the top left half of the matching area (gray bends in Fig. 2a)
and the other half edge is routed to the bottom right half (black bends in Fig. 2a). In the
matching area half edges are matched crossing-free realizing an edge for each pair of vertices;
see Fig. 2c. We point out that in principle each half edge may be routed to either half of the
matching area. When we define the matching of the bends in the matching area, we will
show which half edges have to be routed to which half of the matching area.

We place vertex vi at position (i,−i); see white circles in Fig. 2b. Let ej
i be the j-th half

edge incident to vertex vi for 0 ≤ j < n− 2. We place the bend of ej
i that is closest to vi

at (i+ j + 1, j − i); see white squares in Fig. 2b. Bends incident to the same vertex vi are
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Figure 3 (a) Accessability of matching bends in the top left half of the matching area, and
(b) matching assignment for n = 5 used for the drawing in Fig. 2.

located on a diagonal of slope 1 and all start segments of vi are above this diagonal. Since vi

is located below the diagonal of vertex vi−1, start segments do not intersect each other and
all n · (n− 1) start segment bends are within a rectangle of quadratic area tilted by π/4.

We choose s = (2n− 1)/2n achieving the following: If n · (n− 1) bends are located in a
rectangle R as defined by the start segment bends and a segment of slope s is added to each
of these points, the next integer point used by any of those segments is located outside of
R. This procedure “copies” the bends at k · 2n horizontal and k · (2n− 1) vertical distance
for k ∈ Z. A similar property holds for segments of slope −1/s. Further, since s is slightly
less than 1 and start segments are above the line of slope 1 through start segment bends,
those additional segments of slope s do not intersect any start segment; see Fig. 2b. In the
matching area all bends in the top left (bottom right, resp.) half are accessible from the
bottom right (top left, resp.) without intersections; see Fig. 2c.

Next, we define the bend points of half edge ej
i leading from vertex to matching area.

Recall that the bend in the vertex area (white squares in Fig. 2a) is at (i+j+1, j− i). If ej
i is

routed to the top left half of the matching area, we place one bend at (2n+i+j+1, 2n+j−i−1)
(gray squares in Fig. 2a) and enter the matching area with a bend at (4n+ i+ j, j− i−1) (see
gray circles in Fig. 2a). If ej

i is routed to the bottom right half of the matching area, we instead
create a sequence of three bends at (4n+i+j+1, 4n+j−i−2), (10n+i+j−2,−2n+j−i−2)
and (8n+ i+ j−2,−4n+ j− i−1) (see black squares in Fig. 2a) and enter the matching area
with a bend at (6n+ i+ j − 1,−2n+ j − i− 1) (see black circles in Fig. 2a). The leftmost
x-coordinate is 0 (for vertex v0), while the rightmost one is 12n − 5 (for a bend of en−2

n−1).
Conversely, the topmost y-coordinate is 5n− 4 (for a bend of en−2

0 ) while the bottommost
one is −5n (for a bend of e0

n−1). Hence, the drawing requires (12n− 5)× (10n− 3) area.
It remains to show that matching segments between matching bends are crossing-free.

Consider the accessibility of matching bends from the other half of the matching area: Each
matching bend in the top left half of the matching area is accessible from below the diagonal
of slope −1 passing through it, since from above its incident segment of slope −1/s is forming
an obstacle. A similar statement is true for matching bends in the bottom right half of the
matching area. We can use this observation to define an ordering of the matching bends
based on their accessability. The first accessible matching bend is of half edge e0

0; i.e., incident
to v0, the second is of e0

1; i.e., incident to v1. This pattern continues increasing in i until all
e0

i are encountered; see Fig. 3a. Afterwards, all e1
i are encountered, in increasing order of i.

This pattern repeats increasing in j, until all half edges ej
i are encountered, in increasing

order of i; see Fig. 3a.

ESA 2020
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Figure 4 Area for drawing matching segments of half edges ej
i and ej+1

k .

We use the two linear orders of matching bends to define a planar matching between both
halves of the matching area. Note that both linear orders are identical; see Fig. 3b. The
matching that we define has two properties: First, the distance between matched bends in
the linear order is bounded by n− 1. Second, the matching ensures that every pair of vertices
is connected exactly once. We now describe the specific matching: First, we connect the first
matching bend of the bottom right half of the matching area with the second matching bend
of the top left half of the matching area. Then, we connect the next two matching bends of
the bottom right half of the matching area with the following two matching bends of the top
left half of the matching area. We continue this pattern while always increasing the size of the
groups of matched pairs by one which also increases the span of the matching segments, i.e.,
the distance between the connected matching bends in the linear order; see Fig. 3b. Then,
there are exactly k matching segments of span k for all values 1 ≤ k ≤ n− 1. A matching
segment of span k connects a vertex vi whose bend is in the bottom right half of the matching
area with vertex v(i+k)mod n, i.e. with the neighbor whose index is k larger in the cyclic order
of vertices. We prove that every pair of vertices is matched exactly once using that n is odd
and that therefore the distance of vertices in the cyclic order is at most (n− 1)/2. Due to
cyclicity, segments with span n− k > (n− 1)/2 correspond to a connection from vertex vi in
the top left half of the matching area to vertex v(i−(n−k))mod n = v(i+k)mod n, i.e. again to
the neighbor whose index is k larger in the cyclic order of vertices. Hence, for k ≤ (n− 1)/2,
there are k segments of span k and n− k segments of span n− k, which means that in total
n vertices are matched to their neighbors whose indices are k larger. In order to see that all
of them are distinct, we apply a recursive argument: Clearly, this is true for k = 1. Assume
that all matching segments of spans k and n− k had different neighbors, then remove the
matched bends that were matched with span k (n− k, resp.) from the left (right, resp.) end
of the linear order. In total, we remove 2n vertices each from the ends of both linear orders,
i.e., 2k from the left and 2(n− k) from the right, before finding the segments of spans k + 1
and n− (k + 1). Thus, their endpoints differ.

Finally, we show that the matching segments are planar straight-line segments. First
observe that since the span of segments is at most n− 1, half edge ej

i is matched with a half
edge e`

k for ` ∈ {j, j + 1}. Further, notice that the diagonal on which the matching bends of
the j-th half edges in the top left half of the matching area are located is halfway in between
the corresponding diagonals for the matching bends of the j-th and j + 1-th half edges in
the bottom right half; see Fig. 4. We show that the intersection of the line through the bend
of ej+1

0 in the top left half and the bend of ej
0 in the bottom right half of the matching area

crosses the diagonal through the bends of ej
0 and ej

n−1 in the top left half of the matching
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Figure 5 RAC3 drawing of K3,3,3 in 46× 28 area.

area to the right of the bend of ej
n−1; see crosses in Fig. 4. A symmetric property follows for

bottom right half and consequently, segments between the j-th and j + 1-th half edge are
crossing-free. The first line goes through points (4n+ j + 1, j) (bend of ej+1

0 in the top left
half of the matching area) and (6n+ j − 1,−2n+ j − 1) (bend of ej

0 in the bottom right half
of the matching area) and hence has slope −(2n+ 1)/(2n− 2). The second line goes through
point (5n+ j − 1,−n+ j) (bend of ej

n−1 in the top left half of the matching area) and has
slope −1. We compute the two line equations based on the fact that we know a point on
each line and the corresponding slopes:

y = −2n+ 1
2n− 2x+ 8n2 + 4nj + 6n− j + 1

2n− 2 and y = −x+ 4n+ j + 1

and the x-coordinate of the intersection point x = 16/3n+ j − 1/3 that is to the right of the
bend of ej

n−1 in the top left half of the matching area as claimed.

Proof (of Result 3). We describe how to draw K(np)p
, the complete p-partite graph with

np vertices per partition. Refer to Fig. 5 for an example drawing of K3,3,3. If the partitions
have different sizes, we augment the graph to K(np)p

where np is the number of vertices in
the largest partition. Note that np < n and pnp ≥ n. We number the partitions arbitrarily
from 0 to p− 1 and the vertices in each partition from 0 to np − 1. Let vj

i denote the i-th
vertex of the j-th partition.

We position vertex vj
i at (2pnpj + 2npj − j, 2i − j); see white circles in Fig. 5. Edge

(vj
i , v

`
k) with j < ` is drawn with the following three bends:

The bend incident to vertex vj
i is located at (2pnpj + np` + npj + k − i − j + 1, np` −

npj + i+ k − j); see white squares in Fig. 5.
The middle bend is located at (pnp`+ pnpj + np`+ npj + k − i− j + 1, pnp`− pnpj +
np`− npj + i+ k − `); see gray squares in Fig. 5.
The bend incident to vertex v`

k is located at (2pnp` + np` + npj + k − i − ` + 1, np` −
npj + i+ k − `); see black squares in Fig. 5.

ESA 2020
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Figure 6 Detail of the vertex stars of the middle partition in Fig. 5.

The lowest x-coordinate assigned is 0 (for vertices in partition 0), while the highest x-
coordinate assigned is 2p2np − 2np − p + 1 (for vertices in partition p − 1). Conversely,
the lowest y-coordinate is −p + 1 (for vertex vp−1

0 ) whereas the largest y-coordinate is
p2np + np − p− 1 (for the middle bend of edge (v0

np−1, v
p−1
np−1)). Since pnp ≤ pn, it follows,

that the total area is O(p4n2).
It remains to discuss that the resulting drawing is RAC. First we have a look at the

segments incident to the middle bend (i.e., the segments which are not start segments).
All of these segments have slopes (n− 1)/n (between white and gray squares in Fig. 5) or
−n/(n− 1) (between black and gray squares in Fig. 5). Hence, each pair of these segments
is either parallel or perpendicular.

Next, we show that start segments of different partitions do not intersect; see gray shaded
areas in Fig. 5. To see this, we consider the rightmost bend incident to a vertex of partition
j and the leftmost incident to a vertex of partition ` such that j < `. The rightmost
bend of partition j belongs to edge (vj

0, v
p−1
np−1) and has x-coordinate 2pnpj + pnp + npj − j

whereas the leftmost bend of partition ` belongs to edge (v0
np−1, v

`
0) and has x-coordinate

2pnp`+ np`− np − `+ 2, i.e., at least 2pnpj + 2pnp + npj − j + 1 since ` ≥ j + 1. Hence, the
leftmost bend of partition ` is at least pnp + 1 ≥ n+ 1 units right of the rightmost bend of
partition j. Hence, start segments from different partitions cannot intersect.

In addition, we establish that middle bends are located outside of vertex fans. To see this,
consider the topmost bend of a vertex fan of partition j. This is either yr = pnp+np−npj−j−2
(bend of edge (vj

np−1, v
p−1
np−1)) or y` = npj + 2np − j − 2 (bend of edge (v0

np−1, v
j
np−1)). Since

middle bends appear in groups of n2
p bends, we only consider the lowest of these bends which

is always incident to two vertices va
0 and vb

0 for some partitions a and b such that b > a.
The y-coordinate of this bend is equal to ym = pnp(b− a) + np(b− a)− b. Clearly, ym ≤ yr

is only possible if (b − a) = 1 and b ≥ j + 2 in which case the middle bends are between
two partitions whose start segments are to the right of the start segments of partition j

(and hence the middle bends are to the right as well). Also since (b− a) ≥ 1, it holds that
ym ≥ pnp + np − b and, since b ≤ p − 1, also ym ≥ pnp + np − p + 1. However, even for
j = p− 1 it holds that y` = pnp + np − p− 1 and hence y` < ym.

Next, we show planarity for the start segments. We first observe that each vertex vj
i is

incident to two sets of bends, namely,
those that belong to an edge (v`

k, v
j
i ) for some ` < j. These are located on a diagonal

with slope −1 left of the vertex; see black squares in Fig. 5. We will refer to these as the
left bends of the vertex fan.
those that belong to an edge (vj

i , v
`
k) for some ` > j. These are located on a diagonal

with slope 1 right of the vertex; see white squares in Fig. 5. We will refer to these as the
right bends of the vertex fan.
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We will show that vj
i is located on the intersection of the diagonal with slope −1 located

one unit below the diagonal through its left bends and the diagonal with slope 1 located
one unit above the diagonal through its right bends; see dashed diagonals in Fig. 6. Hence,
the start segments do not intersect segments between its start segment bends and the
corresponding middle bends. Also, since the latter “middle” segments have slope (n− 1)/n
or −n/(n− 1) the start segments of vertex vj

i do not intersect middle segments of vertices
vj

i−1 and vj
i+1 (as their middle segments only intersect the diagonal defining the position of

vj
i after moving n or n− 1 units to the left/right).

The diagonal located one unit below the left vertex fan bends passes through the point
p` = (2pnpj + npj + i − j + 1, npj + i − j − 1) (one unit below the bend of edge (v0

0 , v
j
i ).

It is easy to verify that (2pnpj + 2npj − j, 2i− j) = (1,−1) · (npj − i− 1) + p`. Similarly,
the diagonal located one unit above the right vertex fan bends passes through the point
pr = (2pnpj+ 2npj+np− i− j+ 1, np + i− j+ 1) (one unit above the bend of edge (vj

i , v
j+1
0 ).

It holds that (2pnpj + 2npj − j, 2i− j) = (−1,−1) · (np − i+ 1) + pr as required.
Next, we show that the start segments of partition j do not intersect the middle segments

incident to a start segment bend of partition ` 6= j. To do so, we show that the middle segments
of partition ` are located above all start segments. Recall that the topmost y-coordinate of a
right bend in j occurs on edge (vj

np−1, v
p
np−1) and is equal to pnp − npj + 2np − j − 2, and

that the topmost y-coordinate of a left bend in j occurs on edge (v0
np−1, v

j
np−1) and is equal

to npj + 2np − j − 2. Thus, the topmost y-coordinate of any start segment bend is at most
pnp + 2np − j − 2. We consider two cases.

First, consider the case ` > j. Further assume that ` = j+ 1 since the middle segments of
partition `′ > ` are located above those of partition `. As established earlier, the horizontal
distance between the start regions of partitions j and ` is at least pnp + 1. Observe that at
the leftmost x-coordinate of the start region of partition `, we encounter the left bend of
(v0

np−1), v`
0) with y-coordinate np`+np− `− 1 = npj + 2np− j− 2. On the other hand, if we

continue k units in x-direction, we have distance pnp + 1 towards partition j and encounter
a left bend with y-coordinate npj + 2np − j − 2− k. Because the slope of middle segments
incident to left bends is −pnp/(pnp − 1), any such middle segment has y-coordinate at least
(pnp+1+k)· pnp

pnp−1 +npj+2np−j−2−k > pnp+k+npj+2np−j−2−k = pnp+npj+2np−j−2
which is larger than pnp + 2np − j − 2. Hence, such a middle segment is above each start
segment of region j.

Second, assume that ` < j. Here, we can assume that ` = j − 1 by a similar argument as
before. Again, the horizontal distance between the start segment bends of partitions j and ` is
at least pnp +1. At the rightmost x-coordinate that belongs to the start region of partition ` is
the right bend of edge (v`

0, v
p−1
np−1) with y-coordinate pnp−np`+np−`−2 = pnp−npj+2np−

j−1. If we continue k units in negative x-direction, we have a minimum distance of pnp +1+k
towards partition j and encounter a left bend with y-coordinate pnp − npj + 2np − j − 1− k.
Recall that the slope of middle segments incident to such bends is (pnp − 1)/pnp. Note that
such middle segment has y-coordinate at least (pnp+1+k)· pnp−1

pnp
+pnp−npj+2np−j−1−k =

2pnp−npj+2np− j−2+−k/pnp when above a start segment of region j. Since k < jnp, we
have that 2pnp−npj+ 2np− j− 2 +−k/pnp > 2pnp−npj+ 2np− j− 2 +−j/p. In addition,
j ≤ (p−1) and we conclude that 2pnp−npj+2np−j−2+−j/p > pnp +3np−j−2−(p−1)(p)
which is larger than pnp + 2np − j − 2.

We conclude that middle segments of other partitions do not enter the start regions
of other partitions. Finally, we only have to show that no two bends overlap and that no
bend is located on an independent segment. First consider the start segment bends. Since
middle bends are not inside vertex start regions, the only segments to consider here are the
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middle segments incident to the same partition. These clearly do not overlap any of the
start segment bends since the next grid points are located at least n− 1 = pnp − 1 to the
left/right while there are only at most (p− 1)np = pnp − np bends each using consecutive
x-coordinates.

Since the middle segments only shift the gridlike structure of start segment bends of the
same partition, it follows, that no two bends of the same partition can overlap and that no
bend is located on an independent segment from the same partition. Middle segments of two
different partitions cannot overlap as well, as that would imply that one of the middle edges
would pass through a start segment bend of the other partition. This is not possible since
start segments of different partitions are at least n+ 1 units horizontally apart from each
other while their (consecutively pairwise) vertical distance is one. J

Since k-planar graphs are Θ(
√
k)-vertex colorable [23], we also obtain:

I Corollary 2. Every n-vertex k-planar graph admits a (not necessarily k-planar) RAC3
drawing in O(k2n2) area.

3 An Area Lower Bound for RAC3 Drawings

We show that O(n2) area cannot be achieved for RAC3 drawings in general. We give an
outline of our proof by contradiction: First, we show there are Ω(n2) edges that have Ω(n4)
crossings on two sets Si and Ti of parallel segments of maximum cardinality, where segments
in Si are perpendicular to segments in Ti and may intersect. Moreover, there must exist
Ω(n2) edges with both a segment in Si and in Ti. Then, we derive properties on the length of
the segments in Si and Ti depending on their slope. This allows us to subdivide the drawing
area into a constant number of disjoint regions R, which can contain only one endpoint of
a segment from Si or from Ti of the same edge. We then restrict the possible positions of
vertices incident to such endpoints located in a region R ∈ R. As a result, in Lemma 13, we
obtain that the edges with both a segment from Si and a segment from Ti induce a subgraph
which is p-partite for some p > 1 except for a linear number of so-called complete edges.
Based on this observation, in the proof of Theorem 14, we identify a complete subgraph
which has too few edges with both a segment from Si and from Ti leading to a contradiction.

I Lemma 3. Let Γ be a RAC drawing of Kn with O(1) bends per edge. Then there exist
two sets of parallel edge segments Si and Ti with cardinalities |Si| = Ω(n2) and |Ti| = Ω(n2)
in Γ such that the segments of Si are perpendicular to the segments of Ti.

Proof. We use the following two properties: First, by the crossing lemma, there are Ω(n4)
crossings in any drawing of Kn. Second, all crossings appear between perpendicular edge
segments. We partition the set of segments of the drawing based on their slopes. More
precisely, for some k ∈ N, there are 2(k + 1) sets of edge segments S0, . . . , Sk and T0, . . . , Tk

such that Si and Ti are perpendicular to each other. W.l.o.g. also assume that |Si| ≥ |Ti|
and that |Ti| ≥ |Ti+1|. Since each edge has O(1) bends, there are at most cn2 segments
assigned to either set Si for a constant c. Then, |S0|+

∑k
i=1 |Si| = cn2 or in other words

|S0| = cn2 −
∑k

i=1 |Si|. Hence, we obtain the following relation for the number of crossings:

Ω(n4) ≤ cr(Γ) ≤ |S0||T0|+
k∑

i=1
|Si||Ti| =

(
cn2 −

k∑
i=1
|Si|

)
|T0|+

k∑
i=1
|Si||Ti|

= cn2|T0| −
k∑

i=1
(|T0| − |Ti|)|Si| ≤ cn2|T0|

which implies that |S0| = Ω(n2) and |T0| = Ω(n2). J
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(a) (b) (c) (d) (e)

Figure 7 (a)–(b) Two edges belonging to EST
i , (c) an edge belonging to ES

i , (d) an edge belonging
to ET

i , and, (e) an edge belonging to none of ES
i , ET

i and EST
i . Segments belonging to Si are drawn

bold and solid, segments belonging to Ti bold and dashed.

We show another property of edge sets contributing Ω(n4) crossings. To this end, we
consider all maximal sets of parallel edge segments that are involved in Ω(n4) crossings and
we partition these sets into two families S = {S1, . . . , Sk} and T = {T1, . . . , Tk} such that
the segments in Si and Ti are perpendicular while the segments in Si and Sj ∪ Tj for j 6= i

are not. Observe that in contrast to the proof of Lemma 3, we now only consider segment
sets Si and Ti involved in Ω(n4) crossings. Note that in a drawing with O(1) bends per edge,
k is constant. In the following, we will discuss properties of pairs of sets Si ∈ S and Ti ∈ T .
Let ES

i (ET
i , resp.) denote the set of edges with segments from Si (Ti, resp.) but not from

Ti (Si, resp.), and EST
i the set of edges with segments from both Si and Ti; see Fig. 7 for an

illustration. In addition, let ESX
i,j denote the set of edges with segments from both Si and

from Xj where X ∈ S, T and let ET X
i,j from both Ti and from Xj where X ∈ S, T . Note that

EST
i,i = EST

i . The next lemmas show that there are Si and Ti with |EST
i | = Ω(n2).

I Lemma 4. Let Γ be a RAC drawing of Kn with O(1) bends per edge. Then, there exists
either sets Si ∈ S, Xj ∈ S ∪ T such that |ESX

i,j | = Ω(n2), or sets Ti ∈ T , Xj ∈ S ∪ T such
that |ET X

i,j | = Ω(n2).

Proof. First, if |ESX
i,j | = Ω(n2) for some Si ∈ S and Xj ∈ S ∪ T or if |ET X

i,j | = Ω(n2) for
some Ti ∈ T and Xj ∈ S ∪ T with i 6= j; the lemma holds. Otherwise |ESX

i,j | = o(n2) for all
Si ∈ S and Xj ∈ S ∪ T and |ET X

i,j | = o(n2) for all Ti ∈ T and Xj ∈ S ∪ T with i 6= j. For a
contradiction, also assume that |EST

i | = o(n2) for all 1 ≤ i ≤ k. Hence, EST
i participates

in o(n4) crossings. Also, assume w.l.o.g. that |
⋃k

i=1 E
S
i | ≥ |

⋃k
i=1 E

T
i |. Consider the graph

G′ = Kn \
⋃k

i=1 E
T
i . Since G′ contains

⋃k
i=1 E

S
i , G′ still has Ω(n2) edges by Lemma 3. In Γ,

there exists a valid subdrawing Γ′ of G′. In Γ′, by the crossing lemma, there still must be
Ω(n4) crossings between ES

i and EST
i over all i. However, there are o(n4) crossings in Γ′

from EST
i for 1 ≤ i ≤ k; a contradiction for constant k. J

I Lemma 5. Let Γ be a RAC3 drawing of Kn. Then, |ESX
i,j | = o(n2) for each pair of sets

Si ∈ S, Xj ∈ S ∪ T with i 6= j and |ET X
i,j | = o(n2) for each pair of sets Ti ∈ T , Xj ∈ S ∪ T

with i 6= j.

Proof. Assume w.l.o.g. that |EST
i,j | = Ω(n2). Since only two start segments per vertex can

belong to Si and Tj , respectively, there are Ω(n2) edges in EST
i,j , where the segments from Si

and Tj are not start segments. Let ẼST
i,j denote this set of edges. Consider the start segments

of ẼST
i,j and let Pstart = {P1, . . . , Pr} be a partitioning of the start segments into maximal

sets of parallel segments. Since each vertex can be incident to only two start segments of
the same slope, it follows that |P`| = O(n) for all 1 ≤ ` ≤ r. Hence, there are only O(n2)
intersections between a perpendicular pair of start segments in ẼST

i,j . Similarly, if P` is
perpendicular to Si or Tj , it takes part in only O(n3) intersections.

Consider the subgraph G′ induced by ẼST
i,j . Note that G′ has Ω(n2) edges and hence

by the crossing lemma it must have Ω(n4) crossings. However, as established earlier, the
subdrawing in Γ of G′ only has O(n3) intersections; a contradiction. J
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p

qh

w

Figure 8 A fine-horizontal grid line (bold) with slope p/q, and its shared points with the coarse
grid (gray lines).

The following lemma summarizes Lemmas 4 and 5.

I Lemma 6. Let Γ be a RAC3 drawing of Kn. Then, there exists a pair of sets Si ∈ S,
Ti ∈ T such that |EST

i | = Ω(n2), for some 1 ≤ i ≤ k; i.e., |EST
i | ≥ cSTn

2 for an appropriate
constant cST and sufficiently large n.

Next, we investigate one pair of perpendicular segment sets Si ∈ S and Ti ∈ T . In the
following analysis and all illustrations, we assume w.l.o.g. that the slope of segments in Si is
positive. First, we show that segments in Si and Ti follow the grid lines of a finer grid that is
tilted w.r.t. the coarse integer grid containing vertices and bends; see Fig. 8. We use this to
show that segments in Si and Ti are long w.r.t. the smaller side of the bounding rectangle.

I Lemma 7. Let Γ be a RAC drawing of Kn with height h and width w and with O(1) bends
per edge. Also, let s = p/q be the slope of segments in Si ∈ S for coprime integers p and q.
Then,
1. max{p, q} ∈ Ω

(√
n4/(w · h)

)
or pq ∈ Ω

(
n4/max{w2, h2}

)
; and

2. p, q ∈ O(min{w, h}).

Proof. Since the endpoints of each segment are grid points, the slope si of segments in Si

and the slope −1/si of segments in Ti are rational numbers. Hence, the intersections between
Si and Ti are located at points with rational coordinates. By scaling the grid appropriately
(i.e., by the factor of p2 + q2), we achieve integer coordinates for the intersections. In other
words, all intersections are located on a fine grid while vertices and bends are on the integer
grid which we call the coarse grid.

More precisely, the fine grid is defined by the fine-horizontal grid lines of slope si and
by the fine-vertical grid lines of slope −1/si each passing through at least two of the h · w
vertices of the coarse grid. Note that by definition all vertices of the coarse grid are also
vertices of the fine grid. Depending on the values of p and q, we observe that fine grid lines
may pass through more than two points of the coarse grid; see Fig. 8. This limits how many
fine grid lines exist. To see this, consider two consecutive fine-horizontal grid lines `1 and
`2. Both lines `i (for i ∈ {1, 2}) can be expressed by a line formula of form y = p/q · x+ bi.
Since each line passes through integer points it holds that bi = 1/q · ci for some ci ∈ Z. More
precisely, since `1 and `2 are consecutive, |c2 − c1| = 1 and the vertical distance between
two consecutive fine-horizontal grid lines is 1/q. In addition, we can compute the horizontal
distance at the same y-coordinate by setting p/q · x1 + b1 = p/q · x2 + b2. Solving this
equation yields |x2 − x1| = q/p · |b2 − b1| = 1/p · |c2 − c1| = 1/p implying that the horizontal
distance between two consecutive fine-horizontal grid lines is 1/p. Analogously, the horizontal
(vertical, resp.) distance between two fine-vertical grid lines is 1/q (1/p, resp.). Thus, there
are at most Θ(max{wp, hq}) fine-horizonal and Θ(max{wq, hp}) fine-vertical grid lines.
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ω(n)

o(n)

(a)

ω(n)

o(n)

O(h)

(b)

Figure 9 Proof of Lemma 8. If the area is ω(n)× o(n), (a) there are o(n) fine-horizontal grid
lines (black), or, (b) fine-horizontal grid lines intersect O(h2) fine-vertical grid lines (gray) each.

These two sets of grid lines intersect in Θ(max{w2pq, whp2, whq2, h2pq}) grid points,
which must be Ω(n4), the required number of crossings. Thus, max{p, q} ∈ Ω

(√
n4/(w · h)

)
or pq ∈ Ω

(
n4/max{w2, h2}

)
which yields Property 1 of the lemma. Since the endpoints of all

segments are located on the coarse grid, both h,w ≥ max{p, q}, which implies Property 2. J

The following lemma refines Lemma 7 for O(n2) area and shows that both width and
height are O(n) while segments in Si and Ti have Ω(n) length.

I Lemma 8. Let Γ be a RAC drawing of Kn with height h and width w and with O(1) bends
per edge in O(n2) area. Also, let p/q be the slope of segments in Si such that p and q are
coprime. Then,
1. h,w ∈ Θ(n), and,
2. max{p, q} ∈ Θ(n).

Proof. Assume for a contradiction that h = o(n), i.e., w = ω(n). By Lemma 7,
1. max{p, q} ∈ Ω

(√
n4/(w · h)

)
= Ω(n) or pq ∈ Ω(n4/max{w2, h2}) = Ω(h2); and

2. p, q ∈ O(min{w, h}) = O(h)
hold. By Property 2, it can only be pq ∈ Ω(h2) but not max{p, q} ∈ Ω(n). Consider the fine
grid as defined in the proof of Lemma 7. First, if the fine-horizontal grid lines are in fact
horizontal (i.e., p = 0), there can only be O(h) fine-horizontal grid lines since the height of
the drawing is O(h); see Fig. 9a. Otherwise, the slope of the fine-horizontal grid lines is not
horizontal. Recall that p, q ∈ O(h) since the height of the drawing is O(h). Since pq = Ω(h2),
p, q ∈ Θ(h). Hence, fine-horizontal grid lines have only length O(h) inside the bounding box
and can only be crossed by O(h2) fine-vertical grid-lines each; see Fig. 9b. Since h = o(n), it
is impossible to achieve Ω(n4) crossings as in total there are only Θ(n2) fine-horizontal grid
lines. Thus, the assumption h = o(n) leads to a contradiction. It follows that h = Θ(w), and
hence, w ∈ Θ(n) and max{p, q} ∈ Θ(n). J

So far, we considered properties of RAC drawings with O(1) bends per edge. The remain-
ing results in this section hold specifically for RAC3 drawings. Next, we explore connections
realizable with edges in EST

i for a pair of perpendicular sets of segments Si ∈ S and Ti ∈ T .
Based on slope pi/qi of segments in Si for coprime integers pi and qi, consider a checkerboard
partitioning of the drawing area into a set of square-shaped disjoint regions Ri of side
length max{pi, qi}/2 each. By Lemma 8, max{pi, qi} ∈ Θ(n) and h,w ∈ Θ(n); and hence
|Ri| = O(1). By the choice of the slope, the length of segments in Si have to be multiples of√
p2

i + q2
i . In particular, each segment in Si has length larger than max{pi, qi}. Due to the

length of segments in Si and the size of regions, we observe the following:
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Si Ti
u

v

(a)

R

(b)

R

tun+Si
(R)

(c)

Figure 10 (a) An edge (u, v) whose middle segments (bold) belong to perpendicular set of
segments Si ∈ S and Ti ∈ T . The gray bend incident to u (v, resp.) is an Si(Ti, resp.)-endpoint.
(b) A region R with set of bends ep+

Si
(R) (white squares) and set of bends ep−Si

(R) (gray squares).
(c) A region R with set of bends ep+

Si
(R) (white squares), their corresponding Si-segments, and

tun+
Si

(R).

I Observation 9. At most one endpoint of a segment in Si or Ti is in region R ∈ Ri. All
segments of Si or Ti with an endpoint in R cross the boundary of R.

As each vertex can only be endpoint of two segments in Si and of two segments in Ti,
there are only O(n) start segments in Si and Ti , i.e., segments directly incident to a vertex.
Hence, we only consider the bends of edges with both a middle segment in Si and a middle
segment in Ti where middle segments are segments which are not start segments. Refer to
Fig. 10a for an illustration of such an edge. We refer to bends that are endpoints of a middle
segment in Si and of a start segment as Si-endpoints. Analogously, we define Ti-endpoints.

I Observation 10. Let e ∈ E be an edge with two middle segments from Si and Ti. The
corresponding Si- and Ti-endpoints are located in two disjoint regions of Ri.

Based on Observation 10, consider Si- and Ti-endpoints in a region R ∈ Ri independently.
Let epSi(R) (epTi(R)) denote the set of Si-endpoints (Ti-endpoints, resp.) in R. Further,
epSi

(R) can be subdivided into ep+
Si

(R), i.e. the set of Si-endpoints that are the bottom
endpoints of their corresponding Si-segment, and ep−Si

(R), i.e. the set of Si-endpoints that
are the corresponding top endpoints; see Fig. 10b. In other words, the Si-segment incident
to an endpoint in ep+

Si
(R) leaves R in positive y direction. Similarly, we subdivide epTi(R)

into ep+
Ti

(R) and ep−Ti
(R).

The segments in Si and Ti form obstacles for possible connections of Si- and Ti-endpoints
to vertices. As a result, we will identify regions which have a visibility to many of the vertices
connected to one of the sets of endpoints of region R, say ep+

Si
(R), to which we refer as

tunnels. The Si-tunnel tunSi(R) of R is the region bounded by two lines parallel to the
segments in Si enclosing R. Further, tunSi

(R) is split by R into S+
i -tunnel tun+

Si
(R) below

R (see Fig. 10c) and the S−i -tunnel tun−Si
(R) above R. Similarly, we define Ti-tunnels for R.

Next, we define so-called plausible positions for all but o(n) vertices connected to bends
in ep+

Si
(R); the following analysis can be analogously adapted for bends in ep−Si

(R). To
realize those connections, bends have to be connected to some vertices by a start segment.
Consider the set of slopes A = {0, 1/4, 1/2, 3/4, 1, 4/3, 2, 4,∞} and the two slopes s` ∈ A
and sr ∈ A closest to the slope p/q of segments in Si; see Figure 11a. Further, let α` denote
the angle between slopes s` and p/q and αr the angle between slopes sr and p/q. Observe
that 0 < α`, αr < π/4. The choice of slopes in A is arbitrary and is simply used to discretize
the slope p/q with a new slope whose nominator and denominator can be both expressed as
a constant. For a bend b in ep+

Si
(R), we define a region of S+

i -plausible positions by a wedge
opposite to the attached Si-segment delimited by two rays of slopes s` and sr, resp.; see
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b

s`
sr

α`

αr

(a)

R
α`

αr
tun+Si

(R)

(b)

R

αr

αr

tun+Si
(R)

α`

(c)

Figure 11 (a) Wedge of angle α` + αr at bend b ∈ ep+
Si

(R) yielding S+
i -plausible positions for b.

(b)–(c) S+
i -plausible region plaus+

Si
(R) of R, for different slopes of segments in Si.

Fig. 11a. The union of the plausible positions of all bends in ep+
Si

(R) defines the S+
i -plausible

region plaus+
Si

(R) of R and consists of the union of R, tun+
Si

(R) and two attached wedges
of angles α` and αr, resp., on both sides of tun+

Si
(R). Observe these two wedges may be

attached to two adjacent or two opposite corners of R depending on the slope of segments in
Si; see Figs. 11b and 11c. S−i -, T+

i - and T−i -plausible regions are defined analogously.

I Lemma 11. Let Γ be a RAC3 drawing of Kn in O(n2) area and let R be a region such that
w.l.o.g. |ep+

Si
(R)| = Ω(n2). Vertices outside of plaus+

Si
(R) ∪ tun−Si

(R) are directly connected
to only O(n) bends in ep+

Si
(R) in total.

Proof. The segments in Si can only be crossed by segments of Ti. There are at most two
start segments for each vertex that belong to Ti, hence, only two start segments of each
vertex can cross segments of Si. Those can be neglected as they are only O(n) segments
and, in the following, we only consider start segments with different slopes. Consider an
Si-endpoint b and assume that b is connected to vertex v outside of plaus+

Si
(R) ∪ tun−Si

(R).
Assume w.l.o.g. that v is to the left of plaus+

Si
(R) ∪ tun−Si

(R). The segment connecting b
and v has a slope diverging by more than α` from slope p/q. Hence, b may be attached to
a vertex v to the left of plaus+

Si
(R) only if a ray of slope s` with right endpoint b does not

cross any segment in Si with endpoint in ep+
Si

(R). This is true because the segment between
b and v will intersect at least the segments that are also intersected by the ray of slope s`.

Consider the set of Si-endpoints B for which such a crossing-free ray of slope s` exists; see
Fig. 12a. Note that all rays are parallel and do not overlap. Since all possible slopes s` ∈ A
can be expressed as a quotient p`/q` for p`, q` ∈ O(1) and since all rays hit one integer point,
the minimum distance between two such parallel rays is Ω(1). Since R has size O(n)×O(n),
it follows that there are only O(n) parallel rays of slope s` and hence |B| = O(n). J

In the following, we consider a region R and its set of neighbored regions N (R). A
neighbored region R′ ∈ N (R) is a region obtained by shifting R c1q + c2p units along the
x-axis and c1p− c2q units along the y-axis for integers c1, c2; see Fig. 12b. Note that N (R)
contains projections of R ∈ Ri that are not necessarily part of Ri. Region R′ contains
all Ti-endpoints that are reached from Si-endpoints in R by a segment in Si with length
|c1| ·

√
p2 + q2 followed by a segment in Ti of length |c2| ·

√
p2 + q2. Assume w.l.o.g. that

c1, c2 > 0. Then, the edges with S- and T -endpoints in R and R′, resp., will have a bend
in ep+

Si
(R) and ep+

Ti
(R′). The symmetric cases where c1 < 0 or c2 < 0 are analogous. We

say that a vertex v is an R-vertex if it is directly connected to Ω(n) bends in ep+
Si

(R) but
to only o(n) bends in ep+

Ti
(R′). Conversely, we say that v is an R′-vertex if it is directly

connected to Ω(n) bends in ep+
Ti

(R′) but to only o(n) bends in ep+
Si

(R). In the following, we
show that except for O(n) edges, the edges with S- and T -endpoints in neighbored regions
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R
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(a)

α`

αr
tun+Si
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`
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R′

tun+Ti
(R′)
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(b)

R R′L v
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Figure 12 (a) Rays of slopes s` (arrows) attached to bends visible from outside plaus+
Si

(R) ∪
tun−Si

(R). (b) Illustration of a region R and one of its neighbored regions R′. (c) Illustration of an
L-tunnel L between region R and R′ ∈ N (R) with a vertex v.

induce a bipartite subgraph between R- and R′-vertices. We refer to those exceptional edges
which are either connecting two R- or R′-vertices or have an endpoint which is neither R-
nor R′-vertex as complete edges. Intuitively speaking, a complete edge connects the set of
R- and R′-vertices which are otherwise behaving like the partitions of a bipartite graph. In
particular, every complete edge
(i) is either incident to a vertex which is neither R- nor R′-vertex, or
(ii) has a start segment that connects an R-vertex with a bend in ep+

Ti
(R′), or,

(iii) has a start segment that connects an R′-vertex with a bend in ep+
Si

(R).
We refer to the special endpoint as a complete endpoint. We first show that vertices in
the intersection of tun−Si

(R) and tun−Ti
(R′) can be complete endpoint for only O(n) edges.

Later, we will consider the case where vertices are not located in the intersection of tun−Si
(R)

and tun−Ti
(R′). Consider a vertex v located in the intersection tun−Si

(R) ∩ tun−Ti
(R′) in a

so-called L-tunnel between R and R′. An L-tunnel is a region bounded by edges with S-
and T -endpoints in R and R′, resp., that is open to both R and R′ such that v can see
into regions R and R′; see Fig. 12c. More precisely, an L-tunnel L is an open subregion of
tun−Si

(R) ∩ tun−Ti
(R′) bounded from below by an alternating sequence of Si and Ti segments

between R and R′ and from above by two segments, one from Si and one from Ti, while it is
bounded to the left by the boundary of R and to the right by the boundary of R′.

I Lemma 12. Let Γ be a RAC3 drawing of Kn in O(n2) area, let R be a region such
that w.l.o.g. |ep+

Si
(R)| = Ω(n2) and let R′ ∈ N (R). There are O(n) complete edges with

both a bend in ep+
Si

(R) and in ep+
Ti

(R′) whose complete endpoints are an in L-tunnels in
tun−Si

(R) ∩ tun−Ti
(R′).

Proof. Let v be a complete endpoint in tun−Si
(R)∩ tun−Ti

(R′), hence, it is connected to bends
in ep+

Si
(R) and to bends in ep+

Ti
(R′). Further, assume that v is complete endpoint for at least

two edges; the complete endpoints that we disregard only contribute O(n) edges. Assume
w.l.o.g. that the slope of segments in Si is less than 1. Then, the slope of segments in Ti is
less than −1 and v is located above R′. Let B(v) denote the set of bends that v is connected
to in ep+

Ti
(R′). We further divide B(v) into B−(v) and B+(v), i.e., the set of bends b such

that v is located in the halfplane above and below b’s segment in Ti, resp. We first show,
that each b ∈ B±(v) shares its y-coordinate with no other bend b′ ∈ B±(v). Then, we show
that for two vertices v and v′ in tun−Si

(R) ∩ tun−Ti
(R′), the y-coordinates of bends in B±(v)

and B±(v′) differ. As a result, there are only O(n) bends in R′, which implies that there are
only O(n) complete edges.
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Figure 13 A bend b incident to a vertex v restricts the position of other bends b′ to a wedge W .

R′

v

(a)

R′
v

(b)

Figure 14 (a) Edges below a vertex v incident to v do not intersect while (b) edges above a
vertex v incident to v pairwise intersect.

Consider a vertex v and a bend b ∈ B(v). First, assume that b ∈ B−(v). Note that since
v is located above R′ in the intersection tun−Si

(R) ∩ tun−Ti
(R′), the segment between b and

v has slope less than −1. Then v can only be incident to another bend b′ ∈ B−(v) whose
Ti-segment is below v only if b′ is located in the wedge W obtained by the elongation of
the Ti-segment of b and the segment between b and v. Otherwise the Ti-segment incident
to b′ would intersect the segment between b and v (see Fig. 13a) or the segment between b′
and v would intersect the Ti-segment incident to b (see Fig. 13b). Since the angle between
the two segments spanning the wedge W from above is less than π, W contains no other
bend with the same y-coordinate as b. Moreover, we observe that the Ti-segments incident
to such bends and consecutive Si-segments do not cross each other (see Fig. 14a) since all
Si-(Ti-, resp.)segments between R and R′ have the same length. Second, consider the case
where b ∈ B+(v). Here, the argumentation is analogous to the previous case (see Figs. 13c
and 13d). Note that in this case, the edges using bends in B+(v) pairwise intersect (see
Fig. 14b). Still segments incident to v have negative slopes.

It remains to consider the dependencies of the neighborhoods of two vertices v and v′
located in tun−Si

(R)∩ tun−Ti
(R′). First, consider the positions of bends in B−(v) and of bends

in B−(v′). There are three possibilities for the relative positioning of v and v′:

1. v and v′ appear in different L-tunnels such that w.l.o.g. the L-tunnel of v′ appears below
the bottommost bend bbot(v) ∈ B−(v). Then v′ appears in the halfplane below the
segment in Ti attached to bbot(v). Even more, the topmost bend btop(v′) ∈ B−(v′) must
be located below v′; see Fig 15a. Hence, the y-coordinates of B−(v) and B−(v′) are
different.

2. v and v′ appear in the same L-tunnel. W.l.o.g. the topmost bend btop(v′) ∈ B−(v′)
will be located in a wedge W below bbot(v) ∈ B−(v) delimited by the elongation of the
Ti-segment through bbot(v) and a horizontal through bbot(v); see Fig. 15b. The horizontal
segment delimits W as by the choice of the size of regions, v′ will be located above R′,
hence it also does not belong to W . Therefore, y-coordinates of B−(v) and B−(v′) differ.
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Figure 15 (a)–(c) Bends in B−(v) and bends in B−(v′) have different y-coordinates.
(d)–(e) Bends in B+(v) and bends in B+(v′) have different y-coordinates.

3. v′ is located in between the Ti-segments incident to b1, b2 ∈ B−(v). The bends in B−(v′)
can only be located in a region Z bounded by two lines of the slopes of Si and Ti passing
through b1, the Ti-segment incident to b2, the segment between v and b2 and the boundary
of region R′. All points in this region have smaller y-coordinates than b1 and larger
y-coordinates than b2; see Fig. 15c. Note that the line parallel to segments of Si passing
through b1 is part of the boundary as otherwise the segments incident to b1 and a bend
in B−(v′), resp., would intersect preventing v′ from having segments to bends in R.

Second, consider how the positions of bends in B+(v) and bends in B+(v′) depend on
each other. Here, there are only two possibilities for the relative positioning of v and v′

which are analogous to the Cases 1 and 2 above, see Figs. 15d and 15e.
Note that a bend in

⋃
v B
−(v) and in

⋃
v B

+(v) may share a common y-coordinate.
By the previous analysis, this is the only possibility for two bends in

⋃
v B(v) to share a

y-coordinate. It follows that |
⋃

v B
−(v)| = O(n) and |

⋃
v B

+(v)| = O(n) and hence only a
linear number of complete edges can be realized as claimed. J

Now, we summarize the partial results from Lemmas 11 and 12 to conclude that most
vertices are R- or R′-vertices with only O(n) incident complete edges.

I Lemma 13. Let Γ be a RAC3 drawing of Kn in O(n2) area. Further let R be a region
such that w.l.o.g. |ep+

Si
(R)| = Ω(n2) and let R′ ∈ N (R). Then there exist only O(n) complete

edges that have a bend in ep+
Si

(R) and in ep+
Ti

(R′).

Proof. Assume tun−Si
(R) is delimited by the extension of two segments of Si between R and

R′. Otherwise, R can be restricted to a smaller region that only includes Si-endpoints that
are connected to Ti-endpoints located in R′. Assume that there are ω(n) complete edges
with S- and T -endpoints in R and R′, resp. By Lemma 12, there exist only O(n) complete
edges with S- and T -endpoints in R and R′, resp., whose complete endpoints are located in
tun−Si

(R)∩tun−Ti
(R′). Since tun−Si

(R) is bounded by two segments of Si between R and R′, this
covers all complete endpoints in tun−Si

(R)∩tun−Ti
(R′) and other complete endpoints located in
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tun−Si
(R)∪tun−Ti

(R′) lie outside of plaus+
Si

(R)∪tun−Si
(R) or outside of plaus+

Ti
(R′)∪tun−Ti

(R′).
By Lemma 11, only O(1) vertices outside of plaus+

Si
(R) ∪ tun−Si

(R) can each be connected
to Ω(n) bends of ep+

Si
(R), also only O(1) vertices outside of plaus+

Ti
(R′) ∪ tun−Ti

(R′) can
each be connected to Ω(n) bends of ep+

Ti
(R′). Thus, there must be complete endpoints in

plaus+
Si

(R) ∩ plaus+
Ti

(R′) contradicting plaus+
Si

(R) ∩ plaus+
Ti

(R′) = ∅. J

Lemma 13 shows, that most edges with S- and T -endpoints in R and R′, resp., define a
bipartite subgraph. As a result, edges between R and N (R) define a p-partite subgraph for
some constant p > 1. However, since the drawn graph is complete, all R-vertices have to
define a clique. This will lead to a contradiction in the proof of the main theorem of this
section.

I Theorem 14. There is no RAC3 drawing of Kn in O(n2) area for sufficiently large n.

Proof. Assume there is a RAC3 drawing Γ of Kn in O(n2) area. We show that there is a
complete subgraph G′ with Ω(n) vertices drawn in Γ with only o(n2) edges from EST

i for
all pairs of perpendicular edge segments Si ∈ S and Ti ∈ T . This contradicts the property
from Lemma 6 for the subdrawing of G′. Let cST denote the multiplicative constant from
Lemma 6, i.e. |EST

i | ≥ cSTn
2.

We compute G′ = (V ′, E′) iteratively. We initialize G′ by G. We consider all pairs of
sets of segments Si ∈ S and Ti ∈ T with perpendicular slopes such that |EST

i | ≥ cSTn
2.

There can be only a constant number of pairs of segment sets in S and T of size Ω(n2). For
each such pair, let Ri be a checkerboard partitioning of the drawing area into square-shaped
disjoint regions of side length max{pi, qi}/2 defined by slope pi/qi of Si for coprime integers
pi and qi. We consider all regions R ∈ Ri. Due to the size of regions, there is only a constant
number of regions in Ri. Moreover, the number of neighbored regions R′ ∈ N (R) is constant.
Hence, there is a constant number ncomb of combinations of index i, region R and neighbored
region R′.

We iteratively perform the following procedure while there are at least cST |V ′|2 edges
with a bend in ep+

Si
(R) and a bend in ep±Ti

(R′) for one of ncomb of combinations of index i,
region R and neighbored region R′ where ep±Ti

(R′) is either ep+
Ti

(R′) or ep−Ti
(R′) depending on

the choice of R′. Let VR denote the set of R- and VR′ denote the set of R′-vertices. Assume
w.l.o.g. that |VR| ≥ |VR′ |. By Lemma 13, the vertices that are neither R- nor R′-vertices are
connected to O(n) bends in ep+

Si
(R), ep+

Ti
(R′) or ep−Ti

(R′) in total. More precisely, there are
ccomp|V ′| such bends for an appropriately chosen constant ccomp. Recall that vertices that are
not incident to Ω(n) bends, say at least cR|V ∗| for an appropriately chosen constant cR, in
ep+

Si
(R) and ep+

Ti
(R′) are either R- or R′-vertex for the resulting graph G∗ = (V ∗, V ∗ × V ∗).

By the prior observation, |VR| = Ω(n), more precisely, |VR| ≥ (|V ′| − ccomp|V ′|/cR|V ∗|)/2.
We then continue to consider the complete subgraph induced by VR. Note that since ncomb is
constant, by Lemma 13, this subgraph and the subgraphs in the future iterations contain only
O(n) edges with both a segment in Si and a segment in Ti and bends in ep+

Si
(R) and ep+

Ti
(R′)

or ep−Ti
(R′) for all R′ ∈ N (R) for sufficiently large n. Thus, we set G′ ← (VR, VR × VR) and

continue with the next iteration.
After performing all at most ncomb iterations, there are less than cST |V ′|2 edges with

both a bend in ep+
Si

(R) and a bend in ep+
Ti

(R′) and ep−Ti
(R′) for all combinations of index

i, region R ∈ Ri and neighbored region R′ ∈ N (R). Hence, the resulting subgraph G′ is
drawn with |EST

i | < cST |V ′|2 for each pair of sets of segments Si ∈ S and Ti ∈ T with
perpendicular slopes which contradicts Lemma 6. J

Our proofs explicitly use the assumption of quadratic area (Lemmas 8 to 12) and three
bends per edge (Lemmas 11 to 13). Even for ω(n2) area, our proof does not apply.
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4 Open Questions

We raise the following open questions:
(i) How many bends are needed for achieving quadratic area RAC drawings? We showed

that three are insufficient and that eight are enough.
(ii) Is cubic area optimal for RAC3 drawings? Our lower bound proof might be extendable.
(iii) Is quadratic area achievable in simple RAC drawings? In simple drawings, every pair of

edges shares at most one point (crossing or endpoint); a property our algorithms do
not guarantee.
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