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Abstract
We present a simple wavefront-like approach for computing multiplicatively weighted Voronoi
diagrams of points and straight-line segments in the Euclidean plane. If the input sites may be
assumed to be randomly weighted points then the use of a so-called overlay arrangement [Har-
Peled&Raichel, Discrete Comput. Geom. 53:547–568, 2015] allows to achieve an expected runtime
complexity of O(n log4 n), while still maintaining the simplicity of our approach. We implemented
the full algorithm for weighted points as input sites, based on CGAL. The results of an experimental
evaluation of our implementation suggest O(n log2 n) as a practical bound on the runtime. Our
algorithm can be extended to handle also additive weights in addition to multiplicative weights, and
it yields a truly simple O(n log n) solution for solving the one-dimensional version of this problem.
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1 Introduction

The multiplicatively weighted Voronoi diagram (MWVD) was introduced by Boots [4].
Aurenhammer and Edelsbrunner [2] present a worst-case optimal incremental algorithm for
constructing the MWVD of a set of n points in O(n2) time and space. They define spheres on
the bisector circles (that are assumed to be situated in the xy-plane) and convert them into
half-planes in R3 using a spherical inversion. Afterwards, these half-planes are intersected.
Thus, every Voronoi region is associated with a polyhedron. Finally, the intersection of
every such polyhedron with a sphere that corresponds to the xy-plane is inverted back to R2.
We are not aware of an implementation of their algorithm, though. (And it seems difficult
to implement.) In any case, the linear-time repeated searches for weighted nearest points
indicate that its complexity is Θ(n2) even if the combinatorial complexity of the resulting
Voronoi diagram is o(n2). Later Aurenhammer uses divide&conquer to obtain an O(n logn)
time and O(n) space algorithm for the one-dimensional weighted Voronoi diagram [1].
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Har-Peled and Raichel [8] show that a bound of O(n log2 n) holds on the expected
combinatorial complexity of a MWVD if all weights are chosen randomly. They sketch how to
compute MWVDs in expected time O(n log3 n). Their approach is also difficult to implement
because it uses the algorithm by Aurenhammer and Edelsbrunner [2] as a subroutine.

Vyatkina and Barequet [13] present a wavefront-based strategy to compute the MWVD
of a set of n lines in the plane in O(n2 logn) time. The Voronoi nodes are computed based
on edge and break-through events. An edge event takes place when an wavefront edge
disappears. A break-through event happens whenever a new wavefront edge appears.

Since the pioneering work of Hoff et al. [10] it has been well known that discretized
versions of Voronoi diagrams can be computed using the GPU framebuffer. More recently,
Bonfiglioli et al. [3] presented a refinement of this rendering-based approach. It is obvious
that their approach could also be extended to computing approximate MWVDs. However,
the output of such an algorithm is just a set of discrete pixels instead of a continuous skeletal
structure. Its precision is limited by the resolution of the framebuffer and by the numerical
precision of the depth buffer.

2 Our Contribution

Our basic algorithm allows us to compute MWVDs in worst-case O(n2 logn) time and O(n2)
space. A refined version makes use of the result by Har-Peled and Raichel [8]: We use their
overlay arrangement to keep the expected runtime complexity bounded by O(n log4 n) if the
point sites are weighted randomly. Hence, for the price of a multiplicative factor of logn we
get an algorithm that is easier to implement. Our experiments suggest that this bound is
too pessimistic in practice and that one can expect the actual runtime to be bounded by
O(n log2 n). However, our experiments also show that one may get a quadratic runtime if
the weights are not chosen randomly. Our algorithm does not require the input sites to have
different multiplicative weights, and it can be extended to additive weights and to (disjoint)
straight-line segments as input sites. Furthermore, it yields a truly simple O(n logn) solution
for computing MWVDs in one dimension, where all input points lie on a line.

Our implementation is based on exact arithmetic and the Computational Geometry
Algorithms Library (CGAL) [12]. It is publicly available on GitHub under https://github.
com/cgalab/wevo. To the best of our knowledge, this is the first full implementation of an
algorithm for computing MWVDs that achieves a decent expected runtime complexity.

3 Preliminaries

Let S := {s1, s2, . . . , sn} denote a set of n distinct weighted points in R2 that are indexed
such that w(si) ≤ w(sj) for 1 ≤ i < j ≤ n, where w(si) ∈ R+ is the weight associated
with si. It is common to regard the weighted distance dw(p, si) from an arbitrary point
p in R2 to si as the standard Euclidean distance d(p, si) from p to si divided by the
weight of si, i.e., dw(p, si) := d(p,si)

w(si) . The (weighted) Voronoi region VRw(si, S) of si
relative to S is the set of all points of the plane such that no site sj in S \ {si} is closer
to p than si, that is, VRw(si, S) :=

{
p ∈ R2 : dw(p, si) ≤ dw(p, sj) for all j ∈ {1, 2, . . . , n}

}
.

Then the multiplicatively weighted Voronoi diagram (MWVD), VDw(S), of S is defined as
VDw(S) :=

⋃
si∈S ∂ VRw(si, S).

A connected component of a Voronoi region is called a face. For two distinct sites si and
sj of S, the bisector bi,j of si and sj models the set of points of the plane that are at the
same weighted distance from si and sj . Hence, a non-empty intersection of two Voronoi
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regions is a subset of the bisector of the two defining sites. Following common terminology,
a connected component of such a set is called a (Voronoi) edge of VDw(S). An end-point
of an edge is called a (Voronoi) node. It is known that the bisector between two unequally
weighted sites forms a circle1. An example of a MWVD is shown in Figure 1.
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Figure 1 Left: The numbers next to the points indicate their weights and the corresponding
MWVD is shown. Right: Wavefronts (in blue) for equally-spaced points in time.

The wavefront WF(S, t) emanated by S at time t ≥ 0 is the set of all points p of the
plane whose minimal weighted distance from S equals t. More formally,

WF(S, t) :=
{
p ∈ R2 : min

si∈S
dw(p, si) = t

}
.

The wavefront consists of circular arcs which we call wavefront arcs. A common end-point of
two consecutive wavefront arcs is called wavefront vertex; see the blue dots in Figure 1.

4 Offset Circles

For the sake of descriptional simplicity, we start with assuming that no point in the plane has
the same weighted distance to more than three sites of S. For t ≥ 0, the offset circle ci(t) of
the i-th site si is given by a circle centered at si with radius t · w(si). We find it convenient
to regard ci(t) as a function of either time or distance since at time t every point on ci(t) is
at Euclidean distance t ·w(si) from si, i.e., at weighted distance t. We specify a point of ci(t)
relative to si by its polar angle α and its (weighted) polar radius t and denote it by pi(α, t).

For 1 ≤ i < j ≤ n, consider two sites si, sj ∈ S and assume that w(si) 6= w(sj). Then
there exists a unique closed time interval [tminij , tmaxij ] during which the respective offset
circles of si, sj intersect. We say that the two offset circles collide at their mutual collision
time tminij , and sj starts to dominate si at the domination time tmaxij . For all other times t
within this interval the two offset circles ci(t) and cj(t) intersect in two disjoint points vli,j(t)
and vri,j(t). These (moving) vertices trace out the bisector between si and sj ; see Figure 2.
Since vli,j(t) and vri,j(t) are defined by the same pair of offset circles we refer to vli,j(t) as the
vertex married to vri,j(t), and vice versa. Every other pair of moving vertices defined by two
different pairs of intersecting offset circles is called unmarried. To simplify the notation, we
will drop the parameter t if we do not need to refer to a specific time. Similarly, we drop the
superscripts l and r if no distinction between married and unmarried vertices is necessary.

1 Apollonius of Perga defined a circle as a set of points that have a specific distance ratio to two foci.
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Figure 2 Two married vertices (highlighted by the blue dots) trace out the bisector bij (in black).

5 A Simple Event-Based Construction Scheme

In this section we describe a simulation of a propagation of the wavefront WF(S, t) to
compute VDw(S). Since the wavefront is given by a subset of the arcs of the arrangement of
all offset circles, one could attempt to study the evolution of all arcs of that arrangement over
time. However, it is sufficient to restrict our attention to a subset of arcs of that arrangement.
We note that our wavefront can be seen as a kinetic data structure [7].

Clearly, the arc along ci(t) which is inside cj(t) will not belong to WF({si, sj}, t∗) for
any t∗ > t. We will make use of this observation to define inactive and active arcs that are
situated along the offset circles.

I Definition 1 (Active point). A point p on the offset circle ci(t) is called inactive at time
t (relative to S) if there exists j > i, with 1 ≤ i < j ≤ n, such that p lies strictly inside of
cj(t). Otherwise, p is active (relative to S) at time t. A vertex vi,j(t) is an active vertex if
it is an active point on both ci(t) and cj(t) at time t; otherwise, it is an inactive vertex.

I Lemma 2. If pi(α, t) is inactive at time t then pi(α, t′) will be inactive for all times t′ ≥ t.

An inactive point pi(α, t) cannot be part of the wavefront WF(S, t). Lemma 2 ensures
that none of its future incarnations pi(α, t′) can become part of the wavefront WF(S, t′).

I Definition 3 (Active arc). For 1 ≤ i ≤ n and t ≥ 0, an active arc of the offset circle ci(t)
at time t is a maximal connected set of points on ci(t) that are active at time t. The closure
of a maximal connected set of inactive points of ci(t) forms an inactive arc of ci(t) at time t.

Every end-point of an active arc of ci(t) is given by the intersection of ci(t) with some
other offset circle cj(t), i.e., by a moving vertex vi,j(t). This vertex is active, too.

I Definition 4 (Arc arrangement). The arc arrangement (AA) of S at time t, A(S, t), is the
arrangement induced by all active arcs of all offset circles of S at time t.

As time t increases, the offset circles expand. This causes the vertices of A(S, t) to move,
but it will also result in topological changes of the arc arrangement.

I Definition 5 (Collision event). Let pi(α, tminij ) = pj(α+π, tminij ) be the point of intersection
of the offset circles of si and sj at the collision time tminij , for some fixed angle α. A collision
event occurs between these two offset circles at time tminij if the points pi(α, t) and pj(α+π, t)
have been active for all times 0 ≤ t ≤ tminij .

At the time of a collision a new pair of married vertices vli,j(t) and vri,j(t) is created. Of
course, we have vli,j(tminij ) = vri,j(tminij ) = pi(α, tminij ).
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I Definition 6 (Domination event). Let pi(α, tmaxij ) = pj(α, tmaxij ) be the point of intersection
of the offset circles of si and sj at the domination time tmaxij , for some fixed angle α. A
domination event occurs between these two offset circles at time tmaxij if the points pi(α, t)
and pj(α, t) have been active for all times 0 ≤ t ≤ tmaxij .

At the time of a domination event the married vertices vli,j(tmaxij ) and vri,j(tmaxij ) coincide
and are removed.

I Definition 7 (Arc event). An arc event e occurs at time te when an active arc ai shrinks to
zero length because two unmarried vertices vi,j(te) and vi,k(te) meet in a point pe on ci(te).

Lemma 2 implies that pi(α, t) has been active for all times t ≤ te if pi(α, te) = pe. At
the time of an arc event two unmarried vertices trade their places along an offset circle.
Now suppose that the two unmarried vertices vi,j(te) and vi,k(te) meet in a point pe along
ci(te) at the time te of an arc event, thereby causing an active arc of ci(te) to shrink to
zero length. Hence, the offset circles of si, sj and sk intersect at the point pe at time te. If
cj(t) and ck(t) did not intersect for t < te then we also get a collision event between cj(t)
and ck(t) at time te, see Figure 3a. (This configuration can occur for any relative order of
the weights w(si), w(sj), w(sk).) Otherwise, one or both of the married vertices vlj,k(te) and
vrj,k(te) must also coincide with pe. If both coincide with pe then we also get a domination
event between cj(t) and ck(t) at time te and we have w(sj) < w(sk), see Figure 3b. The
scenarios remaining for the case that only one of vlj,k(te) and vrj,k(te) coincides with pe are
detailed in the following lemma.

vi,j vi,k
pe vi,jvi,k

vj,k

(a)

vi,j

vj,k

vi,k
pe

vj,k

(b)

Figure 3 (a) The configuration shortly before (left) and after (right) a collision event as well as
an arc event occur simultaneously at the same point pe. In the left figure the offset arcs at the time
of the event are shown in gray. Arcs and vertices that are on WF({si, sj , sk}, t) are highlighted in
blue. Other active arcs and vertices are depicted by solid orange lines and filled disks, while inactive
arcs and vertices are depicted by dashed orange lines and circles. (b) The configuration shortly
before and after a domination event and an arc event occur simultaneously at the same point pe.

I Lemma 8. Let i < j < k and consider an arc event such that exactly the three vertices
vi,j(te), vi,k(te), and vj,k(te) coincide at time te. Then either

all three vertices were active before the event, see Figure 4a, or
vi,j and vj,k were active and vi,k was inactive before the event, see Figure 4b, or
vi,k and vj,k were active and vi,j was inactive before the event, see Figure 4c.

We now describe an event-handling scheme that allows us to trace out VDw(S) by
simulating the expansion of the arcs of A(S, t) as t increases, see Figure 5. We refer to this
process as arc expansion.
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vi,j
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vj,k

vi,jvi,k

vj,k
vi,j vi,k

vj,k

vi,j

vi,k
vj,k

(a) The two possible configurations shortly before (shown in the left figures) and after (shown in the right
figures) one active arc disappears on ci(t) if no collision or domination event occurs at the same point.
We get the collapse of all three arcs of an active-arc triangle.

vj,kvi,j

vi,k

vj,k vi,j

vi,k

vj,k

vi,k

vi,j

vi,j

vi,k

vj,k

(b) The two possible configurations shortly before (left) and after (right) one active arc disappears on
cj(t) and another active arc appears on ck(t).

vj,kvi,k

vi,j

vj,k vi,k

vi,j

vi,j

vi,k

vj,k

vi,j

vi,k

vj,k

(c) The two possible configurations shortly before (left) and after (right) one active arc disappears on
ck(t) and another active arc appears on cj(t).

Figure 4 The six different configurations that can occur for arc events for 1 ≤ i < j < k ≤ n.

For each site we maintain a search data structure to keep track of all active arcs during
the arc expansion. This active offset oi of si holds the set of all arcs of ci(t) which are active
at time t sorted in counter-clockwise angular order around si, and supports the following
basic operations in time logarithmic in the number of arcs stored:

It supports the insertion and deletion of active arcs as well as the lookup of their
corresponding vertices.
It supports point-location queries, allowing us to identify that active arc within oi which
contains a query point p on ci(t).

Every active offset contains at most 2(n− 1) vertices and, thus, O(n) active arcs. Hence,
each such operation on an active offset takes O(logn) time in the worst case.

Checking and handling the configurations shown in Figures 3a to 4 can be done by using
only basic operations within the respective active offsets. The events themselves are stored
in a priority queue Q ordered by the time of their occurrence. If two events take place
simultaneously at the same point then collision events are prioritized higher than arc events,
and arc events have to be handled before domination events. Four auxiliary operations are
utilized that allow a more compact description of this process. Each one takes O(logn) time.

The collapse-operation takes place from vi,x to vj,k within an active offset ox, with
x ∈ {j, k}, in which vi,x and vj,k bound an active arc ax that is already part of ox; see
Figure 6a. It determines the neighboring active arc a′x of ax that is bounded (on one
side) by vi,x, deletes ax from ox, and replaces vi,x by vj,k in a′x.
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Figure 5 A snapshot of the arc expansion for the input shown in Figure 1. Active arcs that are
currently not part of the wavefront are drawn in orange.

The counterpart of the collapse-operation is the expand-operation; see Figure 6b. It
happens from vj,k to vi,x in which vj,k bounds an active arc a′x within ox. The expansion
will either move along a currently inactive or an already active portion of the offset circle
of sx. In the latter case, vj,k is replaced by vi,x in a′x. In any case, we insert the respective
active arc that is bounded by vi,x and vj,k into ox.
A split-operation involves two active offsets oi and oj as well as a point pe which is
situated within the active arcs ai := (vi,s, vi,e) and aj := (vj,s′ , vj,e′) within oi and oj ,
respectively; see Figure 7a. Two married vertices vli,j and vri,j are created. Afterwards
ai and aj are removed from oi and oj , respectively. Two new active arcs (vi,s, vli,j) and
(vri,j , vi,e) are created and inserted into oi. Furthermore, the three active arcs (vj,e, vri,j),
(vri,j , vli,j), and (vli,j , vj,e) are inserted into oj . If ai and aj were wavefront arcs then the
newly created married vertices coincide with wavefront vertices and the newly inserted
active arcs except (vri,j , vli,j) are marked as wavefront arcs.
During a merge-operation, exactly two offset circles interact; see Figure 7b. The active arcs
ai and aj bounded by the two corresponding married vertices vri,j and vli,j are removed
from oi and oj , respectively. Additionally, the active arcs (vj,s, vri,j) and (vli,j , vj,e) that
were adjacent to aj within oj are removed. Finally, a new active arc a′j := (vj,s, vj,e) is
inserted into oj . If aj was a wavefront arc then a′j is also marked as a wavefront arc.

vj,kvi,k
vj,k vi,k

(a)

vj,k

vi,j

vj,k

vi,j

(b)

Figure 6 (a) A collapse-operation from vi,k to vj,k takes place within ok. (b) An expand-operation
happens within oj from vj,k to vi,j .

Domination events and arc events are easy to detect. The point and time of a collision is
trivial to compute for any pair of offset circles, too. Unfortunately there is no obvious way
to identify those pairs of circles for which this intersection will happen within portions of
these offset circles which will still be active at the time of the collision. Hence, for the rest of
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vri,j

vli,j

(a)

vri,j

vli,j

(b)

Figure 7 (a) A split-operation happens when at the time of a collision event. (b) A merge-
operation happens at the time of a domination event.

this section we assume that all collisions among all pairs of offset circles are computed prior
to the actual arc expansion. Lemma 9 verifies that our algorithm correctly simulates the arc
expansion.

I Lemma 9. For time t > 0, the arc arrangement A(S, t) can be obtained from A(S, 0) by
modifying it according to all collision events, domination events and arc events that occur
till time t, in the order in which they appear.

If the maximum weight of all sites is associated with only one site then there will be a
time t when the offset circle of this site dominates all other offset circles, i.e., when WF(S, t)
contains only this offset circle as one active arc. Obviously, at this time no further event can
occur and the arc expansion stops. If multiple sites have the same maximum weight then Q
can only be empty once WF(S, t) contains only one loop of active arcs which all lie on offset
circles of these sites and if all wavefront vertices move along rays to infinity.

I Lemma 10. An active arc or active vertex within an active offset is identified and marked
as a wavefront arc (wavefront vertex, resp.) at time t ≥ 0 if and only if it lies on WF(S, t).

If we allow points in R2 to have the same weighted distance to more than three sites
then we need to modify our strategy. In particular, we need to take care of constellations in
which more than three arc events happen simultaneously at the same point. In such a case
it is necessary to carefully choose the sequence in which the corresponding arc events are
handled. More precisely, an arc event may only be handled (without corrupting the state of
the active offsets) whenever the respective active vertices are considered neighboring within
the active offsets. If the active vertices that participate in an arc event are not currently
neighboring then we can always find an arc event whose active vertices are neighboring that
happens simultaneously at the same location by walking along the corresponding active
offsets. By dealing with the arc events in this specific order, we generate multiple coinciding
Voronoi nodes of degree three. Domination events that occur simultaneously at the same
point pe are processed in increasing order of the weights. Note that this order can already be
established at the time when an event is inserted into Q, at no additional computational cost.
Simultaneous multiple collision events at the same point pe either involve arcs that are not
active or coincide with arc events. These arc events automatically establish a sorted order of
the active arcs around pe, thus allowing us to avoid an explicit (and time-consuming) sorting.

I Lemma 11. During the arc expansion O(n2) collision and domination events are computed.

We know that collision events create and domination events remove active vertices (and
make them inactive for good). A collapse of an entire active-arc triangle causes two vertices
to become inactive. During every other arc event at least one active vertex becomes inactive,



M. Held and S. de Lorenzo 56:9

but at the same time one inactive vertex may become active again. In order to bound the
number of arc events it is essential to determine how many vertices can be active and how
often a vertex can undergo a reactivation, i.e., change its status from inactive to active.
(Note that Lemma 2 is not applicable to a moving vertex since its polar angle does not
stay constant.) We now argue that the total number of reactivations of inactive vertices is
bounded by the number of different vertices that ever were active during the arc expansion.

I Lemma 12. Every reactivation of a moving vertex during an arc event forces another
moving vertex to become inactive and remain inactive for the rest of the arc expansion.

I Lemma 13. Let h be the number of different vertices that ever were active during the arc
expansion. Then O(h) arc events can take place during the arc expansion.

I Theorem 14. The multiplicatively weighted Voronoi diagram VDw(S) of a set S of n
weighted point sites can be computed in O(n2 logn) time and O(n2) space.

Additionally, in the full version [9] we argue that the one-dimensional MWVD can be
computed efficiently using a wavefront-based strategy.

I Theorem 15. The multiplicatively weighted Voronoi diagram VDw(S) of a set S of n
weighted point sites in one dimension can be computed in O(n logn) time and O(n) space.

6 Reducing the Number of Collisions Computed

Experiments quickly indicate that the vast majority of pairwise collisions computed a priori
never ends up on pairs of active arcs. Furthermore, the resulting Voronoi diagrams show
a quadratic combinatorial complexity only for contrived input data. We make use of the
following results to determine all collision events in near-linear expected time. Throughout this
section, we assume that for each site si ∈ S the corresponding weight w(si) is independently
sampled from some probability distribution.

Figure 8 The overlay arrangement is generated by inserting the sites ordered by decreasing
weights.

I Definition 16 (Candidate Set). Consider an arbitrary (but fixed) point q ∈ R2, and let s
be its nearest neighbor in S under the weighted distance. Let s′ ∈ S \ {s} be another site.
Since s is the nearest neighbor of q we know that either s has a higher weight than s′ or a
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smaller Euclidean distance to q than s′. Thus, one can define a candidate set for a weighted
nearest neighbor of q which consists of all sites s ∈ S such that all other sites in S either
have a smaller weight or a larger Euclidean distance to q.

I Lemma 17 (Har-Peled and Raichel [8]). For all points q ∈ R2, the candidate set for q
among S is of size O(logn) with high probability.

I Lemma 18 (Har-Peled and Raichel [8]). Let Ki denote the Voronoi cell of si in the un-
weighted Voronoi diagram of the i-th suffix Si := {si, . . . , sn}. Let OA denote the arrangement
formed by the overlay of the regions K1, . . . ,Kn. Then, for every face f of OA, the candidate
set is the same for all points in f .

Figure 8 shows a sample overlay arrangement. Kaplan et al. [11] prove that this overlay
arrangement has an expected complexity of O(n logn). Note that their result is applicable
since inserting the points in sorted order of their randomly chosen weights corresponds to a
randomized insertion. These results allow us to derive better complexity bounds.

I Theorem 19 (Kaplan et al. [11]). The expected combinatorial complexity of the overlay of
the minimization diagrams that arises during a randomized incremental construction of the
lower envelope of n hyperplanes in Rd, for d ≥ 2, is O(nbd/2c), for d even, and O(nbd/2c logn),
for d odd. The bounds for d even and for d = 3 are tight in the worst case.

I Lemma 20. If a collision event occurs between the offset circles of two sites si, sj ∈ S
then there exists at least one candidate set which includes both si and sj.

I Theorem 21. All collision events can be determined in O(n log3 n) expected time by
computing the overlay arrangement OA of a set S of n input sites.

Thus, the number h of vertices created during the arc expansion can be expected to
be bounded by O(n log3 n). Lemma 13 tells us that the number of arc events is in O(h).
Therefore, O(n log3 n) events happen in total.

I Theorem 22. A wavefront-based approach allows to compute the multiplicatively weighted
Voronoi diagram VDw(S) of a set S of n (randomly) weighted point sites in expected
O(n log4 n) time and expected O(n log3 n) space.

7 Extensions

Consider a set S′ of n disjoint weighted straight-line segments in R2. A wavefront propagation
among weighted line segments requires us to refine our notion of “collision”. We call an
intersection of two offset circles a non-piercing collision event if it marks the initial contact
of the two offset circles. That is, it occurs when the first pair of moving vertices appear. We
call an intersection of two offset circles a piercing collision event if it takes place when two
already intersecting offset circles intersect in a third point for the first time; see Figure 9. In
this case, a second pair of moving vertices appear.

Hence, a minor modification of our event-based construction scheme is sufficient to extend
it to weighted straight-line segments; see Figure 10. We only need to check whether a piercing
collision event that happens at a point pe at time te currently is part of WF(S′, te). In such
a case the two new vertices as well as the corresponding active arc between them need to be
flagged as part of WF(S′, te).

An extension to additive weights can be integrated easily into our scheme by simply
giving every offset circle a head-start of wa(si) at time t = 0, where wa(si) ≥ 0 denotes the
real-valued additive weight that is associated with si.
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Figure 9 An example of a non-piercing (left) as well as a piercing collision event (right).

Figure 10 The MWVD of a set of weighted points and weighted straight-line segments together
with a family of wavefronts for equally-spaced points in time.

8 Experimental Evaluation

We implemented our full algorithm for multiplicatively weighted points as input sites2, based
on CGAL and exact arithmetic3. In particular, we use CGAL’s Arrangement_2 package
for computing the overlay arrangement and its Voronoi_diagram_2 package for computing
unweighted Voronoi diagrams. The computation of the MWVD itself utilizes CGAL’s
Exact_circular_kernel_2 package which is based on the Gmpq number type. The obvious
advantage of using exact number types is that events are guaranteed to be processed in the
right order even if they occur nearly simultaneously at nearly the same place. One of the
main drawbacks of exact number types is their memory consumption which is significantly
(and sometimes unpredictably) higher than when standard floating-point numbers are used.

We used our implementation for an experimental evaluation and ran our code on over
8000 inputs ranging from 256 vertices to 500 000 vertices. For all inputs all weights were
chosen uniformly at random from the interval [0, 1]. All tests were carried out with CGAL 5.0
on an Intel Core i9-7900X processor clocked at 3.3 GHz.

2 We do also have a prototype implementation that handles both weighted points and weighted straight-line
segments. It was used to generate Figure 10.

3 We have not spent enough time on fine-tuning an implementation based on conventional floating-point
arithmetic. The obvious crux is that inaccurately determined event times (and locations) may corrupt
the state of the arc arrangement and, thus, cause a variety of errors during the subsequent arc expansion.
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(a) Left: The overall runtime results for inputs with randomly generated weights and point coordinates.
Right: The runtime consumed by the computation of the corresponding overlay arrangements. All runtimes
were divided by n log2 n.
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(b) The overall runtime results for inputs with randomly generated weights and vertices of real-world
polygons and polygons of the Salzburg database of polygonal data [5, 6] taken as input points. The
runtimes were divided by n log2 n.
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(c) The left plot shows the total number of (valid and invalid) collision events (divided by n log n); the
right plot shows the number of arc events (divided by n) processed during the arc expansion. All point
coordinates and weights were generated randomly.

Figure 11 Experimental evaluation.
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In any case, the number of events is smaller than predicted by the theoretical analysis.
This is also reflected by our runtime statistics: In Figures 11a and 11b the runtime that was
consumed by the computation of a MWVD is plotted. We ran our tests on two different
input classes: The point locations were either generated randomly, i.e., they were chosen
according to either a uniform or a normal distribution, or obtained by taking the vertices of
real-world polygons or polygons of the brand-new Salzburg database of polygonal data [5, 6].
Summarizing, our tests suggest an overall runtime of O(n log2 n) for both input classes. In
particular, the actual geometric distribution of the sites does not have a significant impact on
the runtime if the weights are chosen randomly: For real-world, irregularly distributed sites
the runtimes are scattered more wildly than in the case of uniformly distributed sites, but
they do not increase. The numbers of collision events and arc events that occurred during
the arc expansion are plotted in Figure 11c. Our tests suggest that we can expect to see
at most 3n logn collision events and at most most 14n arc events to occur. Note that the
number of arc events forms an upper bound on the number of Voronoi nodes of the final
MWVD. That is, random weights seem to result in a linear combinatorial complexity of the
MWVD.

It is natural to ask how much these results depend on the randomness of the weights. To
probe this question we set up a second series of experiments: We sampled points uniformly
within a square with side-length

√
2 and then tested different weights. Let d(s) be the distance

of the site s ∈ S from the center of the square, and let r(s) be a number uniformly distributed
within the interval [0, 1]. Of course, 0 ≤ d(s) ≤ 1. Then we assign α·d(s)+β·r(s)/(α+β) as weight
to s, with α and β being the same arbitrary but fixed non-negative numbers for all sites of S.
Figure 12 shows the results obtained for the same sets of points and the (α, β)-pairs (1, 0),
(9, 1), (7, 3), (1, 1) and (0, 1). This test makes it evident that the bounds on the complexities
need not hold if the weights are not chosen randomly, even for a uniform distribution of
the sites. Rather, this may lead to a linear number of candidates per candidate set and a
quadratic runtime complexity, as shown in Figure 12.
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Figure 12 The plots show how the average number of candidates (left) and the total runtime
(right) depend on the weights assigned to the sites. Each marker on the x-axes indicates the number
n of input sites uniformly distributed within a square.
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9 Conclusion

We present a wavefront-like approach for computing the MWVD of points and straight-line
segments. Results by Kaplan et al. [11] and Har-Peled and Raichel [8] allow to predict an
O(n log4 n) expected time complexity for point sites with random weights. We also discuss a
robust, practical implementation which is based on CGAL and exact arithmetic. Extensive
tests of our code indicate an average runtime of O(n log2 n) if the sites are weighted randomly.
To the best of our knowledge, there does not exist any other code for computing MWVDs
that is comparatively fast. A simple modification of our arc expansion scheme makes it
possible to handle both additive and multiplicative weights simultaneously. Our code is
publicly available on GitHub under https://github.com/cgalab/wevo. Figure 13 shows
several examples of MWVDs computed by our implementation.

Figure 13 Several examples of MWVDs are shown in the top figures. The bottom figures illustrate
a series of uniformly distributed wavefronts that have been derived from the corresponding MWVDs.
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