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Abstract

With input sizes becoming massive, coresets – small yet representative summary of the input – are
relevant more than ever. A weighted set Cw that is a subset of the input is an ε-coreset if the cost
of any feasible solution S with respect to Cw is within [1±ε] of the cost of S with respect to the
original input. We give a very general technique to compute coresets in the fully-dynamic setting
where input points can be added or deleted. Given a static (i.e., not dynamic) ε-coreset-construction
algorithm that runs in time t(n, ε, λ) and computes a coreset of size s(n, ε, λ), where n is the number
of input points and 1−λ is the success probability, we give a fully-dynamic algorithm that computes
an ε-coreset with worst-case update time O((logn) · t(s(n, ε/ logn, λ/n), ε/ logn, λ/n)) (this bound
is stated informally), where the success probability is 1−λ. Our technique is a fully-dynamic analog
of the merge-and-reduce technique, which is due to Har-Peled and Mazumdar [17] and is based on a
technique of Bentley and Saxe [3], that applies to the insertion-only setting where points can only
be added. Although, our space usage is O(n), our technique works in the presence of an adaptive
adversary, and we show that Ω(n) space is required when adversary is adaptive.

As a concrete implication of our technique, using the result of Braverman et al. [4], we get fully-
dynamic ε-coreset-construction algorithms for k-median and k-means with worst-case update time
O(ε−2k2 log5 n log3 k) and coreset size O(ε−2k logn log2 k) ignoring log logn and log(1/ε) factors and
assuming that ε = Ω(1/ poly(n)) and λ = Ω(1/ poly(n)) (which are very weak assumptions made only
to make these bounds easy to parse). This results in the first fully-dynamic constant-approximation
algorithms for k-median and k-means with update times O(poly(k, logn, ε−1)). Specifically, the
dependence on k is only quadratic, and the bounds are worst-case. The best previous bound for
both problems was amortized O(n logn) by Cohen-Addad et al. [10] via randomized O(1)-coresets
in O(n) space.

We also show that under the OMv conjecture [18], a fully-dynamic (4 − δ)-approximation
algorithm for k-means must either have an amortized update time of Ω(k1−γ) or amortized query
time of Ω(k2−γ), where γ > 0 is a constant.
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57:2 Fully-Dynamic Coresets

1 Introduction

Clustering is an ubiquitous notion that one encounters in computer-science areas such as data
mining, machine learning, image analysis, bioinformatics, data compression, and computer
graphics, and also in the fields of medicine, social science, marketing, etc. Today, when
the input data has become massive, one would rather run an algorithm on a small but
representative summary of the input, and for clustering problems, a coreset serves that
function perfectly. The concept of a coreset was defined first in computational geometry as a
small subset of a point set that approximates the shape of the point set. The word coreset
has now evolved to mean an appropriately weighted subset of the input that approximates
the original input with respect to solving a computational problem.

Let P be a problem for which the input is a weighted subset1 Xw ⊆ U ; think of U as
in a metric space (U, d), so U is unweighted and d is the distance function. Let n := |Xw|
and W :=

∑
x∈Xw

w(x). We also refer to elements of U as points. The goal in the problem
P then is to output S∗ that belongs to the feasible-solution space (or query space) Q
such that the cost c(S∗, Xw) is minimized. For example, in the k-median (respectively,
k-means) problem, Q is the set of all (unweighted) subsets of Xw of cardinality at most
k and c(S,Xw) :=

∑
x∈Xw

w(x) mins∈S d(x, s) (respectively,
∑
x∈Xw

w(x) mins∈S(d(x, s))2).
Then, for the problem P , a weighted set Cw such that Cw ⊆ Xw is an ε-coreset if, for any
feasible solution S ∈ Q, we have that c(S,Xw) ∈ [1±ε]c(S,Cw); we sometimes say that the
quality of coreset Cw is ε. For many problems, fast coreset-construction algorithms exist;
e.g., for k-median and k-means, Õ(nk)-time2 algorithms for computing ε-coresets of size
O(ε−2k polylog(n)) exist.

Throughout the paper, we assume that the cost function c for the problem P is linear :
for any weighted subsets Y 1

w , Y
2
w ⊆ U with disjoint supports and any S ∈ Q, we have that

c(S, Y 1
w ∪ Y 2

w) = c(S, Y 1
w) + c(S, Y 2

w), where the union Y 1
w ∪ Y 2

w is the weighted union. It is
easy to see that k-median and k-means cost functions are linear.

Our goal in this paper is to give dynamic algorithms for computing a coreset. In the
dynamic setting, the input changes over time. A dynamic algorithm is a data structure that
supports three types of operations: Insert(p, w), which inserts a point p with weight w into
Xw; Delete(p), which removes point p from Xw; and Query(), which outputs a coreset of
Xw. Weight updates can be simulated by deleting and re-inserting a given point, or the data
structure may support a separate weight-changing operation. This is known as the fully
dynamic model as opposed to the insertion-only setting where a point can only be inserted.
At any time instant, a coreset is maintained by the algorithm, and the complexity measure of
interest is the update time, i.e., how fast the solution can be updated after receiving a point
update, and also the size of the coreset, which determines the query time. Suppose there is a
dynamic coreset-construction algorithm, say ALGD, for a problem P . Then a solution for
the problem P can be maintained dynamically by running ALGD, and on query, a solution
is computed by querying ALGD and running a static (i.e., not dynamic) algorithm for P on
the returned coreset. In this paper, we give a very general technique on how to maintain a
coreset in the fully-dynamic setting: given a static coreset-construction algorithm for any
problem P , we show how to turn it into a dynamic coreset-construction algorithm for P .

1 When using a set operation such as union or notation such as ⊆ with one or more weighted sets, we
mean it for the underlying unweighted sets. Also, all weights are nonnegative.

2 Logarithmic factors are hidden in the Õ notation.
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Intuitively, our technique is to the fully-dynamic setting as the merge-and-reduce technique
is to the insertion-only setting. Themerge-and-reduce technique, which is based on a technique
of Bentley and Saxe [3], is due to Har-Peled and Mazumdar [17] and is a fundamental technique
to obtain an insertion-only coreset-construction algorithm using a static coreset-construction
algorithm, say ALGS , as a black box. Loosely speaking, it is as follows. At any time instant,
the algorithm maintains up to dlogne buckets. For i ∈ {1, 2, . . . , dlogne}, the bucket Bi
has capacity 2i−1, each bucket can be either full, (i.e. at capacity 2i−1) or empty, and each
point goes in exactly one bucket. Then at any time-instant, the current number of points
uniquely determines the states of the buckets. Whenever a point is inserted, the states of the
buckets change like a binary counter. That is, the new point goes into Bi, where Bi is the
smallest-index empty bucket, and all the points in ∪i−1

j=1Bj are moved to Bi (merge). Note
that this creates a full bucket Bi. Then a coreset is computed on Bi by running ALGS on it
(reduce). The overall coreset is then just union of all non-empty buckets.

We show that a similar result can be achieved in the fully-dynamic setting. Our main
result is the following theorem (stated slightly informally).

I Theorem 1. Assume that there is a static coreset construction algorithm for a problem
P with linear cost function that a) runs in time tP (ns, εs, λs,Ws), b) always outputs a
set of cardinality at most sP (εs, λs,Ws) and total weight at most (1+δ)Ws, and c) has the
guarantee that the output is an εs-coreset with probability at least 1−λs, where ns is the
number of integer-weighted input points and Ws is the total weight of points.

Then there is a fully-dynamic coreset-construction algorithm for P that, with rational-
weighted input points, a) always maintains an output set of cardinality at most sP (ε, λ,W ),
b) has the guarantee that the output is an ε-coreset with probability at least 1−λ, and c) has
worst-case update time

O

(
(logn) · tP

(
s∗P ,

ε

logn,
λ

n
,W

))
,

where W = O((1+δ)dlogne poly(n)), s∗P = sP

(
ε

logn ,
λ
n ,W

)
, and n is the current number of

points.

We mention below a concrete implication of the above theorem for k-median and k-means
using the result of Braverman et al. [4].

I Theorem 2. For the k-median and k-means problems, there is a fully-dynamic algorithm
that maintains a set of cardinality O(ε−2k(logn log k log(kε−1 logn) + log(1/λ))), that is an
ε-coreset with probability at least 1−λ, and has worst-case update time

O
(
ε−2k2 log5 n log3 k log2(ε−1)(log logn)3) ,

assuming that ε = Ω(1/poly(n)) and λ = Ω(1/ poly(n)). 3

Ignoring log logn and log(1/ε) above, the coreset cardinality is O(ε−2k logn log2 k) and
worst-case update time is O(ε−2k2 log5 n log3 k). It can be easily proved that running an
α-approximation algorithm for k-median on an ε-coreset gives a 2α(1+ε)-approximation
whereas that for k-means gives a 4α(1+ε)-approximation. Any such polynomial-time static
algorithm – say, e.g., (5 + ε′)-approximation algorithm for k-median by Arya et al. [2] and

3 We make these very weak assumptions to simplify some extremely unhandy factors involving ε and λ in
the expression for the update time.
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16-approximation algorithm for k-means by Gupta and Tangwongsan [15] – can be run on
our output coreset in O(poly(k, logn, ε−1)) time to obtain a constant approximation. This is
the first fully-dynamic constant-approximation algorithm for k-median and k-means whose
worst-case time per operation is polynomial in k, logn, and ε−1. The best previous result
was a randomized algorithm with amortized O(n logn) update time and O(n) space by
Cohen-Addad et al. [10].

With a simple reduction, we also show a conditional lower bound on the time per operation
for k-means. The following theorem is proved as Theorem 20 in Section 4.

I Theorem 3. Let γ > 0 be a constant. Under the OMv conjecture [18], for any δ > 0, there
does not exist a fully-dynamic algorithm that maintains a (4− δ)-approximation for k-means
with amortized update time O(k1−γ) and query time O(k2−γ) such that over a polynomial
number of updates, the error probability is at most 1/3.

Our technique

At the core, our technique is simple. We always maintain a balanced binary tree of depth
dlogne containing exactly n leaf nodes (recall that n is the current number of points). Each
node corresponds to a subset of Xw, the current input: each leaf node corresponds to a
singleton (hence n leaf nodes), and an internal node corresponds to the weighted union of the
sets represented by its children. If the cardinality of the union exceeds a certain threshold,
then we use the static coreset-construction algorithm to compute its coreset. The root gives
a coreset of the whole input.

We next explain how we handle updates in this data structure. Point insertions are
straightforward: create a new leaf node and run all the static-algorithm instances at the
nodes on the leaf-to-root path. The way we handle point deletions is similar in spirit to
the way delete-min works in a min-heap data structure: whenever a point at leaf-node `d is
deleted, we swap contents of `d with those of the rightmost leaf-node, say `r, and delete `r,
thus maintaining the balance of the tree. Then we run all the static-algorithm instances at
the nodes on the two affected leaf-to-root paths.

However, there are some complications that require new techniques to make it work in
worst-case time. To maintain guarantees for the output coreset quality and overall success
probability, we need to adapt the parameters εs and λs used for the static algorithm at the
internal nodes. The problem is that both depend on n, which changes over time and thus
might become outdated. To show an amortized update-time bound, we can simply rerun
the static algorithms at all internal nodes whenever n has changed by a constant factor. To
achieve our worst-case bound, we use two refresh pointers that point at leaf nodes, and after
each update operation, we rerun using the new values of εs and λs all the static-algorithm
instances at the nodes on the leaf-to-root path from the leaf nodes pointed to by the refresh
pointers. This keeps the outputs of the static-algorithm instances at the internal nodes
always fresh. After every update, we move these pointers to the right so that they point to
the next leaf nodes.

Further complications are caused by fractional weights at the leaf nodes and fractional
intermediate-output weights. A problem arises when the weights in Xw are fractional, and
the static algorithm expects integer-weighted input [9]. Even if the static algorithm can
handle fractional weights [12, 4], there can be a problem. The output of the static algorithm
at an internal node is the input for the static algorithm at its parent. Naïvely feeding these
output fractional weights directly to the static algorithm at the parent may result in numbers
exponential in n near the root, thus prohibitively increasing the update time. To deal with
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these problems, rounding is needed for the input, i.e., at the leaf nodes, as well as for each
intermediate-output at an internal node. Thus, we propose a more sophisticated rounding
scheme and show that the rounding errors accumulated by our rounding are not too high.

We note that our balanced binary-tree data structure may be used to get dynamic
algorithms in the following situations. Let f : Rdim → Rdim be a multi-valued function.
Suppose for any u and v with disjoint supports and for any fu ∈ f(u) and fv ∈ f(v), we
have fu + fv ∈ f(u+ v). Also suppose that f(f(v)) ⊆ f(v) for any v. Now, given input v,
we want to compute some vector in f(v). If there is a static algorithm for this, then using
our technique, we can maintain some vector in f(v) for a dynamically changing vector v.
The allowed dynamic operation on v is “add a to the ith coordinate of v,” where a ∈ R.
The resulting dynamic algorithm is fast if the static algorithm always outputs a “small”
vector; this is true for coresets because coresets are small by nature. Thinking about coresets
in the above language, each point is an identity vector in R|U |+ , and then each weighted
set of points naturally identifies with a vector. An ε-coreset reduces the number of points
drastically. Union of coresets of two disjoint sets is a coreset of the union of those two sets (see
Lemma 5). Although an ε-coreset of an ε-coreset is not an ε-coreset, it is a (2ε+ ε2)-coreset
(see Lemma 6).

Space

In the merge-and-reduce technique, a bucket Bi will not actually contain 2i−1 points but
just a coreset of 2i−1 points that would have been there otherwise at any time instant. Thus,
using space just dlogne times the coreset size for a bucket, one can get a coreset of the whole
input [17]. This makes it also applicable in the more restricted streaming model, where the
input points arrive in a sequence and the goal is to compute a coreset using sublinear space.
In the fully-dynamic setting, deletions also need to be handled, and hence no deterministic
or randomized algorithm against an adaptive adversary that stores only a coreset is possible:
the adversary generating the input could simply ask a query and then delete all points in
the returned coreset. Hence, an algorithm that does not store any information about the
non-coreset points would not be able to maintain a valid coreset. Even though we store
all the points in our fully-dynamic technique, i.e., its space usage is O(n), it works against
an adaptive adversary because we never make any assumption about the next update and
perform each update independently of all previous updates. By a straightforward reduction
from the communication problem of index, we show that Ω(n) space is required in the
presence of an adaptive adversary. The proof of the following theorem appears in Section 4.

I Theorem 4. A fully-dynamic algorithm that obtains any bounded approximation for 1-
median or 1-means that works in the presence of an adaptive adversary and has success
probability 1− 1/(8n2) must use Ω(n) space, where n is the current number of points.

Comparison with the sparsification technique

Our technique is close to the sparsification technique of Eppstein et al. [11] that is used to
speed up dynamic graph algorithms. There, one has to assume that the number of vertices
in the input graph, say nv, does not change, but the edge set changes dynamically, and the
bounds are obtained in terms of nv and m, the current number of edges. Their dynamic
edge-tree structure is based on a fixed vertex-partition tree. In the vertex-partition tree, a
node at level i corresponds to a vertex-set of cardinality nv/2i, and a vertex-set at a node is
a union of its children’s vertex sets (cf. our technique). To start using the edge tree, the
vertex-partition tree has to be built first and hence the knowledge of nv is necessary. Neither
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do we need such a fixed structure nor any information about the number of points. Also,
in the sparsification technique, there is no analog of weight handling/rounding. Another
crucial difference is that they do not use a routine analogous to our refresh-pointers routine
because their internal-node guarantees are always fresh. As we discussed before, these refresh
pointers are critical for us also in making sure that the error introduced by the unavoidable
rounding of output weights of the static-algorithm instances is kept in check.

1.1 Related Work
The most related work is by Cohen-Addad et al. [10] who give an O(1)-coreset for k-median
and k-means in amortized update time of O(n logn).

For k-median and k-means, the first coreset-construction algorithms were by Har-Peled
and Mazumdar [17] for Euclidean metrics and by Chen [9] for general metrics. Improved
algorithms computing smaller coresets were later obtained by Har-Peled and Kushal [16]
and by Feldman and Langberg [12]. The current known best is by Braverman et al. [4]:
O(ε−2k log k logn)-size coresets in Õ(nk) time, who also give an excellent summary of the
literature on coresets that we highly recommend. Note that by merge-and-reduce technique,
each improvement also gave rise to better (insertion-only) streaming coreset constructions.
For k-median and k-means, Frahling and Sohler [14] gave the first coreset-construction
algorithm in the dynamic-streaming setting where points can be added or removed. It uses
space and update time of O(poly(ε−1, logm, log ∆)) for constant k and dim when the points
lie in the discrete Euclidean metric space {1, . . . ,∆}dim; for k-median, this was recently
improved to O(ε−2k poly(dim, log ∆)) space and update time of O(poly(ε−1, k, dim, log ∆))
by Braverman et al. [5]. Coreset constructions with improvements in certain parameters in
the Euclidean settings have been obtained [13, 24].

The k-median and k-means problems have received significant attention in the algorithms
community [8, 20, 19, 7, 2, 23, 21, 15, 22, 1, 6]. The best approximation ratio for k-median
is 2.675 by Byrka et al. [6] and that for k-means is 9 + ε by Ahmadian et al. [1].

2 Preliminaries

Let us fix a problem P with the input Xw, the set of feasible solutions Q, and the linear
cost function c : Q×W → R+, where W is the set of all weighted subsets4 of Xw. All the
numbers encountered are nonnegative.

The computational model

The input set Xw is a weighted set of n points having rational weights whose numerators
and denominators are bounded by O(poly(n)). The algorithm works in the random access
machine model with word size O(logn). Each memory word can be accessed in constant
time. With each update, a new point is inserted, an existing point is deleted, or the weight
of an existing point is modified by adding or subtracting a nonnegative number. The net
weight of each point always stays nonnegative with its numerator and denominator always
bounded by O(poly(n)).

We will prove some basic lemmas about coresets. Using these, we can take weighted
union of two coresets without any loss (Lemma 5) and take a coreset of a coreset without
much loss (Lemma 6).

4 To be precise: denote unweighted version of Xw by X ′, then W is essentially RX
′

+ .
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I Lemma 5. If C1
w and C2

w are ε-coresets of X1
w and X2

w, respectively, with respect to a
linear cost function c such that X1

w ∩X2
w = ∅, then C1

w ∪ C2
w is an ε-coreset of X1

w ∪X2
w.

Proof. By linearity of c: for any S ∈ Q,

c(S,X1
w∪X2

w) = c(S,X1
w)+c(S,X2

w) ∈ [1±ε]
(
c(S,C1

w) + c(S,C2
w)
)

= [1±ε]c(S,C1
w∪C2

w) ,

where, recall that, C1
w ∪ C2

w is a weighted union. J

I Lemma 6. If C ′w is an ε-coreset of Cw, and C ′′w is a δ-coreset of C ′w, both with respect to
c, then C ′′w is an (ε+ δ + εδ)-coreset of Cw with respect to c.

Proof. For any S ∈ Q, we have c(S,Cw) ∈ [1±ε]c(S,C ′w) and c(S,C ′w) ∈ [1±δ]c(S,C ′′w). So,

c(S,Cw) > (1−ε)c(S,C ′w) > (1−ε)(1−δ)c(S,C ′′w) > (1− ε− δ − εδ)c(S,C ′′w) ,

and c(S,Cw) 6 (1+ε)c(S,C ′w) 6 (1+ε)(1+δ)c(S,C ′′w) = (1 + ε+ δ + εδ)c(S,C ′′w). J

Let C1
w be an ε-coreset of Cw and C2

w be an ε-coreset of C1
w. Then we say that C1

w and
C2
w are, respectively, 1-level and 2-level ε-coresets of Cw. Extending this notion, we define

an i-level ε-coreset to be an ε-coreset of an (i− 1)-level ε-coreset.

I Lemma 7. If C`w is an `-level ε-coreset of Cw, then C`w is a
(∑`

i=1
(
`
i

)
εi
)
-coreset of Cw.

Proof. The proof is by induction on `. Base case is when ` = 1, and by definition, a 1-level
coreset is an ε-coreset. By induction hypothesis, we have that C`−1

w is a
(∑`−1

i=1
(
`−1
i

)
εi
)
-

coreset of Cw. Now, C`w is an ε-coreset of C`−1
w , hence C`w is an

(
ε+ (1+ε)

∑`−1
i=1
(
`−1
i

)
εi
)
-

coreset of Cw by Lemma 6. Now, use Lemma 8, which appears below, with α = ε to finish
the proof. J

We prove two basic lemmas.

I Lemma 8. For any positive integer ` and α ∈ R+, we have α + (1+α)
∑`−1
i=1
(
`−1
i

)
αi =∑`

i=1
(
`
i

)
αi.

Proof idea. The proof is provided in Appendix A and uses elementary identities involving
binomial coefficients and algebraic manipulations. J

I Lemma 9. For any positive integer ` and α ∈ [0, 1], we have
∑`
i=1
(
`
i

) (
α
2`
)i

6 α.

Proof.
∑`
i=1
(
`
i

) (
α
2`
)i

6
∑`
i=1 `

i αi

2i`i =
∑`
i=1

αi

2i 6
∑`
i=1

α
2i 6 α. J

Now, as a corollary to Lemma 7, we get the following using Lemma 9.

I Corollary 10. If C`w is an `-level (ε/(2`))-coreset of Cw, then C`w is an ε-coreset of Cw.

As we discussed earlier, rounding of the weights at internal nodes is needed in our dynamic
algorithm to achieve the desired worst-case update time. Towards that, we need two lemmas.

In the next lemma, think of a/b as the original weight of the point, c/d as the weight that
we want to approximate a/b with, and D as the cost of this point with respect to a feasible
solution in Q. So the lemma says that by rounding, the cost of the point stays within 1± b/d
of the original cost.

I Lemma 11. For positive integers a, b, and d, let c = bad/bc. Then cD/d ∈ [1± b/d]aD/b
for any nonnegative real D.

ESA 2020
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Proof. By the definition of c, we have that c/d 6 a/b 6 c/d+ 1/d, and 1/d 6 a/d because
a > 1; hence a/b > c/d > a/b − a/d, which implies that aD/b > cD/d > aD/b − aD/d =
(1− b/d)aD/b. J

The proof of the following lemma is very similar. Here, think that we approximate the
weight r of a point by brc+ c/d and the cost of the point stays within 1± 1/d of the original
cost.

I Lemma 12. Let r > 1 be a rational number, a and b be positive integers such that
a/b = r − brc, d be any positive integer, and c = bad/bc. Then (brc+ c/d)D ∈ (1± 1/d)rD
for any nonnegative real D.

Proof. By the definition of c and using r > 1, we get that a/b > c/d > a/b− r/d; adding
brc and multiplying by D finishes the proof. J

3 A Dynamic Coreset

We describe our dynamic algorithm for maintaining an ε-coreset for a problem P with query
space Q that uses a static coreset algorithm, say, ALGS .

v1 v3 v2 v4

ALG2
S ALG3

S

v2
1 v2

2

ALG1
S

Output

Figure 1 An ALGS node takes input from two point-nodes. If the union of the sets has cardinality
greater than s′, then the ALGS node computes a coreset of cardinality at most s′ and passes it on
to the point-node above it (its parent). The number of leaf nodes is always n, and the number of
levels is always O(logn), where n is the current number of points.

The main idea is described in Figure 1 using a tree with a special structure. Each node
is of one of the two types: a point-node representing a weighted set of points or an alg-node
representing an instance of ALGS . We sometimes use a point-node to denote the point set it
represents and an alg-node to denote the ALGS instance it represents. Each level contains
either only point-nodes or only alg-nodes. All leaf nodes are point-nodes and represent a
weighted singleton with an input point. Each alg-node gets as input the weighted union of
its children, and its output is represented by its parent node (which is a point-node). When
running ALGS at an alg-node A, if the union of its children has cardinality larger than s′,
then A would compute a coreset of cardinality at most s′ otherwise it would just output the
weighted union. We will later fix this threshold s′ for computing a coreset. An example of
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how insertions and deletions are handled is shown in Figure 2 (where all weights are assumed
to be one). For the ease of description, from now onwards, we will think of this tree with
alg-nodes being collapsed into their parent nodes. Then each leaf node would contain a
weighted singleton and each internal node would contain the output of the ALGS instance
run on the weighted union of its children’s sets.

Insert v1

v1

Output
Insert v2

v1 v2

ALG1
S

Output

Insert v3

v1 v3

ALG2
S

v1
2 v2

ALG1
S

Output

Delete v2

v1 v3

ALG1
S

Output

Figure 2 An example of how insertions and deletions are handled. We start with an empty tree.
The first point that is inserted is represented by v1. We use a point and the node that represents it
interchangeably. Then v2 is inserted followed by v3. Next, if v4 is inserted, we get exactly the tree
shown in Figure 1, and if v2 is deleted, then we get the last tree.

We guarantee that the resulting tree then will always be a complete binary tree, i.e.,
every level except possibly the lowest is completely filled, and the nodes at the lowest level
are packed to the left. To describe the updates briefly, let `r denote the rightmost leaf
node at the lowest level; for simplicity, assume that the lowest level is not full. Insertion is
straightforward: the new point goes in a new leaf node to the right of `r. For deletion of a
point at leaf node `d, if `d 6= `r, then we replace contents of `d with those of `r and delete `r.
See Section 3.1 for details of these operations. For weight update, the tree does not change.

I Remark 13. Since a coreset will not be computed until a node has more than s′ points,
the tree can be modified so that each leaf node corresponds to a set of Θ(s′) points. Then
the number of nodes in the tree is Θ(n/s′). This reduces the additional space used for
maintaining this tree. This is important when the number of points is very large. See
Section 3.2 for further details. This is essentially the same idea as used for asymmetric
sparsification in Section 3.4 in Eppstein et al. [11].

We call the leaf nodes at the same level as that of the leftmost leaf node to be at level 0.
We increment these level numbers naturally as we move upwards in the tree. Since we
maintain a complete binary tree, the root, which is at the highest level, is on level dlogne.
After a point insertion, deletion, or weight update, we recompute all the nodes that are
affected by running ALGS from scratch. Once we update a leaf node, all the nodes on its
leaf-to-root path are affected. Since at most two leaf nodes are updated after every point
update, we run at most 2dlogne instances of ALGS . Finally, to reduce the cardinality of
our output coreset, we run another outer instance of ALGS with εs = ε/3 and λs = λ/2
with input as the output of the root. Here, εs and λs are parameters for ALGS as described
below, and our goal is to compute an ε-coreset with probability at least 1−λ. The outer
instance is run after every update.
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The static coreset algorithm ALGS takes as input an integer weighted set of ns points
with total weight Ws and always returns a weighted set of cardinality at most s(εs, λs,Ws);
this set is an εs-coreset with probability at least 1−λs. Let the running time of ALGS

be t(ns, εs, λs,Ws). We assume that the functions t and s are nondecreasing in Ws and
nonincreasing in εs and λs, and also that t is nondecreasing in ns. We call such functions t
and s well-behaved.

We note that t and s implicitly depend on the query space Q as well. In particular,
for k-median and k-means, they depend on k and the dimension or the cardinality of the
universe from which a solution is allowed to be picked. Also, assume that the total weight of
ALGS ’s output is at most 1+δ times the total input weight and it outputs a coreset of points
with integer weights. For the dynamic algorithm, n denotes the current number of points,
and we assume that any input weight is a rational number with numerator and denominator
bounded by nc, for a fixed constant c.

I Theorem 14. Assume that there is a static algorithm ALGS that takes as input an integer-
weighted set of ns points with total weight Ws and always returns an integer-weighted set
of cardinality at most s(εs, λs,Ws) with total weight at most (1+δ)Ws, and this set is an
εs-coreset with probability at least 1−λs. Let the running time of ALGS be t(ns, εs, λs,Ws),
and assume that both s and t are well-behaved. Then there is a fully-dynamic algorithm that,
on rational-weighted input points, always maintains an s

(
ε
3 ,

λ
2 ,Wp

)
-cardinality weighted set.

This set is an ε-coreset with probability at least 1−λ. Its worst-case update time is

O

(
t

(
2s∗, ε

6dlognpe
,
λ

2np
,Wp

)
·
(

1 + log(1+δ) + log ε−1

logn

)
· logn

)
,

where Wp = (1+δ)dlognpenc
′′

p d1/εe, c′′ is a constant, s∗ = s
(

ε
6dlog 2npe ,

λ
4np

,Wp

)
, and 8n/3 6

np 6 8n.

Proof. We first prove that the output of the algorithm is an ε-coreset if every non-outer
ALGS instance outputs an εs-coreset of its input for some εs 6 ε/(6dlogne) and the outer
ALGS instance outputs an (ε/3)-coreset of its input. We prove the following by induction
on level number: every node at level ` contains a (

∑`
i=1
(
`
i

)
εis)-coreset of the leaf nodes

in its subtree. In the base case, a node at level 1 contains an εs-coreset of its input
trivially. An ALGS instance A at level i gets as input two sets, say C ′w and C ′′w, each
of which is a (

∑`−1
i=1
(
`−1
i

)
εis)-coreset for the leaf nodes in their respective nodes’ subtrees.

Hence, C ′w ∪ C ′′w is a (
∑`−1
i=1
(
`−1
i

)
εis)-coreset for leaf nodes in the subtree rooted at A by

Lemma 5. Now, A outputs an εs-coreset of C ′w ∪ C ′′w, hence by Lemma 6, its output is
an (εs + (1+εs)

∑`−1
i=1
(
`−1
i

)
εis)-coreset of the leaf nodes in its subtree, which, by Lemma 8,

means a (
∑`
i=1
(
`
i

)
εis)-coreset. This completes the induction step. Hence, the root node,

which is at level dlogne, contains (
∑dlogne
i=1

(dlogne
i

)
εis)-coreset. Now, since εs 6 ε/(6dlogne),

by Lemma 9, the output at the root is an (ε/3)-coreset. The outer ALGS instance outputs
an (ε/3)-coreset of this, hence, by Lemma 6, the final output is an (2ε/3 + ε2/9)-coreset,
which is an ε-coreset of all points.

Recall that the running time of ALGS is t(ns, εs, λs,Ws) to compute an εs-coreset with
probability at least 1−λs, where ns is the number of points in the input. Our output success
probability will depend on λs, and ε depends on εs as proved in the previous paragraph. We
will need εs 6 ε/(6dlogne) and λs 6 λ/(2n), so these depend on n, which can change a lot
over time. We now show how to maintain these guarantees for εs and λs after each update.

Towards this, we need a little tweak to our algorithm and an additional maintenance
routine that we call the refresher. The algorithm works in phases. The refresher routine
maintains two refresh pointers that always point to consecutive leaf nodes, say r1 and r2.
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The refresh pointers are reset after the end of a phase as follows. If the number of leaf nodes
is a power of 2, then r1 and r2 point to the two leftmost leaf nodes, otherwise they point to
the two leftmost leaf nodes at the level above the lowest level. Assume, for completeness,
that the very first phase ends after receiving two points, so the tree is just two leaf nodes
and their parent as the root.

For each subsequent phase, let n0 be the value of n at the beginning of the phase. Each
phase ends after n0/2 updates, and we set np = 4n0. This guarantees that np is greater
than n throughout the whole phase and even the next phase (details appear below). After
receiving an update, we rerun all the ALGS instances on the leaf-to-root path starting at
r1 and r2 (at most 2dlogne such instances). This is the refresher routine. Then we move
the refresh pointers to the next two leaf nodes on the right. If we reach the right end, then
we go to the next level if it exists, otherwise we stop. If we stop, then we achieved the
goal of (re-)running all the ALGS instances that are present at the end of the phase at
least once in this phase (this will become clearer below). After the refresher routine, we
execute the update which affects at most two leaf nodes. We rerun all the ALGS instances
that are affected by this update, again, at most 2dlogne such instances. So in total, at
most 4dlogne of non-outer ALGS instances are run after an update and one outer instance,
which explains the logn factor in the update time. We now explain the parameters used
in the ALGS instances. For all the non-outer ALGS instances, we use εs = ε/(6dlognpe)
and λs = λ/(2np). (This explains the εs and λs parameters of the functions t and s in the
theorem statement.) Note here that the running time of the outer instance is going to be
less than any non-outer instance because t is non-increasing in εs and λs.

As we use np = 4n0 and there could be at most n0/2 insertions in a phase, the final value
of n is at most 3n0/2, and, thus, np is always greater than n. In fact, crucially, np is an upper
bound on n for even the next phase; in the next phase, n 6 n0 + n0/2 + (n0 + n0/2)/2 =
9n0/4 6 np. Also, in the current phase, n0/2 6 n 6 3n0/2, hence 8n/3 6 np 6 8n, as
required (cf. the theorem statement).

We now prove that any non-outer ALGS instance uses εs 6 ε/(6dlogne) and λs 6 λ/(2n)
at any time instant. Let L be the set of leaf nodes at the beginning of the phase; therefore,
|L| = n0. An ALGS instance that exists at the end of the phase is either on the leaf-to-root
path for some leaf in L or it was created/updated in this phase. At the end of the phase, the
refresh pointers will hit all surviving leaf nodes in L; the argument is as follows. Each phase
lasts for n0/2 updates, |L| = n0, and we move the two refresh pointers to the right on next
two leaf nodes after each update. Importantly, new leaf nodes are added only to the right of
the rightmost leaf node at the lowest level, and hence, the refresher routine will have hit all
surviving leaf nodes in L before hitting a newly created leaf node.

This shows that, in any case (being either hit by a point update or by the refresher
routine), each ALGS instance is run with np = 4n0, setting up these instances for the next
phase. This means that at any time instant, each ALGS instance was created/updated in the
current phase or created/updated in the previous phase, thus showing that εs 6 ε/(6dlogne)
and λs 6 λ/(2n) for all ALGS instances at all times.

At any time instant, there are at most n non-outer instances of ALGS , each with success
probability at least 1− λ/(2n), and the outer ALGS instance has success probability at least
1− λ/2. Hence, the final success probability is at least 1−λ by the union bound over these
n+ 1 instances.
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How to handle weights

We will need one further tweak to argue that each weight ever encountered by the algorithm
can be stored using O(1 + log(1+δ) + log(1/ε)/ logn) words, which also explains that factor
in the update time. By assumption, an insertion or weight update comes with a weight that is
a fraction with the numerator and the denominator bounded by nc for some fixed constant c.
After receiving such an update, we approximate the weight by a fraction that has numerator
bounded by nc′

p d1/εe, where c′ = 2c + 1 is also a fixed constant, and the denominator is
equal to nc+1

p d1/εe5. The change in the cost due to this approximation is at most ε/np times
the original cost; hence, by the linearity of the cost function, the output coreset quality is
affected by at most an additive factor of O(ε/n). More formally, the following claim holds
by Lemma 11 and using b/d 6 ε/np below (think of D below as cost).

B Claim 15. Let d = nc+1
p d1/εe. Given a rational number a/b, where a and b are integers,

a 6 ncp and b 6 ncp, let f = dad/be. Then f 6 n2c+1
p d1/εe and (f/d)D ∈ [1±ε/np](a/b)D for

any nonnegative real D.

Recall that due to the refresher routine, at any time instant, the denominator of the weight
at any leaf node can be one of the two: nc+1

p d1/εe or nc+1
pp d1/εe, where npp is the value of np

for the previous phase. When the two children of an internal node use different denominators,
this complicates our rounding scheme. Thus, when taking a union of the children’s sets at an
internal node, for each weight, we make its numerator an integer and the denominator equal
to (npnpp)c+1d1/εe, which is a common multiple of nc+1

p d1/εe and nc+1
pp d1/εe – the only

possible denominators of an input weight after rounding. Next, we run the ALGS instance
with integer weights as given by the numerator, then (implicitly) dividing the output weights
by the denominator (npnpp)c+1d1/εe afterwards. Since each ALGS instance can increase the
total weight by at most a factor of 1+δ, the sum of the numerators of all weights at level i is
always bounded by n(1+δ)i(npnpp)c

′d1/εe. Since i 6 dlogne and npp = Θ(np), there exists
a constant c′′, such that the sum of the numerators of all weights at any level i and all the
possible numerators and denominators are bounded by (1+δ)dlognpenc

′′

p d1/εe =: Wp, and
hence, can be stored in O(1 + log(1+δ) + log(1/ε)/ logn) words as desired (see the beginning
of the paragraph before Claim 15). This also justifies the Ws parameters of the functions t
and s in the theorem statement.

Now we put everything together. The outer ALGS instance outputs a weighted set of
size at most s

(
ε
3 ,

λ
2 ,Wp

)
. This set is an ε-coreset with probability at least 1−λ, which

we proved by a union bound over all ALGS instances. We set s′ = s
(

ε
6dlognpe ,

λ
2np

,Wp

)
,

which is the threshold for computing a coreset at each internal node, i.e., (recall that) if the
number of points at an internal node is greater than s′, then we run ALGS to compute a
coreset. An upper bound on the threshold for the current phase and the previous phase is
s∗ = s

(
ε

6dlog 2npe ,
λ

4np
,Wp

)
because the np value for the previous phase can be at most twice

that of the current phase. Then the worst-case update time is dominated by the non-outer

5 The static algorithm ALGS expects integer-weighted input and outputs integer-weighted points, whereas
our dynamic algorithm handles fractional weights. If fractional weights are naïvely stored in our dynamic
algorithm, then at internal nodes, combining two fractions may result in larger magnitude numbers.
E.g., naïvely handling two points with weights a/b and c/d so as to be used in ALGS results in weights
ad/(bd) and bc/(bd). Thus, at level i, the numerators and denominators may be as large (poly(n))2i

.
Note that some rounding would be needed even if ALGS can handle rational weights, because its output
may be points with rational weights having much larger magnitude; e.g., even if the output magnitude
is about only quadratic in that of the input, the blowup near the root in our dynamic algorithm would
be nth power of the input. In fact, we do this rounding in the proof of Theorem 2.
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ALGS instances, each running in time t
(

2s∗, ε
2dlognpe ,

λ
2np

,Wp

)
, and we run O(logn) of

these after receiving an update. An additional factor of 1+log(1+δ)+log(1/ε)/ logn appears
because each weight may need memory worth O(1 + log(1+δ) + log(1/ε)/ logn) words, and
we need constant time to access each memory word. J

Before proving the concrete bounds for k-median and k-means that are stated in Theorem 2,
we prove a weaker theorem that is a direct consequence of Theorem 14 using the static
algorithm of Chen [9].

I Theorem 16. For the k-median and k-means problems, there is a fully-dynamic algorithm
that maintains a set of cardinality O(ε−2k log2(n/ε)(k logn+ log(1/λ))), that is an ε-coreset
with probability at least 1−λ, and has worst-case update time

O

(
ε−2k2 log3 n log2 n

ε
log n

λ

(
k logn+ log n

λ

)
log log n

ε

(
1 + log ε−1

logn

))
.

Ignoring the log logn factors, for λ = Ω(1/poly(n)) and ε = Ω(1/poly(n)), the coreset
cardinality is O(ε−2k2 log3 n), and the worst-case update time is O(ε−2k3 log7 n).

Proof. Chen’s algorithm takes in an integer weighted set and outputs also an integer weighted
set. Its output has the same total weight as the input, so δ = 0 (see Theorem 14). Also,
for Chen’s algorithm, s(εs, λs,Ws) = O(ε−2

s k(k logn+ log(1/λs)) log2 Ws) and the running
time t(ns, εs, λs,Ws) = O(nsk log(1/λs) log logWs) (see Theorems 3.6 and 5.5 in Chen [9]),
which is dominated by the computation of a bicriteria approximation. Note that both s and
t are well-behaved. Using Wp = O(poly(n)/ε),

s∗ = O
(
ε−2k log2 n log2 n

ε

(
k logn+ log n

λ

))
,

and δ = 0 in Theorem 14 gives the desired bounds using the functions t and s above. J

Now we use the result of Braverman et al. [4] to get better bounds as stated in Theorem 2
in the introduction section. Unfortunately, we cannot use Theorem 14 as a complete black
box for this because in this case, on integer weighted input, ALGS does not output an integer
weighted coreset. The proof of the following theorem is thus an extension of the proof of
Theorem 14.

I Theorem 2. For the k-median and k-means problems, there is a fully-dynamic algorithm
that maintains a set of cardinality O(ε−2k(logn log k log(kε−1 logn) + log(1/λ))), that is an
ε-coreset with probability at least 1−λ, and has worst-case update time

O
(
ε−2k2 log5 n log3 k log2(ε−1)(log logn)3) ,

assuming that ε = Ω(1/poly(n)) and λ = Ω(1/ poly(n)).

Proof. Our dynamic algorithm expects to have at its disposal a static algorithm ALGS that
takes integer-weighted input and outputs an integer-weighted coreset. Since the algorithm
of Braverman et al. that we use as ALGS outputs on integer weighted input a coreset with
fractional weights, we need some modifications. Hence, before ALGS is ready to be used in
the dynamic algorithm, we round its output to turn it into integers.
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Weight-Rounding Modifications for ALGS

Let input to ALGS be Yw which is a set of ns points with integer weights w(1), . . . , w(ns).
We run ALGS on the same points with scaled weights s′w(1), . . . , s′w(ns), where s′ is
the desired cardinality of the output coreset (which is the same as the threshold for
computing a coreset at an internal node in this case). We set s′ later in a such a way that
it can be computed by our dynamic algorithm. This step of multiplying input weights by
s′ is done to make sure that each of the fractional weights output by ALGS is at least 1
(see Line 6 of Algorithm 2 in Braverman et al. [4]).
Let the output Cw of ALGS be a weighted set of s′ points with fractional weights
wo(1), . . . , wo(s′). Using the rounding strategy of Lemma 12, round these fractional
weights to have an integer numerator and the denominator equal to d(lognp)/εe to get
weights w̃(1), . . . , w̃(s′), where np is as defined in the proof of Theorem 14. Formally, for
i ∈ {1, . . . , s′}:

w̃(i) = bwo(i)c+

⌊
(wo(i)− bwo(i)c)

⌈
lognp

ε

⌉⌋
⌈

lognp

ε

⌉ .

Since wo(i) > 1, by Lemma 12, for any real D > 0, we have w̃(i)D ∈ [1±ε/ lognp]wo(i)D.
Hence, by the linearity of the cost function, Cw with weights w̃(1)/s′, . . . , w̃(s′)/s′
is an (εs + 2ε/ lognp)-coreset of Yw with weights w(1), . . . , w(ns) if Cw with weights
wo(1), . . . , wo(s′) is an εs-coreset of Yw with weights s′w(1), . . . , s′w(ns). Note that
w̃(i)/s′ can be represented as a fraction with an integer numerator and denominator
equal to s′d(lognp)/εe.
The additive loss of 2ε/ lognp in the coreset quality due to this rounding is tolerable
because every non-outer ALGS instance will be run with εs = O(ε/ lognp)6. Hence, the
coreset quality at internal nodes will always be O(εs + ε/ lognp) = O(ε/ logn), as desired.
This rounding ensures that on integer-weighted input with total weight W , the output
weights of ALGS are fractions with integer numerator bounded by (1+δ)Ws′d(lognp)/εe
and integer denominator equal to s′d(lognp)/εe. Here, 1+δ is the factor by which ALGS

can increase the total weight.

To handle rational weights in the dynamic algorithm, we first proceed as described in the
paragraph on how to handle weights in the proof of Theorem 14. Recall that we assume that
each insertion or weight update by the adversary comes with a weight that is a fraction with
the numerator and the denominator bounded by nc for some fixed constant c, and we set
c′ = 2c+1. Also, each leaf node was created/updated in the current phase or created/updated
in the previous phase and thus uses the value either np or npp, where npp is the value of np
for the previous phase. We then showed the following. At any time instant, the weight of
the point at a leaf node is rounded in such a way that the numerator is bounded by nc′

p d1/εe
and the denominator is equal to nc+1

p d1/εe, or the numerator is bounded by nc′

ppd1/εe and
the denominator is equal to nc+1

pp d1/εe. Due to this rounding, the output coreset quality is
affected by at most an additive factor of max{2ε/np, 2ε/npp} = O(ε/n). We now prove the
following more general statement towards the current proof.

6 If we go for smaller additive loss, say ε/np, the denominators of resulting numbers due to this rounding
would become exponential in np. And if we go for a larger additive loss, it would worsen the coreset
quality at non-outer instances to ω(ε/ lognp) resulting in the quality of the output coreset worse than ε.
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I Lemma 17. At any time instant, every weight at a node at level i has an integer numerator
and a denominator that is a factor of (npnpp)c+1d1/εe(s′ps′ppd(lognp)/εed(lognpp)/εe)i =:
D(i), where s′p and s′pp are values of the threshold s′ in the current and the previous phase,
respectively.

Proof. We prove this statement by induction over the sequence of nodes updated by the
algorithm.

In the base case, the first ever node update will be due to creation of a leaf node, and the
weight will have denominator nc+1

p d1/εe. Next we discuss the induction step. Let the update
be on a node at level i, so we run the modified ALGS instance with all weights having a
denominator that is a factor of D(i−1), which is true by induction hypothesis. Then, since
the modified ALGS adds a factor of s′pd(lognp)/εe to the denominator, all resulting output
weights have a denominator that is a factor of D(i−1)s′pd(lognp)/εe, which is a factor of
D(i). This finishes the induction step for the case when the node update is not the last of
the phase. When the node being updated is the last of the phase, we have to be careful. In
this case, we need to show that for all weights in all nodes, npp or s′pp do not appear in the
denominator, as this will set these denominators for the next phase. Towards this, we need
the following claim.

B Claim 18. Let u be a node at level i. Fix a time instant. Suppose, in the current phase,
all nodes in the subtree rooted at u were updated and u was updated after the update of the
last-updated leaf node in the subtree. Then the denominator of the weights at u is a factor
of nc+1

p d1/εe(s′pd(lognp)/εe)i at the fixed time instant.

We omit the proof of this claim as it can be proved easily by induction on the level number
at any fixed time instant.

After the last node update of the phase, every node in the tree has been updated in the
current phase and the premise of Claim 18 holds due to the refresher routine. Hence, by
Claim 18, after the last node update of the phase, i.e., just before the new phase begins, all
denominators at level i are a factor of nc+1

p d1/εe(s′pd(lognp)/εe)i. Since np and s′p of this
phase will become npp and s′pp in the next phase, the induction hypothesis stays true for the
next phase as well. This finishes the proof of Lemma 17. J

Since an ALGS instance may increase the total weight by at most a factor of 1+δ, the
sum of the numerators of weights at any level i is at most

np(1+δ)i(npnpp)c
′
⌈

1
ε

⌉(
s′ps
′
pp

⌈
lognp
ε

⌉⌈
lognpp
ε

⌉)i
;

this can be seen by an easy induction on the level number. Using this bound, we set the
threshold s′ in a way similar to that in the proof of Theorem 14: we set

s′p = s

(
ε

6dlognpe
,
λ

2np
,Wp

)
,

where

Wp = (1+δ)dlognpenc1
p

(
k

⌈
lognp
ε

⌉)c2dlognpe

,

and c1 and c2 are chosen to be large enough constants so thatWp upper bounds the sum of the
numerators of all weights at any level. From now onwards, we assume that λ = Ω(1/ poly(n)).
For ALGS , the function s is s(εs, λs,Ws) = O(ε−2

s k(log k logWs + log(1/λs))) and δ = O(ε).
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Then, using npp = Θ(np), we get that both s′p and s′pp are O
((
k
⌈

lognp

ε

⌉)c3)
, where c3 is a

fixed constant (so, independent of c1 and c2). Observe that Wp and thus s′p are determined
by the phase and hence can be computed by our algorithm. More concretely, we get that
both s′p and s′pp are

O

(
ε−2k log3 n log k log k logn

ε

)
.

All possible numerators and denominators encountered by the algorithm are bounded by

N := O

(
poly(n)

(
k logn
ε

)O(logn)
)
,

so, can be stored in m := (logN)/ logn = O(log((k logn)/ε)) words.
The running time of ALGS is t(ns, εs, λs,Ws) = O(nsk log(1/λs) log logWs), which,

similar to Chen’s algorithm, is dominated by computation of a bicriteria approximation. At
a non-outer ALGS instance, ns = O(s′p), εs = O(ε/ lognp), λs = O(λ/np), and Ws 6 Wp.
With every update, O(logn) instances of ALGS are run, and an additional m factor appears
because a weight may need up to m words. Hence, the worst-case update time assuming
ε = Ω(1/poly(n)) and λ = Ω(1/ poly(n)) is

O

(
t

(
s′p,

ε

logn,
λ

n
,Wp

)
m logn

)
= O

(
ε−2k2 log5 n log k log2

(
k logn
ε

)
log log

(
k logn
ε

))
and a looser, easier to parse, bound is O

(
ε−2k2 log5 n log3 k log2(1/ε)(log logn)3). The

output coreset cardinality is

s

(
ε

3 ,
λ

2 ,Wp

)
= O

(
ε−2k

(
logn log k log

(
k logn
ε

)
+ log 1

λ

))
.

This finishes the proof of Theorem 2. J

3.1 The Binary-Tree Structure
We describe the tree structure in more detail, especially, how insertions and deletions are
handled. We always maintain a complete binary tree, in which every level except possibly the
lowest is completely filled, and the nodes in the lowest level are packed to the left. We also
maintain the property that each internal node has exactly two children. Our data structure
behaves somewhat like a heap, though a crucial difference is that we do not have keys. This
structure supports insertion and deletion of a leaf node. Insertion of a new leaf-node ` works
as follows.

If the current number of leaf nodes is a power of 2, then let v be the leftmost leaf node,
Else let v be the leftmost leaf node in the level above the lowest level.
Let p be v’s parent.
Create a new node u.
Make p to be u’s parent; u replaces v, so if v was p’s right (respectively, left) child, then
u is now p’s right (respectively, left) child.
Make v to be u’s left child and ` to be u’s right child. This way, ` the rightmost leaf node
at the lowest level.

Deletion of a leaf-node ` works as follows. Let v be the rightmost leaf node at the lowest
level, p be v’s parent, and v′ be v’s sibling. Replace `’s contents by v’s contents and replace
p’s contents by the contents of v′. Delete v and v′.
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3.2 Reducing the Number of Nodes
The tree can be modified to have each leaf node correspond to a set of Θ(s′) points to reduce
the additional space used for maintaining this tree (pointers and such). Recall that s′ is the
threshold for computing a coreset. To reduce the number of nodes in the tree this way, we
maintain the invariant that each leaf node, except possibly one, contains a set of size s` with
s′/2 6 s` 6 s′. To maintain this invariant, we use a pointer ps that points to a leaf node
with less than s′/2 elements if such a leaf node exists.

Whenever a point is inserted, we add it to the leaf node, say `e pointed to by ps. If `e
now contains at least s′/2 points, then we make ps a null pointer. If ps was a null pointer
already, then we create a new leaf node, say `n, insert the new point in `n, and make ps
point to `n. The new leaf node `n is inserted in the tree as described in Section 3.1.

Whenever a point is deleted, we check if the leaf node, say `d that contains it now contains
less than s′/2 points. If `d contains less than s′/2 points, and ps points to some leaf node,
say `e, then we move points in `d into `e and delete `d. (Deletion of a leaf node is handled as
described in Section 3.1.) If ps does not point to any leaf node, then we make it point to `d.

As usual, we recompute all nodes on the affected leaf-to-root path.

4 Lower Bounds

In this section, we show lower bounds. We first see a space lower bound and then a conditional
lower bound on the time per operation.

4.1 Space Lower Bound
We show a simple and very general space lower bound. Consider any problem that on
input X has to output a feasible solution that is a subset of X. Moreover, if X non-empty,
then all feasible solutions are also non-empty. Call such a problem compliant. Clearly,
computing any bounded approximation for k-median and k-means and the problem of
constructing any coreset with bounded quality are compliant. To get a linear space lower
bound for fully-dynamic algorithms that solve a compliant problem, we use the communication
problem of index. In indexN , Alice’s input is an N -bit string and Bob’s input is an index
I ∈ {1, 2, . . . , N}. Alice sends one message to Bob, and he needs to correctly output the bit
at position I. By a well-known communication complexity lower bound, Alice must send
a message of size (1 −H2(3/4))N > 2N/11 bits so that Bob can correctly output with a
success probability of 3/4; here H2 is the binary entropy function.

I Theorem 19. A fully-dynamic algorithm for a compliant problem that works in the presence
of an adaptive adversary and has success probability 1− 1/(8n2) must use space Ω(n), where
n is the current input size.

Proof. We describe the reduction for any compliant problem in a metric space, such as
1-median or 1-means, but it can be naturally generalized to any compliant problem. Alice
defines

X = {j : jth bit in her string = 1} ,

and distance between any two points of X to be 1. She runs the fully-dynamic algorithm on
X and sends the memory snapshot to Bob. Bob queries for a solution and if X is nonempty,
a nonempty solution S1 would be returned. He deletes the points in S1 and queries again to
get S2, and so on until ∅ is returned. There would be at most N such queries. Note that
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this works because the algorithm works under an adaptive adversary. If one of the S`s in
this process contains I, which is Bob’s input for the index problem, then Bob outputs 1, else
he outputs 0. In the worst case, Bob makes N queries, where query number i would have
failure probability at most 1/(8(N − i + 1)2). So overall failure probability by the union
bound is at most

N∑
i=1

1
8(N − i+ 1)2 6

1
8

∞∑
i=1

1
i2

= 1
8
π2

6 6
1
4 .

Alice communicated as many bits as the space usage of the dynamic algorithm. Then, by the
indexN lower bound, the space usage of the algorithm is at least 2N/11 > 2n/11 bits. J

4.2 Conditional Lower Bounds on the Time Per Operation
Now, we show conditional lower bounds on the time per update and query for fully-dynamic
k-means algorithms. They are based on the OMv-conjecture [18]: You are given an N ×N
Boolean matrix M that can be preprocessed in polynomial time. Then, an online sequence
of N -dimensional Boolean vectors v1, . . . , vN is presented and the task is to compute each
Mvi (using Boolean matrix-vector multiplication) before seeing the next vector vi+1. The
conjecture is that finding all the N answers takes time Ω(N3−γ) for any constant γ > 0.
In [18] also the following OuMv problem was presented: You are given an N ×N Boolean
matrix M that can be preprocessed in polynomial time and an online sequence of Boolean
vector pairs (u1, v1), . . . , (uN , vN ) with the goal to compute each (ui)TMvi (using Boolean
matrix-vector multiplication) before seeing the next vector pair (ui+1, vi+1). Under the OMv
conjecture, finding N answers for the OuMv problem such that the error probability is at
most 1/3 takes time Ω(N3−γ) for any constant γ > 0. We will show a reduction from the
latter problem to prove the following result.

I Theorem 20. Let γ > 0 be a constant. Under the OMv conjecture, for any δ > 0, there
does not exist a fully-dynamic algorithm that maintains a (4− δ)-approximation for k-means
with amortized update time O(k1−γ) and query time O(k2−γ) such that over a polynomial
number of updates the error probability is at most 1/3.

Proof. For the ease of presentation, we assume that k is even; if k is odd, the construction
can be easily adapted. We set N = k/2. Given an OuMv instance with N ×N matrix M ,
we construct the following metric space with distance function d from it:

The metric space U consists of 4N points numbered from 1 to 4N . For any 1 6 i < j 6 N

and N + 1 6 i < j 6 2N , the distance d(i, j) = 2. Furthermore, for 1 6 i 6 N and
N + 1 6 j 6 2N , the distance d(i, j) = 1 if Mi,j−N = 1, and d(i, j) = 2 otherwise.
Additionally, all 2N points 2N + 1, . . . , 4N are at distance 100 from each other and from all
the other points.

We use a k-means data structure to solve a uTMv computation as follows: Initially the set
X is empty. When given a vector pair (u, v), let p be the number of ones in v and in u. Note
that p 6 2N . We insert the points i such that ui = 1 and the points j such that vj−N = 1
into X and additionally 2N + 1− p of the points ` with ` > 2N . Thus |X| = 2N + 1 = k+ 1.
Then we ask a k-means query. Afterwards, we delete the inserted points.

If uTMv = 1, then there exist indices i and j such that ui = 1,Mi,j = 1, and vj = 1.
Consider the optimal solution that consists of all points in X except for point i. Note that
the cost of this solution for the k-means problem is 1.
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If uTMv = 0, then any optimal solution must also consist of 2N + 1− p of the points
` with ` > 2N , and all but one of the other points in X. But as none of the points in X
has distance smaller than 2 to any other point in X, the cost of the solution is at least 4 for
k-means. Thus, any (4− δ)-approximation for k-means can distinguish between the cases
uTMv = 1 and uTMv = 0. Hence, the OMv conjecture implies that it takes at least time
Ω(N2−γ) time to execute the above 2N update operations and 1 query operation. This
implies the claimed lower bound. J
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A Proof of Lemma 8

I Lemma 8. For any positive integer ` and α ∈ R+, we have

α+ (1 + α)
`−1∑
i=1

(
`− 1
i

)
αi =

∑̀
i=1

(
`

i

)
αi .

Proof.
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change of index in the second summation
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=
`−1∑
i=1
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∑̀
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(
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)
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incorporating first term in second summation

=
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using the fact
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where we use
(
`
i

)
=
(
`−1
i

)
+
(
`−1
i−1
)
in the last step. J
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